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Elasticity of nematic phases with fundamental measure theory
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In a previous publication [R. Wittmann, M. Marechal, and K. Mecke, Europhys. Lett. 109, 26003 (2015)],
we introduced fundamental mixed measure theory (FMMT) for mixtures of anisotropic hard bodies, which
shows that earlier results with an empirical parameter are inaccurate. Now we provide a deeper insight into the
background of this theory in integral geometry. We study the Frank elastic coefficients in the nematic phase
of the hard spherocylinder fluid. The framework of FMMT provides us with the required direct correlation
function without additional input of an equation of state. A series representation of the mixed measure gives
rise to closed analytical formulas for the elastic constants that only depend on the density, order parameters,
and the particle geometry, pointing out a significant advantage of our geometry-based approach compared to
other density functionals. Our elastic coefficients are in good agreement with computer simulations and increase
with the density and the nematic order parameter. We confirm earlier mean-field predictions in the limits of low
orientational order and infinitely long rods.
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I. INTRODUCTION

The elastic behavior of nematic phases is one of the
unique properties that demonstrates the important role of liquid
crystals [1] in soft matter [2]. The cost of elastic energy to
locally disturb the direction of preferred alignment in this
fluidlike state is relatively small compared to the elasticity of
a solid. Hence, small external fields are sufficient to penetrate
a nematic liquid crystal and thereby tune its birefringence,
which is the key principle used to control visual displays [3].

In the famous continuum model introduced by Frank in
1958, the uniaxial nematic director n̂(r) is considered as a unit
vector field [4]. The elastic free energy,

�F = 1

2

∫
dr(K1(∇ · n̂)2 + K2(n̂ · (∇ × n̂))2

+ K3(n̂ × (∇ × n̂))2), (1)

accounts for all sorts of curvature elasticity in the nematic bulk
liquid on the basis of three distinct deformations of the director
field, neglecting surface terms. The elastic coefficients Kε ,
with ε ∈ {1,2,3}, are assigned to quantify the increase of the
free energy which corresponds to a specific distortion, namely,
splay, twist, and bend. These phenomenological parameters
can be measured in experiments [5–8] or determined for a
model system, which is the goal of this article introducing a
microscopic theory.

In 1949, Onsager [9] showed that a fluid consisting of hard
bodies, which only interact through entropic excluded-volume
effects, is a suitable model for liquid crystals [10]. Using
Onsager’s second-virial approximation and appropriate trial
functions for the orientational distribution yields numeric
values for the elastic coefficients of infinitely long rods
[11,12]. Priest found a general expansion for ratios of the
elastic coefficients in terms of ratios of the nematic order
parameters [13]. In the limit of low order, there are only
two distinct elastic constants, as K1 = K3. This result agrees
with with Landau-de Gennes theory [14], which considers at
least squared gradient terms in the nematic order parameter.
The two elastic parameters account for the symmetry of the

isotropic phase. A more general mean-field calculation yields
the relations K3 > K1 > K2 for rodlike and K2 > K1 > K3

for disklike mesogens [15].
Density functional theory (DFT) constitutes a framework

to study inhomogeneous systems [16]. In 1979, Poniewierski
and Stecki [17,18] developed a general approach to calculate
the elastic coefficients

βKε = 1

2

∫
drd�d� ′r2

ε c(2)(r,�,� ′)

× ρ ′(n̂ · �̂ )ρ ′(n̂ · �̂ ′)�̂x�̂
′
x , (2)

where ε ∈ {1,2,3}, via the direct pair correlation function
(DCF) c(2)(r,�,� ′), characterizing the structure of the liquid.
This function depends on the distance r = (x,y,z) = (r1,r2,r3)
of two bodies and their uniaxial orientations � = (θ,φ),
where �̂ = (�̂x,�̂y,�̂z) denotes the orientational unit vector.
The integrals over d� denote averages over all possible
azimuthal angles θ and polar angles φ. The derivative of the
orientation-dependent density ρ(n̂ · � ) can be easily obtained
using any density functional. Note that there are equivalent
representations for K1 when we substitute �̂x → �̂y and
r1 → r2 and for K2 with �̂x → �̂y and r2 → r1.

Poniewierski and Stecki evaluated their equations within
the second-virial approximation [17], where the Mayer func-
tion constitutes the DCF, later including an attraction term
to examine the temperature dependence [18]. In an early
extension of Onsager’s approach, Parsons [19] introduced a
density-dependent prefactor to the Mayer function, which is
related to the Carnahan-Starling equation of state for hard
spheres [20]. This approach results in a better approximation
for the DCF and elastic coefficients of shorter rods [21].
Somoza and Tarazona [22,23] and Poniewierski and Hołyst
[24] use similar assumptions in their more advanced weighted-
density functionals, which mark further improvements in the
theory for elastic coefficients.

Despite the simplicity of the Poniewierski-Stecki equations,
their solution remains an interesting problem, as there is no
exactly known DCF for a system of anisotropic particles. The
density functionals [21–24] applied so far, and therefore also
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the resulting expressions for the nematic DCF, involve ad
hoc approximations. There are some analytic representations
of an isotropic reference DCF, extrapolated from results
for the hard-sphere fluid [25–28]. The Poniewierski-Stecki
equations with these approximations were solved numerically
for ellipsoidal particles [29]. Another theoretical method
involving the expansion of the isotropic DCF into spherical
harmonics gives rise to a series representation for the elastic
coefficients [30–32].

Using computer simulations, the elastic coefficients are
found from fluctuations of the order tensor in Fourier space.
Numerical results are available for hard spherocylinders
[33,34], ellipsoids [35,36], and infinitely thin disks [37]. The
Poniewierski-Stecki equations from Eq. (2) provide an indirect
route to calculate the Frank constants by computer simulation
of the DCF [35,36,38]. The elastic coefficients of soft
ellipsoids obtained from both methods are in good agreement
[36], validating the DFT approach by Poniewierski and Stecki.
Yet there exists no quantitatively accurate analytical solution
to their equations.

With his seminal fundamental measure theory (FMT) for
mixtures of hard spheres [39], Rosenfeld initiated a new era in
DFT. The framework of FMT brings many advantages com-
pared to ordinary weighted-density functionals, in particular
regarding anisotropic bodies. First, the interaction between
two hard bodies is purely described by geometric measures,
comprised within a set of weighted densities. Second, FMT
is derived from first principles, i.e., no knowledge about the
phase behavior and correlations needs to be imposed. Such
functionals yield a simple analytic representation of the DCF,
which is a nontrivial result, as the DCF is not an input of the
theory. As a result, the Rosenfeld functional reproduces the
equation of state and the DCF obtained from the Percus-Yevick
integral equation theory [40,41]. Finally, the functional can be
easily refined without changing the internal structure, meaning
the definition of the weighted densities, and therefore the
strategy to calculate the DCF. For example, a modification of
FMT [42,43] outputs the equation of state derived by Carnahan
and Starling [20] for monodisperse hard spheres, which is more
accurate than the Percus-Yevick result. The resulting DCF
was used to construct a new version for anisotropic bodies
[25], which yields better results for the elastic coefficients
than approximations solely based on the Percus-Yevick DCF
[29].

Although the FMT functional in its original form fails
to describe nematic order [44,45], the extension to mixtures
of anisotropic bodies is quite natural, introducing additional
tensorial weight functions [46,47]. For an efficient calculation,
the usual practice is to introduce an empirical parameter
[46–50] or perform a more sophisticated systematic expansion
[51]. The earlier functionals for mixtures of spheres and
infinitely thin rods and disks [52] or parallel cylinders [53,54]
were derived with more specific assumptions.

An important requirement for all FMT-like functionals is
the crossover to an appropriate expression for the free energy
in lower dimensions, i.e., in extreme confinement. Rosen-
feld’s original functional, which lacks a correct dimensional
crossover, needs to be modified to describe a stable hard-sphere
crystal [55,56]. Later, a consistent version of the functional
was systematically derived from zero-dimensional cavities

[57,58]. For anisotropic bodies, this issue becomes even more
delicate [48,51]. The limit of extreme anisotropy gives rise to
further constraints [51], which exclude Tarazona’s most recent
expression [58] for hard spheres, also proposed for anisotropic
FMT [46]. The violation of these constraints also reflects itself
in an unstable smectic-A phase. Our results [51] using the
version of FMT by Tarazona and Rosenfeld [57] do show
the qualitatively correct behavior of the nematic–smectic-A
transition when, in addition, the empirical parameter is chosen
appropriately.

In this paper, we continue our discussion of fundamental
mixed measure theory (FMMT) and its derivation from integral
geometry [59]. The arguments from our earlier publication
[59] in favor of using this advanced generalization of FMT
rather than the simpler version are as follows. (i) FMMT is
the first version of FMT for nonspherical particles that is exact
up to quadratic order in the packing fraction η for any density
profile and, as a result, in the Onsager limit of infinite rod
aspect ratio, l → ∞, at finite ηl. (ii) Relatedly, it yields a good
description of both the isotropic-nematic and the nematic–
smectic-A transition [59]. (iii) The quantitative results for the
isotropic-nematic interfacial tension are excellent [59]. It is not
possible to achieve this accuracy consistently for all rod lengths
with the computationally cheaper FMT [51] that involves a
(fixed) semiempirical parameter.

To carry on the evaluation of FMMT, we calculate the Frank
elastic coefficients of the nematic phase. Inserting the provided
DCF into Eq. (2), we derive the explicit expressions

βKε = − ρ2

2

∑
ν,μ

∂2�ex

∂nν∂nμ

Tε[ω(ν) ⊗ ω(μ)]

− ρ2
∑

υ

∂�ex

∂N
(υ)
12

Tε

[
Ω

(1⊗2)
(υ)

]
. (3)

Hence, we only need to calculate partial derivatives of the
excess free energy density �ex with respect to its building
blocks, which are different weighted densities nν and mixed
weighted densities N

(υ)
12 , and evaluate the functionals Tε of

convolution products of the associated weight functions ω(ν)

and mixed weight function Ω(υ). As the FMMT functional,
these formulas are exact up to quadratic order in the density.
Using a series representation, we can calculate all expressions
in Eq. (3) analytically for hard spherocylinders and, we expect,
also for other simple convex particle shapes that form uniaxial
nematic phases. The closed analytic formulas, which we
provide in Sec. III C and Appendix B, are in good agreement
with the numerical FMMT result at infinite order and the elastic
constants measured in computer simulations.

The paper is arranged as follows. In the first part, Sec. II, we
derive the theory in its most general form, i.e., for mixtures of
arbitrary convex particles. We explore the foundation of FMT
functionals in integral geometry, consider different approxi-
mate variants of our new theory, and provide the general recipe
to obtain the DCF. In the second part, we restrict ourselves to
a monodisperse fluid of uniaxial hard spherocylinders, with
the orientation dependence as in Eq. (2). We calculate the
elastic coefficients from the Poniewierski-Stecki equations
via Eq. (3), which we explain in detail in Sec. III. We
discuss our analytical and numerical results in comparison
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with previous work. In Sec. IV, we draw conclusions regarding
the theoretical approach and applications of our analytical
formulas.

II. FUNDAMENTAL MIXED MEASURE THEORY

Based on recent developments in translative integral geom-
etry, we proposed a new generalization of FMT for anisotropic
hard bodies [59]. Here, we derive this FMMT with a greater
focus on the mathematical concepts and the proposed series
representations. In Sec. II A, we review the framework of DFT
and introduce the Rosenfeld functional for hard spheres. We
draw parallels between FMT functionals and measures from
integral geometry in Sec. II B. We introduce the translative
integral formula, which we use in Sec. II C to derive an
alternative decomposition of the Mayer f function and find an
additional building block of FMT based on a mixed measure of
two bodies. In Sec. II D, we provide the full expression for this
new functional and explore its relation to the representation in
terms of tensorial measures [46,47]. We further calculate the
related direct correlation functions.

A. Rosenfeld’s fundamental measure theory

Fluids of hard bodies are of particular interest for theorists,
as we can describe their purely repulsive pair interaction
exclusively in terms of geometrical quantities. Integral ge-
ometry [60] is the foundation of many sophisticated density
functionals for hard bodies, from the work of Onsager [9], who
considered the excluded volume of two infinitely long rods, to
Rosenfeld’s FMT [39] and its generalizations [46,59].

The central task in DFT is to find a functional �[{ρi}]
which is equal to the grand potential � in equilibrium and has
a larger value otherwise [16]. The equilibrium profile ρi(R) of
the number density of species i follows from the variational
principle δ�/δρi(R) = 0 for any external potential V ext

i (R).
In an anisotropic fluid, the density depends on position r
and orientation O, shortly R = (r,O). For a system with κ

components, the general functional reads

�[{ρi}] = F[{ρi}] +
κ∑

i=1

∫
dRρi(R)

(
V ext

i (R) − μi

)
, (4)

where μi are the chemical potentials and
∫

dR = ∫
dr

∫
dO

includes the spatial integration and the orientational average.
We may separate the orientation dependence of the density
profile ρ(R) = ρ(r)g(r,O) into an explicit orientational dis-
tribution g(r,O). The intrinsic free energy

βF[{ρi}] = βFid + βFex =
∫

dr(�id(r) + �ex(r)) (5)

in Eq. (4) has the ideal gas contribution

�id(r) =
κ∑

i=1

ρi(r)[ln ρi(r)�3 − 1]

+ ρi(r)
∫

dOgi(r,O) ln gi(r,O), (6)

where � is the thermal wavelength, β−1 = kBT is the inverse
temperature, and the functional �(r) is the free energy density.
The excess free energy density �ex, which contains the explicit

information about the interactions in the system, is a priori
unknown.

The key idea of Rosenfeld’s FMT [39] (in three dimensions)
is to construct the approximate excess free energy density

�ex = −n0 ln(1 − n3) + n1n2 − −→
n 1

−→
n 2

(1 − n3)
+ n3

2 − 3n2
−→
n 2

−→
n 2

(1 − n3)2

(7)
as a function of weighted densities,

nν(r) =
κ∑

i=1

∫
dR1ρi(R1) ω

(ν)
i (r − R1), (8)

where (r − R1) is short for (r − r1,O1). The geometry of a
single hard sphere is fully contained in the scalar

ω
(3)
i (r) = � (|Ri(r̂)| − |r|) ,

ω
(2)
i (r) = δ(|Ri(r̂)| − |r|)

ni(r̂)r̂
,

(9)

ω
(1)
i (r) = Hi(r̂)

4π
ω

(2)
i (r),

ω
(0)
i (r) = Ki(r̂)

4π
ω

(2)
i (r),

and vectorial

−→ω (2)
i (r) = ni(r̂)ω(2)

i (r),
(10)

−→ω (1)
i (r) = Hi(r̂)

4π

−→ω (2)
i (r),

weight functions, written in the form for a general convex
body Bi of species i. The weight functions ω

(ν)
i depend on

geometrical properties of a convex body centered in the origin.
These are the principal κI

i and κII
i , mean Hi = 1

2 (κI
i + κII

i )
and Gaussian Ki = κI

i κII
i curvature, and the outward normal

ni on the surface ∂Bi at Ri(r̂), where r̂ = r/|r| denotes the
radial unit vector. The explicit orientation dependence in the
weight functions of anisotropic bodies is discussed in Ref. [49].
Now we explore the geometrical background of FMT.

B. Integral geometry in density functional theory

Minkowski functionals [61], which provide a complete
basis of any additive, motion-invariant, and conditionally
continuous morphometrical functional [62], constitute a so-
phisticated concept to measure the shape of a convex body
Bi ⊂ Rd . We use the notational convention of Ref. [60] and
consider the equivalent intrinsic volumes Vν(Bi), which are
normalized such that their value does not depend on the
dimension of the space in which they are embedded. We
use the calculus with sets for the translation r + Bi = Bi +
r := {r + x : x ∈ Bi} by a vector r ∈ Rd and multiplication
aBi := {ax : x ∈ Bi} of a bodyBi with any real number a ∈ R.
In particular, −Bi is an abbreviation for (−1)Bi . Finally,
we define the Minkowski sum Bi 	 Bj := {x + y : x ∈ Bi ,y ∈
Bj } for two bodies Bi ,Bj ⊂ Rd . Writing vexcl = Vd (Bi 	
−Bj ) for their mutual excluded volume provides a physical
interpretation.
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In d dimensions, we define the intrinsic volumes
V0, . . . ,Vd−1 through the Steiner formula

Vd (Bi,�) =
d∑

ν=0

�d−νκd−νVν(Bi) (11)

for the d-dimensional volume Vd of the parallel body Bi,� :=
Bi 	 �Bd , where �Bd denotes the d-dimensional ball of radius
� and κd = πd/2/�(1 + d/2) is the volume of the unit ball. In
two dimensions we interpret the intrinsic volumes as the shape
measures

a(Bi) = V2(Bi) area,

l(Bi) = 2V1(Bi) perimeter, (12)

χ (Bi) = V0(Bi) Euler characteristic,

and in three dimensions we have

v(Bi) = V3(Bi) volume,

s(Bi) = 2V2(Bi) surface area,
(13)

m(Bi) = πV1(Bi) integral mean curvature,

χ (Bi) = V0(Bi) Euler characteristic.

Note that in the latter case the Euler characteristic χ (Bi) is
equivalent to the integral Gaussian curvature divided by 4π .
See Sec. 14.2 in Ref. [60] for the general expressions in d

dimensions.
Consider a Borel set (any set formed from open sets by

countable union, countable intersection, and relative comple-
ment [60]) A ⊂ Rd . In generalization of the concept of intrin-
sic volumes, we introduce the curvature measures Φν(Bi ,A),
such that Φν(Bi ,Rd ) = Vν(Bi). These local measures are
defined through the local version [60],

λ(x ∈ Bi,� : p(Bi ,x) ∈ A) =
d∑

ν=0

�d−νκd−νΦν(Bi ,A), (14)

of the Steiner Formula, Eq. (11). Here λ(x) denotes the
Lebesgue measure on Rd and p(Bi ,x) ∈ Bi is the point in
Bi with the smallest distance to x.

The argument of the weight functions ω
(ν)
i (r − R1) within

the integrand in Eq. (8) depends on two points. As shown
in Fig. 1(a), we consider a body Bi(R1) centered at r1 with
orientation O1, where r denotes an arbitrary point in space. If
r lies on ∂Bi , then r − r1 is equivalent to the vector Ri(r̂ − r1)
parametrizing the surface, such that the argument of the δ

distribution in Eq. (9) vanishes. For three-dimensional bodies
Bi with a twice differentiable boundary, the curvature measures
are related to the four scalar weight functions from Eq. (9) by

cνΦν(Bi(r1,O1),A) =
∫

A

drω(ν)
i (r − r1,O1). (15)

The proportional constants c3 = 1, c2 = 2, c1 = 1/4, and
c0 = 1 follow from the different normalizations; compare the
factors (4π )−1 in Eq. (9) and the relations in Eq. (13) for
A = R3. More precisely, Eq. (15) can be proven by inserting
Eq. (9) into its right-hand-side and comparing to the curvature
representation of Φν on p. 607 in Ref. [60].

Ri

r

r1

Bi(r1,O1)

Bi(−r,O1)

B̄i(r,O1)

d(−r1)

dr1

r

−r

FIG. 1. Oriented bodies Bi ⊂ R3 in a coordinate system. We de-
note the centers of the bodies by a dot and the origin of the coordinates
by a solid square. (a) Illustration of Bi(r1,O1) centered at r1 and
parametrized by Ri(r̂ − r1), as used in the weight functions found
in Eq. (8). If r ∈ R3 lies on ∂Bi(r1,O1), then Ri(r̂ − r1) = r − r1.
(b) Comparison of a bodyBi(−r,O1) centered at −r with its inversion
B̄i(r,O1) at r. It can be seen that the elements dr1 ∩ B̄i(r,O1) and
d(−r1) ∩ Bi(−r,O1) are each other’s image under point reflection.

For an infinitesimally small volume element A ≡ dr, we
can write the weight functions as

ω
(ν)
i (r − r1,O1) dr = cνΦν(Bi(r1,O1),dr). (16)

Inverting the body Bi(r,O1) at its center r, denoted by
B̄i(r,O1) := 2r − Bi(r,O1), we find

cνΦν(B̄i(r,O1),dr1) = ω
(ν)
i (r − r1,O1) dr1 (17)

from the identity Φν(B̄i(r,O1),dr1)=Φν(Bi(−r,O1),d(−r1))
and Eq. (16). This relation is illustrated in Fig. 1(b), where
d(−r1) denotes the image of dr1 under point reflection.
Interchanging r1 and r in Eq. (16) and comparing to Eq. (17),
we see that the scalar weight functions of a point-symmetric
particle Bi = B̄i are also point symmetric.

By construction, the low-density limit of the Rosenfeld
functional from Eq. (7) provides the excluded volume vexcl of
two spheres. Defining V (i)

ν := Vν(RiB
3), we obtain

vexcl = V
(1)

3 V
(2)

0 + V
(1)

0 V
(2)

3 + 1
2V

(1)
2 V

(2)
1 + 1

2V
(1)

1 V
(2)

2 (18)

as the special case of the Steiner formula, Eq. (11), in d = 3
with Bi = R1B

3 a sphere of radius R1 and � = R2. The
factorization into intrinsic volumes is equivalent to Rosenfeld’s
decomposition in terms of one-body weight functions [39].
The more general principal kinematic formula (Theorem 5.1.3
in Ref. [60]) gives rise to a representation of the orientationally
averaged excluded volume or the second-virial coefficient of
two anisotropic bodies Bi and Bj with the same form as
Eq. (18). Therefore, the FMT functional based on the weight
functions from Eq. (9) is suitable to describe the isotropic bulk
liquid [44,45]. The factorization in Eq. (18) has already been
used in a scaled-particle treatment of anisotropic fluids [63].
However, the Minkowski sum of two anisotropic grains cannot
be factorized into intrinsic volumes, which explains the failure
of Rosenfeld’s FMT for orientationally ordered phases.

In an appropriate generalization of Steiner’s formula, the
Minkowski sum of two convex bodies Bi and Bj involves
so-called mixed volumes depending on both bodies simulta-
neously [60]. To define an appropriate weight function for a
DFT, we need to consider a relation similar to Eq. (17) and
therefore introduce a local equivalent to mixed volumes. The

052501-4



ELASTICITY OF NEMATIC PHASES WITH FUNDAMENTAL . . . PHYSICAL REVIEW E 91, 052501 (2015)

existence of mixed measures Φ
(ν)
k,d−k(Bi ,Bj ; A × B) on Borel

sets A and B, defined through the translative integral formula∫
R3

Φν(Bi ∩ (Bj + x),A ∩ (B + x)) dx

=
d∑

k=ν

Φ
(ν)
k,d−k(Bi ,Bj ; A × B), (19)

was proven in Theorem 5.2.3 in Ref. [60]. This fundamental
equation provides a relation to a curvature measure Φν in d

spatial dimensions. The corollary∫
Rd

∫
Rd

F (x,x − y) Φν(Bi ∩ (Bj + y),dx) dy

=
d∑

k=ν

∫
Rd×Rd

F (x,y) Φ
(ν)
k,d−k(Bi ,Bj ; d(x,y)) (20)

provides the mathematical foundation of FMMT when setting
ν = 0 [59].

Mixed measures obey the symmetry relations

Φ
(0)
k,d−k(Bi ,Bj ; d(r1,r2)) = Φ

(0)
d−k,k(Bj ,Bi ; d(r2,r1)). (21)

As also known for mixed volumes, the mixed measures

Φ
(0)
0,d (Bi ,Bj ; d(r1,r2)) = Φ0(Bi ,dr1) Φd (Bj ,dr2) (22)

for k = 0 and equivalently k = d factorize to the curvature
measures corresponding to Euler characteristic and volume.
In two and three dimensions, we have the explicit expressions
[64]

Φ
(0)
1,1(Bi ,Bj ; d(r1,r2))

= arccos(ninj )

2π
|ni × nj |C1(Bi ,dr1)C1(Bj ,dr2) (23)

and

Φ
(0)
1,2(Bi ,Bj ; d(r1,r2))

= κI
i

(
vII

i nj

)2 + κII
i

(
vI

i nj

)2

4π (1 + ninj )
C2(Bi ,dr1)C2(Bj ,dr2),

(24)

with the directions vI
i and vII

i of the principal curvatures
and the boundary measure Cd−1(Bi ,A) := 2Φd−1(Bi ,A). A
similar expression was obtained by Wertheim [65] in his local
representation of the second-virial coefficient. Wertheim found
that his exact formula reduces to Eq. (18) when applied to
the isotropic phase but he never applied it within the context
of a more general DFT. Now we are at a point where we
can express the pair interaction between two anisotropic hard
bodies exactly using such mixed measures.

Briefly returning to measures of a single convex hard body,
we now introduce another successful geometrical concept
applied in statistical physics. In generalization of Minkowski
functionals, which are a complete basis for the description of
shape, the notion of isometry-covariant Minkowski tensors
[66] allows us to quantify anisotropy through the ratio of
their largest and smallest eigenvalues. Relatedly, extended
deconvolution fundamental measure theory (edFMT) [46,47],

based on the tensorial weighted densities

←→ω (2)
i (r) = ninT

i ω
(2)
i (r),

(25)
←→ω (1)

i (r) = �κi

4π

(
vI

i vI
i

T − vII
i vII

i

T)
ω

(2)
i (r),

provides an approximate generalization of FMT. Here �κi =
1
2 (κI

i − κII
i ) denotes the deviatoric curvature, which vanishes

for spheres. With this extension, we can describe the nematic
phase of anisotropic hard bodies qualitatively. Moreover, the
tensor ←→ω (2)

i is equal to the one introduced to FMT to describe
the hard-sphere crystal [57,58], i.e., a state of isotropically
shaped particles with positional anisotropy.

Compared to scalar or vectorial measures, the basic feature
of tensorial weighted densities is that they show a nontrivial
dependence on the orientational distribution g(O) in the
homogeneous nematic phase. The equilibrium distribution
must minimize the density functional

δ�

δg(O)
=

∫
dr

{
ρ(r)[ln g(O) + 1] + δ�ex

δg(O)

}
= 0. (26)

Without tensorial (or mixed) measures, the variational deriva-
tive δ�ex/δg(O) vanishes trivially, explaining the unsatisfac-
tory description of orientational order within the original FMT.
Therefore, we expound a new route to derive the most general
version of FMT for arbitrarily shaped convex hard bodies.

C. Decomposition of the Mayer f function

To obtain an accurate version of FMT, we must provide an
exact free energy functional,

βFex → −1

2

κ∑
i,j=1

∫∫
dR1dR2ρi(R1)ρj (R2)fij (R1,R2),

(27)
in the dilute limit, where the average number density ρi →
0 of each species vanishes, such that only pair interactions
are relevant. The first step is to decompose the characteristic
Mayer f function

fij (R1,R2) = e−βUij − 1 =
{

0 if Bi ∩ Bj = ∅,

−1 if Bi ∩ Bj �= ∅,
(28)

where Uij (R1,R2) is the pair interaction potential between
two hard bodies Bi and Bj . We see that the interaction only
depends on whether the intersection

Iij (R1,R2) := Bi(R1) ∩ Bj (R2) (29)

is the empty set ∅ or not. With this geometric point of view,
we find the (local) representation of the Mayer function,

−fij (R1,R2) = χ (Iij ) = V0(Iij ) =
∫
R3

Φ0(Iij ,dr), (30)

in terms of the curvature measure Φ0. Note that in this
step we need to restrict ourselves to convex bodies whose
intersection region is simply connected, ensuring that the Euler
characteristic χ (Iij ) = 1 whenever Iij �= ∅.
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Inserting fij from Eq. (30) into Eq. (27), we find

βFex → 1

2

κ∑
i,j=1

∫∫∫
dR1dR2ρi(R1)ρj (R2)Φ0(Iij ,dr).

(31)

Now we apply the translative integral formula from Eq. (20)
with ν = 0 to transform the integrand∫∫

dr1dr2ρi(r1)ρj (r2)
∫

Φ0(Iij (r1,r2),dr)

=
∫∫

dxdyρi(x)ρj (x − y)
∫

Φ0(Iij (x,x − y),dr)

=
∫

dr
∫∫

dyρi(x)ρj (x − y)Φ0(Īij (r,r + y),dx)

=
∫

dr
d∑

k=0

∫∫
ρi(x)ρj (y)Φ(0)

k,d−k(B̄i(r),B̄j (r); d(x,y))

(32)

in Eq. (27), which is valid for each pair of orientations O1,O2.
In the second step, we applied the identity

Φν(Iij (x,x − y),dr)dx = Φν(Īij (r,r + y),dx)dr (33)

for the curvature measures, derived in Appendix A, to the
intersection Iij (x,x − y), which is also a convex body. The
inversion Īij = B̄i ∩ B̄j denotes the intersection of the two
bodies inverted at their respective centers. Comparing Eq. (32)
with Eq. (27), we find the decomposition

− fij (R1,R2)dr1dr2

=
∫

dr
d∑

k=0

Φ
(0)
k,d−k(B̄i(r,O1),B̄j (r,O2); d(r1,r2)) (34)

of the Mayer f function into the mixed measures Φ
(0)
k,d−k . We

define the mixed weight functions

Ω
(k,d−k)
ij (r − r1,r − r2,O1,O2)dr1dr2

:= Φ
(0)
k,d−k(B̄i(r,O1),B̄j (r,O2); d(r1,r2)) (35)

in analogy to Eq. (17) and obtain

−fij (r,O1,O2) =
∫

dr′
d∑

k=0

Ω
(k,d−k)
ij (r′ − R1,r′ − R2),

(36)
where r = r1 − r2. As a short notation, we further introduced
the self-convolution product

Ω
(k⊗d−k)
ij =

∫
dr′Ω (k,d−k)

ij (r′ − R1,r′ − R2) (37)

of the mixed weight function Ω
(k,d−k)
ij .

We turn to d = 3 dimensions and find the explicit expres-
sion for mixed weight function

Ω
(12)
ij (R1,R2) = κI

i

(
vII

i nj

)2 + κII
i

(
vI

i nj

)2

4π (1 + ninj )
ω

(2)
i ω

(2)
j , (38)

comparing Eqs. (24) and (35) and applying Eq. (17) to replace
the boundary measure C2(B̄i ,dr1) with the weight function ω

(2)
i

from Eq. (9). Following Eq. (22), we can factorize the mixed
measures Φ

(0)
0,3 and Φ

(0)
3,0 into curvature measures and further

recover the scalar weight functions ω
(0)
i and ω

(3)
i . Hence, the

exact decomposition of the Mayer function reads

−fij (r,O1,O2) = ω
(0)
i ⊗ ω

(3)
j + Ω

(1⊗2)
ij + (i ↔ j ), (39)

where

ω
(ν)
i ⊗ ω

(μ)
j =

∫
dr′ω(ν)

i (r′ − R1)ω(μ)
j (r′ − R2) (40)

denotes the convolution product of the orientation-dependent
weight functions from Ref. [46]. Note that we took advantage
of the relation from Eq. (21), taking into account the terms
with k � d/2 in Eq. (34) by adding the same expression with
exchanged indices i and j , denoted by (i ↔ j ). In particular,
we used Ω

(12)
ji = Ω

(21)
ij .

Now we use the relation

κI
i

(
vII

i nj

)2 + κII
i

(
vI

i nj

)2

= −�κi

[(
vI

i nj

)2 − (
vII

i nj

)2] + Hi[1 − (ninj )2], (41)

arising from the orthonormality of the unit vectors on the
particle’s surface, to obtain a different representation

Ω
(12)
ij (R1,R2) = ω

(1)
i (R1)ω(2)

j (R2) − −→ω (1)
i (R1)−→ω (2)

j (R2)

−ω
(12)
ij (R1,R2) (42)

of the mixed weight function from Eq. (38). The information
about orientational anisotropy for the homogeneous fluid is
then solely contained in the mixed weight function

ω
(12)
ij (R1,R2) = �κ

4π

(
vI

i nj

)2 − (
vII

i nj

)2

(1 + ninj )
ω

(2)
i ω

(2)
j , (43)

which vanishes for a spherical shape like the tensorial weight
function ←→ω (1)

i from Eq. (25). The expressions which result
from the second term on the right-hand side of Eq. (41)
factorize to scalar and vectorial weight functions defined in
Eqs. (9) and (10) as in edFMT [46].

Expanding of the denominator in Eq. (43), we find the series
representation

ω
(12)
ij =

∞∑
r=2

ω
(12)
ij,[r]. (44)

We may factorize the mixed weight functions

ω
(12)
ij,[r](R1,R2)

= �κ

4π

[(
vI

i nj

)2 − (
vII

i nj

)2]
(−ninj )r−2ω

(2)
i ω

(2)
j (45)

into tensorial weight functions of rank r � 2. In particular, we
find the well-known representation

ω
(12)
ij,[2] = Tr

[←→ω (1)
i

←→ω (2)
j

]
(46)

of the first-order term with the rank-2 tensors defined in
Eq. (25). Both of these equivalent approaches do have their
advantages and drawbacks. Our new expansion from Eq. (44)
in terms of mixed weight functions simplifies an analytic
evaluation, as we do not have to consider single tensorial
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components, which leads to a rapidly increasing number of
terms.

D. Excess free energy

In Sec. II C, we found different representations for the
mixed weight function Ω

(12)
ij . The definition of the convolution

from Eq. (37) applies to all mixed weight functions Ω
(12)
ij,(υ) ∈

{Ω (12)
ij ,ω

(12)
ij ,ω

(12)
ij,[r]} found in alternative decompositions to

Eq. (39), where υ is an arbitrary label. In analogy to the
one-body weighted densities from Eq. (8), we define the corre-
sponding mixed weighted densities N

(υ)
12 ∈ {N12,n12,n

[r]
12 } by

N
(υ)
12 (r) =

κ∑
i,j=1

∫∫
dR1dR2ρi(R1)ρj (R2)

× Ω
(12)
ij,(υ)(r − R1,r − R2). (47)

With the decomposition of the Mayer f function from
Eq. (39), we obtain the low-density expression

�ex(r) = n0(r)n3(r) + N12(r) + O(ρ3), (48)

of the excess free energy density corresponding to Eq. (27).
This result gives rise to the exact second-virial coefficient and
excluded volume in a fluid of anisotropic particles.

Note that Eq. (27) depends on the geometry of the body
traced out by two overlapping particles via the Mayer bond.
In contrast, Eq. (48), which becomes equal to Eq. (27) after
integration over r, depends only on single-particle properties,
where the mixed weight function from Eq. (38) depends
on the properties of two particles simultaneously. Solving a
differential equation based on scaled-particle theory [67], we
obtain the general excess free energy density

�ex = −n0 ln(1 − n3) + φ2

(1 − n3)
+ φ3

(1 − n3)2
(49)

at nonzero density. Alternatively, we find the structure of
Eq. (49) from zero-dimensional cavities [48,57,58] or the
virial expansion [68,69]. All these equivalent approaches
for the extrapolation to finite density require the form of
the low-density expression given by Eq. (48) and cannot be
performed using Eq. (27) directly. We may replace φ2 = N12

from the exact low-density limit in Eq. (48) with any equivalent
or approximate form. In the third term, which is only relevant
at nonzero density, there are different possibilities to choose
φ3(n2,

−→
n 2,

←→
n 2).

According to Eq. (42), we can split the mixed weighted
density

N12 = n1n2 − −→
n 1

−→
n 2 − n12 =: φ

(MM)
2 (50)

into the four familiar one-body weighted densities [39] and
the two-body measure n12, which we additionally require to
describe anisotropic systems [59]. With the expansion of ω

(12)
ij

from Eq. (44), we define the approximate second term,

N12 ≈ n1n2 − −→
n 1

−→
n 2 −

rt∑
r=2

n
[r]
12 =: φ

[rt]
2 , (51)

for truncation at order r = rt. For a homogeneous density, we
only need to include weighted densities of even order r = 2n.

Therefore, we can use a systematic expansion of n12 [51],
which yields the approximate series representation

N12 ≈ n1n2 −
nt∑

n=1

n∑
m=1

ζ [n]
m n

[2m]
12 =: φ

{ζ [nt]}
2 , (52)

truncated at n = nt. The parameters

ζ [n]
m = (−1)n+m4−n(4n + 1)(2n + 2m)!

2n(n + 1)(4n2 − 1)(n + m)!(n − m)!(2m − 2)!

(53)

correct each term, such that Eq. (52) results in a series of
order parameters, i.e., averaged Legendre polynomials, for
the nematic phase. Originally, the correction ζ

[1]
1 = 5/4 for

truncation at nt = 1 was replaced by a free parameter ζ in
edFMT [46]. According to Eq. (46), we can rewrite the second
term

N12 ≈ n1n2 − −→
n 1

−→
n 2 − ζTr[←→n 1

←→
n 2] =: φ

(ζ )
2 , (54)

using the tensorial weighted densities from Eq. (25).
The third term in Eq. (49) is vital for the description

of anisotropic particles at finite packing [51]. A necessary
criterion for an accurate expression, the correct crossover to
low spatial dimensions [55,56], is fulfilled by both

φ
(TR)
3 (n2,

←→
n 2) = 3

16π

(
n3

2 − 3n2Tr
[←→

n 2
2

] + 2Tr
[←→

n 3
2

])
(55)

and

φ
(T)
3 (n2,

−→
n 2,

←→
n 2) = 3

16π

(−→
n T

2
←→
n 2

−→
n 2 − n2

−→
n 2

−→
n 2

− Tr
[←→

n 3
2

] + n2Tr
[←→

n 2
2

])
, (56)

derived by Tarazona and Rosenfeld [57] and Tarazona [58],
respectively. It has been shown [51] that Tarazona’s expression
leads to a diverging free energy per particle for infinitely long
rods and infinitely thin platelets. This deficiency makes it
inappropriate for general fluids of anisotropic bodies, despite
its consistency with Percus-Yevick theory [40].

Given any valid fundamental measure functional, i.e.,
an excess free energy which is written as a function of
different weighted densities, it is straightforward to calculate
an appropriate direct correlation function (DCF) without
additional empirical input. Within DFT, the DCF

c
(2)
ij (r = r1 − r2,O1,O2) = −δ2βFex[{ρi(R′)}]

δρi(R1)δρj (R2)
(57)

is conveniently defined as the second functional derivative of
the free energy. Ordinary weighted densities are linear in the
density. Therefore, their first functional derivative is equivalent
to the corresponding weight functions and their second
variation vanishes. We find the first functional derivative,

δN
(υ)
12 (r′)

δρk(R1)
=

κ∑
j=0

∫
dR′

2ρ(R′
2)Ω (12)

kj,(υ)(r
′ − R1,r′ − R′

2)

+
κ∑

i=0

∫
dR′

1ρ(R′
1)Ω (12)

ik,(υ)(r
′ − R′

1,r
′ − R1),

(58)
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of a mixed weighted density. We can express the integral∫
dr′ δ2N

(υ)
12 (r′)

δρi(R1)δρj (R2)
= Ω

(1⊗2)
ij,(υ) + Ω

(1⊗2)
ji,(υ) (59)

over the second functional derivative in terms of the self-
convolution products defined in Eq. (37). The resulting DCF
of FMMT reads

c
(2)
ij (r,O1,O2) = −

∑
μ,ν

∂2�ex

∂nμ∂nν

ω
(μ)
i ⊗ ω

(ν)
j −

∑
υ

∂2�ex

∂n3∂N
(υ)
12

×
(

ω
(3)
i ⊗ δN

(υ)
12

δρj

+ δN
(υ)
12

δρi

⊗ ω
(3)
j

)

−
∑

υ

∂�ex

∂N
(υ)
12

(
Ω

(1⊗2)
ij,(υ) + Ω

(1⊗2)
ji,(υ)

)
(60)

in its most general form. The summation over υ includes all
involved mixed weights, whereas ν and μ account for scalar,
vectorial, and tensorial one-body quantities.

III. FRANK ELASTIC COEFFICIENTS

We use the different versions of FMT derived in Sec. II
to study the nematic phase of monodisperse hard sphero-
cylinders. We calculate the corresponding orientational dis-
tributions analytically from a free minimization and compare
the nematic equation of state in Sec. III A. In Sec. III B, we
introduce the general approach to calculate the Frank elastic
coefficients within FMT. We provide an approximate analytic
solution in Sec. III C, which we evaluate in Sec. III D for
low-ordered systems and the Onsager limit. We discuss the
behavior of the elastic coefficients as a function of the density
and the nematic order parameter in Sec. III E, comparing the
full result of FMMT to the analytic series representation and
other works.

A. Nematic orientational distribution

The uniaxial nematic bulk phase of monodisperse hard
spherocylinders has a translational symmetry in the direction
n̂ of the nematic director, in which the particles preferably
align. Therefore, the dependence on the orientation O reduces
to � = (θ,φ), such that the orientational average becomes∫

dO =
∫

d� = 1

2π

∫ 2π

0
dφ

∫ 1

0
d cos θ. (61)

We choose the z direction for the nematic director. The particle
orientation

�̂ =
⎛
⎝cos φ sin θ

sin φ sin θ

cos θ

⎞
⎠ (62)

corresponds to the radial unit vector in spherical coordinates.
Then the distribution g(n̂�̂ ) = g(cos θ ) of orientations takes
its most simple form only depending on the cosine of the
azimuthal angle θ [49]. The explicit function follows from
the variation according to Eq. (26) with a homogeneous
density ρ(r) ≡ ρ. To this end, it is desirable to use an analytic
representation of the excess free energy density �ex in Eq. (49).
The easiest way to do so is the common ζ correction from

Eq. (54) with the well-known one-body weighted densities
[47,49],

n3 = ρ

(
π

4
LD2 + π

6
D3

)
= ρv = η,

n2 = ρ(πLD + πD2),

n1 = ρ

(
L

4
+ D

2

)
, n0 = ρ,

(←→n 2)11 = (←→n 2)22 = ρ

[
π

6
LD(2 + S) + π

3
D2

]
,

(←→n 2)33 = ρ

[
π

3
LD(1 − S) + π

3
D2

]
,

(←→
n 1

)
11 = (←→n 1)22 = −1

2
(←→n 1)33 = ρ

L

8
S, (63)

of spherocylinders with diameter D, cylinder length L, volume
v, and aspect ratio l = L/D. The orientation dependence is
contained in the nematic order parameter

S =
∫ 1

0
d cos θ

(
3

2
cos θ2 − 1

2

)
g(cos θ ), (64)

where we simplified the orientational average from Eq. (61)
according to the symmetry of g(cos θ ) and η denotes the
packing fraction.

For the mixed weighted densities of order 2m, we find

n∑
m=1

ζ [n]
m n

[2m]
12 = ρ2L2Dπ

(4n + 1)(2n − 3)!!(2n − 1)!!

22n+2n!(n + 1)!
P̄ 2

2n

(65)

with the prefactors from Eq. (53). Hence, the expansion from
Eq. (52) gives rise to a sequence of nt order parameters,

P̄2n :=
∫ 1

0
d cos θP2n(cos θ )g(cos θ ), (66)

which are orientationally averaged Legendre polynomials
P2n(x), where S ≡ P̄2 [51]. We find a closed expression
g({P2n(cos θ )}) for the orientational distribution from the
variation of the corresponding excess free energy. The min-
imization requires solving the nt equations for the intrinsic
order parameters α2

[2n] := −∂�ex/∂P̄2n/ρ plus the numerical
normalization of the distribution [51]. For nt = 1, we obtain
the normalized distribution

g(α, cos θ ) = α

D(α)
exp[−α2(1 − cos2 θ )] (67)

in terms of Dawson’s integral D(α) and the intrinsic order
parameter α2 = 3α2

[2]/2 [47].
The quick convergence of Eq. (52) when increasing nt at

isotropic-nematic coexistence has already been demonstrated
in Ref. [51]. However, the minimization beyond nt = 10
becomes increasingly difficult. We therefore impose Eq. (67)
as the orientational distribution for the remainder of this work.
Then we find the recurrence formulas

I2n = 1

2αD(α)
− (2n − 1)I2n−2

2α2
, I2 = α − D(α)

2α2D(α)
(68)
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TABLE I. Test of the generalized ζ correction from Eq. (52) with
different truncation orders 2nt as an approximation for the mixed
weighted density n12. We minimize the functionals for different
packing fractions η of hard spherocylinders with aspect ratio l = 20.
The third term is from Eq. (55). We show the approximate results
ñ12 for the truncated expansion of n12 imposing the orientational
distribution from Eq. (67) and calculate the difference �ñ12 sub-
tracting the result of a free minimization for the same nt, where e-x
is short for ×10−x . Missing values denote that we were unable to
perform the free minimization due to the high computational effort
for nt > 10. At first order nt = 1, the free minimization is equivalent
to our approximation. We also show the result for the nematic order
parameter S and pressure p. The largest value of nt denotes the
lowest-order term whose addition changes βpv by less than 10−6.
Then the expansion has certainly converged. Imposing the respective
order parameter, we confirm this result evaluating the full mixed
weighted density n12, denoted by nt = ∞. The number in brackets
denotes the error in the last digit due to four-dimensional (see text)
Monte Carlo integration with 107 function calls taking about 40 s.

η nt ñ12D
3 �ñ12D

3 S βpv

0.3 1 0.057 90 0 0.9291 3.162
0.3 2 0.071 41 3.2e-6 0.9508 2.623
0.3 3 0.077 23 1.3e-5 0.9602 2.390
0.3 5 0.082 10 4.2e-5 0.9686 2.191
0.3 8 0.084 18 4.0e-5 0.9725 2.106
0.3 10 0.084 48 −1.8e-5 0.9731 2.093
0.3 19 0.084 56 0.9733 2.090
0.3 ∞ 0.084 57(2) 0.9733 2.090

0.5 1 0.179 17 0 0.9806 15.83
0.5 2 0.218 94 5.5e-8 0.9854 12.98
0.5 3 0.236 59 4.6e-7 0.9881 11.68
0.5 5 0.252 82 3.3e-6 0.9910 10.46
0.5 8 0.262 65 1.5e-5 0.9930 9.704
0.5 10 0.265 89 2.7e-5 0.9938 9.451
0.5 20 0.271 04 0.9951 9.043
0.5 44 0.271 41 0.9953 9.007
0.5 ∞ 0.271 41(2) 0.9953 9.007

for the moments

Ir =
∫ 1

0
d cos θ cosr θg(cos θ ), (69)

which are zero for odd values of r . The order parameters from
Eq. (66) have the explicit form

P̄2n =
n∑

k=0

(−1)k
(4n − 2k)!

4n(2n − k)!(2n − 2k)!k!
I2n−2k. (70)

Therefore, the equilibrium condition

∂�

∂α
= 0, (71)

with respect to the orientational degrees of freedom, exclu-
sively involves the intrinsic order parameter α. The effort
for solving this self-consistency equation for an arbitrary
truncation order is practically the same as a free minimization
for nt = 1.

In Table I, we see that the difference between the Gaus-
sian approximation, Eq. (67), for the nematic orientational

0.34 0.36 0.38 0.4 0.42 0.44
η

3.5

4

4.5

5

5.5

6

6.5

βp
v

isotropic
n

t
=1

n
t
=2

n
t
=3

n
t
=50 / FMMT

L/D=5

FIG. 2. Isotropic (solid line) and nematic equations of state of
hard spherocylinders with aspect ratio l = 5. We use the generalized
ζ correction from Eq. (52) with different truncation orders nt and
the expression φ

(TR)
3 from Eq. (55) by Tarazona and Rosenfeld. The

convergence of this expansion towards the FMMT result with the full
mixed weighted density, Eq. (50), becomes slower with increasing
packing fraction η and nematic order parameter. The horizontal
dotted lines indicate the isotropic-nematic coexistence pressure and
densities. The vertical dotted line denotes the limit of stability with
respect to the smectic-A phase obtained with FMMT [59]. The circles
and triangles denote the simulation results [70] for the isotropic and
nematic branch, respectively.

distribution and a full minimization is negligible. At nt = 10,
the error due to truncation is still larger, which we see adding
higher-order terms. Particularly at high packing fractions η, far
beyond the isotropic-nematic coexistence region, we may not
consider the truncated expansion with nt = 10 as converged.
To further illustrate the convergence, we consider the equation
of state p(η) for different nt in Fig. 2. For the third term in
the free energy, we use φ

(TR)
3 from Eq. (55), which results

in a good agreement with computer simulations [70]. The
original approach with Eq. (56) significantly overestimates
the nematic pressure [51], although the parameter ζ = 1.6 in
Eq. (54) was chosen to fit the densities at the isotropic-nematic
coexistence to the result from Ref. [71]. The isotropic branch
does not depend on the order of truncation, as n12 = 0 in the
isotropic phase and only the lowest nematic order parameter
S determines the limit of metastability with respect to a
nematic perturbation. The nematic pressure decreases with
increasing number of terms and has converged at least at
nt = 50. In comparison, we see that the difference between
this full solution and the result at small nt increases with the
density. The approximation by rank-2 tensors from Eq. (54),
which is equivalent to nt = 1, is not sufficient for the nematic
phase.

We have seen that the simple orientational distribution
from Eq. (67), together with the systematic calculation of
higher-order terms, provides a simple but reliable description
of the nematic bulk phase. This Gaussian approximation was
also used for the mixed weighted densities n12 and N12 to
study the isotropic-nematic interface and the smectic-A phase
numerically [59]. For the nematic bulk phase, a numerical
calculation requires the four integrations over z1, z2, ϕ1, and
ϕ2 in cylindrical coordinates of the two spherocylinders. Be-
forehand, we perform the integrals over the polar orientational
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angles φ1 and φ2 analytically and only add the two numerical
averages with respect to θ1 and θ2. Evaluating n12 instead
of N12, the integrals over z1 and z2 become trivial as the
hemispherical contributions vanish. Therefore, we perform
a four-dimensional Monte Carlo integration. However, we
cannot solve Eq. (71) to determine the order parameter α

analytically. Therefore, we use the approximation in Eq. (52)
with the sufficiently large truncation order nt = 50 to calculate
the corresponding value of α. Doing so, we verify in Table I
that the mixed weighted density n12 is indeed the limit of
this convenient expansion. We may use both approaches
interchangeably and therefore identify the nematic branch in
Fig. 2 corresponding to nt = 50 with the full FMMT result.
Note that in systems of parallel bodies, we can calculate the
mixed weighted densities of hard spherocylinders explicitly
[59] and verify the agreement with the series representation
[51] directly. Now we are prepared to calculate the Frank
elastic coefficients with both FMMT and different expansions.

B. Poniewierski-Stecki equations

External potentials break the symmetry of the nematic
bulk fluid. Surfaces imposing a particular orientation of the
nematic director or aligning fields that act on the orientation
� induce elastic deformations. The continuum description
in Eq. (1) due to Frank does not account for microscopic
details, such as the spatial density distribution or the molecular
shape. Microscopically, the nematic director field is contained
implicitly in the inhomogeneous orientational distribution as
the direction in which it attains its maximum for a fixed
position. In equilibrium, we assume the form of Eq. (67) with
a director field n̂ = (0,0,1) parallel to the z axis.

We describe the elasticity of the nematic phase using
the variational DFT approach [17] from Eq. (2). These
Poniewierski-Stecki equations require an appropriate DCF
which we can provide for all FMT functionals according
to Eq. (60). We obtain the orientational component �̂x =
cos φ sin θ and the derivative ρ ′(n̂ · �̂ ) = ρg′(cos θ ) of the
orientation-dependent density from the unit vector in Eq. (62).
With the analytic orientational distribution from Eq. (67), we
calculate

g′(α, cos θ ) = dg(α, cos θ )

d cos θ
= g(α, cos θ )2α2 cos θ. (72)

Separating the spatial integral

Rε(�,� ′) := −
∫

drr2
ε c(2)(r,�,� ′) (73)

from the universal orientational part

W (α,� ) := g(α, cos θ )2α2 cos θ�̂x(θ,φ), (74)

we rewrite Eq. (2) as

βKε = −ρ2

2

∫∫
d�d� ′Rε(�,� ′)W (α,� )W (α,� ′).

(75)
To calculate the spatial integral in Eq. (73), we parametrize
the spherocylinder in body-fixed cylindrical coordinates r̄ =
(z̄,�̄,ϕ̄) and include the orientation-dependence implicitly in
the weight functions, as described in Ref. [49]. Within the
space-fixed outer coordinate frame, the position vector r(r̄,� )

reads

r =

⎛
⎜⎝

cos φ cos θ�̄ cos ϕ̄ − sin φ�̄ sin ϕ̄ + cos φ sin θ z̄

sin φ cos θ�̄ cos ϕ̄ + cos φ�̄ sin ϕ̄ + sin φ sin θ z̄

− sin θ�̄ cos ϕ̄ + cos θ z̄

⎞
⎟⎠ .

(76)

The volume element becomes dr = d r̄ = �̄d�̄dϕ̄dz̄.
Now that we have introduced all ingredients to Eq. (2),

we insert the general form of the DCF from Eq. (60) into the
integrand in Eq. (73). To this end, we consider the functional

Tε [H](�,� ′) :=
∫

drr2
ε H(r,�,� ′) (77)

of an arbitrary function H(r,�,� ′). Including the orientational
averages, we define

Tε [H] :=
∫∫

d�d� ′Tε [H](�,� ′)W (α,� )W (α,� ′).

(78)

Applying this functional to the convolution product ω(ν) ⊗ ω(μ)

of two weight functions and the self-convolution Ω
(1⊗2)
(υ) , we

find Eq. (3) from Eq. (75).
For any convolution, we can simplify the integrals within

Tε[ω(ν) ⊗ ω(μ)] =
∫

drr2
ε ω(ν) ⊗ ω(μ)(r,�,� ′)

=
∫∫

drdr′r2
ε ω(ν)(r′ − r,� )ω(μ)(r′,� ′)

=
∫∫

dr′dr(r ′
ε − rε)2ω(ν)(r,� )ω(μ)(r′,� ′)

(79)

by substituting r → r′ − r. With these two similar integrals,
we can simplify the first term in Eq. (3), which does not contain
mixed weight functions. The expression

Tε[ω(ν) ⊗ ω(μ)] = ω̄
(ν)
(ε,2)ω̄

(μ)
(ε,0) − 2ω̄

(ν)
(ε,1)ω̄

(μ)
(ε,1) + ω̄

(ν)
(ε,0)ω̄

(μ)
(ε,2),

(80)

only contains the integrals

ω̄
(ν)
(ε,q) =

∫
dRrq

ε ω(ν)(R)W (α,� ), q ∈ {0,1,2} (81)

over the weight functions of one body. We can further show
that the second term in Eq. (60), involving the first functional
derivative of mixed weighted densities, does not contribute
to Eq. (3), as ω̄

(3)
(ε,q) = 0 for all q in the uniaxial nematic

phase. Now we define the different contributions to the elastic
coefficients which correspond to the different versions of the
second φ2 and third terms φ3 of the functional, Eq. (49),
introduced in Sec. II D.

As a first step, we consider the excess free energy in
the first-order approximation for the mixed weighted density,
setting rt = 2 in Eq. (51) and use the one-body weighted
densities of a spherocylinder from Eq. (63). For a cylindrical
symmetric body, we have ω̄

(ν)
(ε,1) = 0 for all weight functions

and find ω̄
(ν)
(ε,0) �= 0 only for the off-diagonal tensorial com-

ponents (←→ω (1))13 and (←→ω (2))13. Hence, there are only two
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contributions to the first sum in Eq. (3), which respectively
arise from φ2 and φ3. We accordingly define the leading term

βK
[2]
ε,2 := 2ρ2

1 − n3
Tε[(←→ω (1))13 ⊗ (←→ω (2))13], (82)

corresponding to the expansion of φ2 and the two possible
contributions

βK
(TR)
ε,3 := 9ρ2[−(←→n 2)22 − (←→n 2)33 + n2]

8π (1 − n3)2

× Tε[(←→ω (2))13 ⊗ (←→ω (2))13] (83)

and

βK
(T)
ε,3 := ρ2[3(←→n 2)22 + 3(←→n 2)33 − 2n2]

16π (1 − n3)2

× Tε[(←→ω (2))13 ⊗ (←→ω (2))13] (84)

of the third terms from Eq. (55) or Eq. (56), respectively.
Using mixed measures instead, we can easily calculate the

higher-order terms

K
[r]
ε,2 = ρ2

1 − n3
Tε

[
ω

(1⊗2)
[r]

]
, (85)

recovering the result of Eq. (82) for r = 2. The exact
contribution

βK
(MM)
ε,2 = − ρ2

1 − n3
Tε[Ω (1⊗2)] = ρ2

1 − n3
Tε[ω(1⊗2)] (86)

of the second term in Eq. (49) to the elastic coefficients
only involves the second functional derivative of either mixed
weighted density N12 or n12, as the scalars and vectors do not
contribute to Tε .

C. Analytic Frank constants of spherocylinders

Now we explicitly calculate analytic formulas for the Frank
elastic coefficients in the nematic phase of hard spherocylin-
ders. In the integrand of Eq. (78), we find polynomials in
cos θ and cos θ ′ of degree at least r + 4, where r is the
order (rank) of the corresponding mixed (tensorial) weight
function. Therefore, we easily find a representation in terms
of the orientational moments I2n from Eq. (69). We begin by
calculating the individual contributions defined in Sec. III B.

From either Eq. (82) or Eq. (85), we obtain the first-order
results for the contribution from the second term,

βK
[2]
1,2 = CN [(I2 + 2I4 − 3I6) + 3l2(I2 − 2I4 + I6)]

64(1 − η)
,

βK
[2]
2,2 = CN [(4I2 − 3I4 − I6) + l2(I2 − 2I4 + I6)]

64(1 − η)
,

βK
[2]
3,2 = CN [(I2 − 2I4 + I6) + l2(I4 − I6)]

16(1 − η)
, (87)

with the common factor

CN := ρ2L2D3α4π (I2 − I4). (88)

We introduce the superscript (·), which stands for (TR) or (T)
denoting the choice for the third term from Eq. (83) or Eq. (84),

respectively. The contribution from the third term reads

βK
(·)
1,3 = C

(·)
3 [3(I2 + 2I4 − 3I6) + 12l2(I2 − 2I4 + I6)]

2048(1 − η)2
,

βK
(·)
2,3 = C

(·)
3 [3(3I2 − 2I4 − I6) + 4l2(I2 − 2I4 + I6)]

2048(1 − η)2
,

βK
(·)
3,3 = C

(·)
3 [3(I2 − 2I4 + I6) + 4l2(I4 − I6)]

512(1 − η)2
, (89)

where the different choices for the third term differ in the
factors

C
(TR)
3 = CN

ρ

2
D2[3L(I2 + 1) + 4D], (90)

C
(T)
3 = −CN

ρ

4
LD2(3I2 − 1). (91)

Our objective is to find a representation of the elastic
coefficients solely in terms of the packing fraction η, the
aspect ratio l, and the nematic order parameters P̄2n from
Eq. (66). To this end, we substitute the moments I2n with
their explicit expressions in terms of α and Dawson’s integral
D(α) from Eq. (68). According to Eq. (70), we find a
similar representation for the order parameters, which we now
compare to Eq. (87). We obtain the desired expressions

βK
[2]
1,2D = 9η2l2S[(4S + 3P̄4) + 3l2(S − P̄4)]

7π (1 − η)(3l + 2)2
,

βK
[2]
2,2D = 9η2l2S[(31S + 4P̄4) + 4l2(S − P̄4)]

28π (1 − η)(3l + 2)2
,

βK
[2]
3,2D = 9η2l2S[4(S − P̄4) + l2(3S + 4P̄4)]

7π (1 − η)(3l + 2)2
, (92)

for the Frank constants. The equilibrium order parameters
follow from α(η,l) according to Eq. (71). Note that our
analytical orientational distribution g(α, cos θ ) from Eq. (67)
is the key to understanding the nontrivial relation between
Eqs. (87) and (92), which does not contain the factor α4.

With the same procedure for Eq. (89), we find similar
formulas for K

(·)
ε,3 from Eqs. (83) and (84). The results are

shown in Appendix B. A significant difference between these
results is the appearance of the additional order parameter P̄6 in
K

(TR)
ε,3 and the lack of a term proportional to S2 in K

(T)
ε,3 , which

is not apparent in Eqs. (90) and (91), respectively. We also
provide the expressions K

[r]
ε,2 from Eq. (85) up to order r = 7

in Appendix B. Interestingly, only the terms r2
ε + r ′2

ε or −2rεr
′
ε

in the integrand of Eq. (79) contribute to the elastic coefficients
of even or odd order, respectively. The formulas for K

[2n]
ε,2 and

K
[2n+1]
ε,2 depend on order parameters up to P̄2n+2. Note that the

equilibrium values of P̄2n depend on the truncation order nt in
Eq. (52). Therefore, we first need to determine the consistent
nematic order parameters via Eq. (71) for each functional
and then calculate the individual contributions to the elastic
coefficients. We do not find an analytic representation of the
elastic coefficients from Eq. (86), which are exact up to second
order in density.

Finally, we collect these contributions to the expressions
for the elastic coefficients. The full expressions for the elastic
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coefficients of FMMT read

K (MM)
ε := K

(MM)
ε,2 + K

(·)
ε,3. (93)

Introducing the ζ correction for truncation after the first term
as in Eq. (54), we obtain the approximation

K (MM)
ε ≈ ζK

[2]
ε,2 + K

(·)
ε,3 =: K (ζ )

ε . (94)

We further consider the expansion

K (MM)
ε ≈

nt∑
n=1

n∑
m=1

ζ [n]
m K

[2m]
ε,2 +

mt∑
m=1

K
[2m+1]
ε,2 + K

(·)
ε,3 (95)

using the generalized ζ correction for the even-order terms as
in Eq. (52) and adding the odd-order terms up to r = 2mt + 1.

D. Extreme order parameters and Onsager limit

Now we use the analytic formulas, as found in Sec. III C and
Appendix B, to examine certain limiting cases for the elastic
coefficients. To determine the low-order behavior, we expand
the order parameters

S = 2

15
α2 + O(α4), P̄4 = 4

315
α4 + O(α6),

P̄6 = 8

9009
α6 + O(α8), P̄2n = O(α2n), (96)

in terms of α. Hence, the leading terms are proportional to S2 ∝
α4. In this limit, we find K1 = K3 for any approach. Within the
ζ approximation, the elastic coefficients from Eq. (94) become

βK
(ζ )
1 D = ζ

9η2l2(4 + 3l2)

7π (1 − η)(3l + 2)2
S2

+ 81η3l2(l + 1)(l2 + 1)

7π (1 − η)2(3l + 2)3
S2 + O(α6),

βK
(ζ )
2 D = ζ

9η2l2(31 + 4l2)

28π (1 − η)(3l + 2)2
S2

+ 27η3l2(l + 1)(2l2 + 9)

14π (1 − η)2(3l + 2)3
S2 + O(α6), (97)

when using φ
(TR)
3 . The respective formulas for φ

(T)
3 only contain

the term proportional to the ζ parameter.
As an application, we used Eq. (97) in an earlier paper

[49] to determine the parameters L1 and L2 in the elastic free
energy [14]

fd = β

2
(L1Qαβ,γ Qαβ,γ + L2Qαγ,αQβγ,β ) + O[(�Q)3]

(98)

of Landau-de Gennes theory for hard spherocylinders. The
abbreviation Qαβ,γ := ∂γ Qαβ denotes the partial derivative
∂γ = ∂/∂rγ of the order tensor

Qαβ(r) = Q(r)
[
n̂α(r)n̂β(r) − 1

3δαβ

]
. (99)

The scalar order parameter Q(r) ≡ S in an elastically de-
formed nematic phase is uniform. Therefore, only derivatives

of the director field n̂(r) are relevant and Eq. (98) simplifies to

fd = βS2

2
[L1∂γ (n̂αn̂β)∂γ (n̂αn̂β) + L2∂α(n̂αn̂γ )∂β(n̂β n̂γ )].

(100)

Comparing this expression with Eq. (1), we find [14]

K1 = K3 = S2(2L1 + L2), K2 = 2S2L1. (101)

Substituting Eq. (97), we obtain the Landau parameters

βL
(ζ )
1 D = ζ

9η2l2(4l2 + 31)

56π (1 − η)(3l + 2)2
+ 27η3l2(l + 1)(2l2 + 9)

28π (1 − η)2(3l + 2)3
,

βL
(ζ )
2 D = ζ

9η2l2(8l2 − 15)

28π (1 − η)(3l + 2)2
+ 27η3l2(l + 1)(4l2 − 3)

14π (1 − η)2(3l + 2)3
.

(102)

Note that in Ref. [49] we only considered the functional with
φ

(T)
3 from Eq. (56). Therefore, only the terms proportional to ζ

in Eq. (102) are present therein. With the help of these elastic
parameters and Landau-de Gennes theory, we find an analytic
expression for the interfacial tension γIN between coexisting
isotropic and nematic phases of hard spherocylinders [49].

Considering the low-order behavior, the relations

K
[2n]
ε,2 = 15

(2n + 3)(2n + 1)(2n − 1)
K

[2]
ε,2 + O(α6),

K
[2n+1]
ε,2 = 105

(2n + 5)(2n + 3)(2n + 1)
K

[3]
ε,2 + O(α6), (103)

hold at least up to n = 10. While we were unable to prove
this for general n, K

[r]
ε,2 is already almost negligible at

this order: K
[r]
ε,2/K

[2]
ε,2 � 15/r3 � 2 × 10−3 for r = 2n = 20

and K
[r]
ε,2/K

[2]
ε,2 � (105/15)/r3 � 10−3 for r = 2n + 1 = 21.

Therefore, we proceed to sum up both expressions from n = 1
to ∞ according to

K
(MM)
ε,2 =

∞∑
r=2

K
[r]
ε,2 = 5

4
K

[2]
ε,2 + 7

4
K

[3]
ε,2 + O(α6) (104)

to find an analytic representation,

βK
(MM)
1,2 D = 135η2l2(l2 + 2)

28π (1 − η)(3l + 2)2
S2 + O(α6),

βK
(MM)
2,2 D = 45η2l2(l2 + 9)

28π (1 − η)(3l + 2)2
S2 + O(α6), (105)

for Eq. (86) up to quadratic order in S. This result perfectly
agrees with a numeric calculation of K

(MM)
ε,2 for a small enough

value of α. Neglecting the odd-order terms in Eq. (103) at large
enough aspect ratio, we can account for the contributions in
Eq. (105) approximately by a simple rescaling with ζ = 5/4
in Eq. (97). This value has been found earlier to minimize
the quadratic deviation to the exact excluded volume of hard
spherocylinders [46] and coincides with the first coefficient
ζ

[1]
1 = 5/4 of the systematic expansion from Eq. (53).

Now we discuss of the ratios (Kε − K̄)/K̄ for our analytic
representations of the Frank constants, where

K̄ = 1
3 (K1 + K2 + K3). (106)
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Using the Onsager approximation, Priest discovered the
fundamental expansion [13],

K1 − K̄

K̄
= � − 3�′ P̄4

P̄2
+ · · · ,

K2 − K̄

K̄
= −2� − �′ P̄4

P̄2
+ · · · ,

K3 − K̄

K̄
= � + 4�′ P̄4

P̄2
+ · · · , (107)

into ratios of order parameters. The prefactors � and �′ are
universal constants, which only depend on the particle shape.
Hence, we find K1 �= K3 beyond the low-order limit. Note that
we can read Eq. (107) as an expansion up to the quadratic term
in α.

First, we neglect the contributions of the third term φ3 of the
functional in Eq. (49) to the elastic coefficients. In that case, we
easily see from Eq. (94) that the ratios of the elastic coefficients
in the second-order approximation are independent of the ζ

parameter. Explicitly, we find

�[2] = 1

7

8l2 − 15

4l2 + 9
, �′

[2] = 12

7

l2 − 1

4l2 + 9
, (108)

from K
[2]
ε,2.

Including higher-order terms K
[r]
ε,2 up to r = rt, the constants

�[rt] and �′
[rt]

vary nonmonotonously with the truncation order.
It is not as straightforward as in Eq. (104) to determine �(MM)

and �′
(MM) corresponding to K

(MM)
ε,2 from the expansion, which

means calculating the limit for rt → ∞. However, we can
deduce the first constant

�(MM) = 1

7

2 l2 − 3

l2 + 3
(109)

from Eq. (105). This result confirms the finding of Poniewier-
ski and Stecki [17]. Moreover, the limit

lim
l→∞

�(MM) = lim
l→∞

�[2] = 2

7
(110)

is the same as predicted by Priest [13].
Now we use the approximation to neglect the contribution

of odd-order weight functions. The subsequent addition of
higher-order terms K

[2n]
ε,2 leaves the first constant �(MM) ≈

�̃[2nt] = �[2] in Eq. (108) invariant for all truncation orders
2nt. The second constant from weight functions of even order
has the form

�̃′
[2nt] = 3

28

(36l2 − 50)n2
t + (162l2 − 225)nt + 138l2 − 61

(2 + nt)(5 + 2nt)(4l2 + 9)
(111)

up to at least nt = 10. This expression converges to the
approximate

�′
(MM) ≈ lim

nt→∞ �̃′
[2nt] = 3

28

18l2 − 25

4l2 + 9
, (112)

which shows a good numerical agreement with the result in
Ref. [17], yielding the same formula for l → ∞.

Note that we do not find an expansion of the form of
Eq. (107) at all when using the generalized ζ correction,
Eq. (52), which we discuss in Appendix B. When we include

third terms, the expansion becomes ambiguous. In addition to
P̄4/P̄2, we find a term proportional to P̄2, which is also of
quadratic order in α.

Consider the elastic coefficients of infinitely long sphe-
rocylinders within the ζ approximation from Eq. (94). The
leading terms in Eqs. (87) and (89) depend on the orientational
moments I2n in the same way. We easily find the ratio

lim
l→∞

K
(ζ )
1

K
(ζ )
2

= 3 (113)

independently of the choice for the third term. This result
agrees with earlier predictions in the Onsager approximation
[11–13,17,18]. To study the ratio

3 lim
l→∞

K
(ζ )
3

K
(ζ )
1

= lim
l→∞

K
(ζ )
3

K
(ζ )
2

= 4 [I4(α) − I6(α)]

I2(α) − 2I4(α) + I6(α)
, (114)

we consider the scaling α2 = α2
1 l + α2

0 + O(l−1) of the in-
trinsic order parameter α at nonzero packing fraction [51].
Expanding the moments from Eq. (68) in terms of l−1 yields

lim
l→∞

K
(ζ )
3

K
(ζ )
1

= lim
l→∞

2

3
α2

1 l = ∞. (115)

In this case, the scaling is not compatible with the low-order
elastic coefficients from Eq. (97) or Eq. (105), as the long rods
are nearly perfectly aligned, i.e., S � 1. The behavior found
in Eqs. (113) and (115) appears to be universal as it does not
change when adding further terms K

[r]
ε,2. Similarly, we can show

that the normalized elastic coefficients βK1D/l, βK2D/l, and
βK3D/l2 remain finite for l → ∞. Hence, odd-order terms
do not contribute in this limit.

However, the scaling in Eq. (115) contradicts the ob-
servation K3/K1 = O(l2) made by Poniewierski [72]. We
already remarked [51] that truncated FMT functionals lack
a correct scaling of the orientational degrees of freedom
which is remedied by the exact FMMT [59]. To check this,
we examine the scaling based on the Poniewierski-Stecki
equations. According to Eq. (2) the elastic coefficients only
differ by a factor r2

ε in the integrand. In the limit l → ∞, we
only consider the terms in Eq. (76) which contain z̄ and find
K3/K1 ∝ r2

3 /r2
1 = O(θ−2). Therefore, the scaling with l1 of

the ratio in Eq. (115) is a consequence of the wrong prediction
θ = O(l−1/2) using truncated functionals [51]. The full FMMT
functional yields the correct θ = O(l−1) [59,71] but does not
allow the analytic study of elastic coefficients demonstrated
here.

In the artificial limit of perfectly aligned bodies with P̄2n ≡
1, the leading terms of K1 and K2 in the aspect ratio are
identically zero for all contributions shown in Eq. (92) and
Appendix B. All nonvanishing terms are ofO(l0). We precisely
observe the opposite behavior for K3 = O(l2). Therefore, the
ratio K3/K1 = O(l2) shows the correct scaling behavior. We
also see that the odd-order terms of the expansion in K

[r]
ε,2

vanish for K3, whereas they are of the same order of magnitude
as the other contributions for splay and twist deformations.
Therefore, we expect for the orientational disordered system
that the even-order terms are usually sufficient to calculate K3

with a high accuracy. As the order parameter (at given density)
increases with the aspect ratio, this approximation should not
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work for K1 and K2, except for very long rods according to
the Onsager limit.

E. Numerical results

In Sec. III C, we studied analytic approximations to the
Frank elastic coefficients from FMMT. Now we wish to
compare these results to the full expressions K (MM)

ε , obtained
with the numeric solution of Eq. (93). As discussed in Sec. III A
regarding the equation of state, we first determine the intrinsic
order parameter α from Eq. (71) using the generalized ζ

correction, Eq. (52), truncated at nt = 50. Then we evaluate
Eq. (86) numerically and add the analytic result from Eq. (89)
accounting for the third term. To do so, we use Monte Carlo
integration as for the nematic bulk phase. Due to the more
general integrand in Eq. (78), we need to include the integrals
over the orientational angles φ1 and φ2 to our numerical
procedure. We calculate this eight-dimensional integral, such
that the numerical error is smaller than the linewidth in our
figures and the uncertainty of shown numbers is at least 1 in
the last digit.

In Fig. 3, we study the convergence of the expansion
from Eq. (95). We first only consider the even-order terms
by temporarily setting mt = 0. We see that the expansion
converges as rapidly as for the nematic equation of state in
Fig. 2, such that truncation after nt = 7 is sufficient. Following
the discussion in Sec. III C, the limit nt → ∞ corresponds
to an approximation for K (MM)

ε , where the contribution of
−2rεr

′
ε in Eq. (79) is neglected, as we ignore all odd K

[2n+1]
ε,2 .

Surprisingly, the deviation from the correct mixed measure
result is nearly negligible for K3, as shown in Fig. 3(b). This
result is only easily explained for long rods, as in the previous
section. However, we find the significant error of 26% for K1

and 19% for K2 (not shown) at l = 5 and η = 0.5. In general,
this deviation becomes smaller when we increase the aspect
ratio and decrease the nematic order parameter, in accordance
with our analytic predictions from Sec. III C.

To approach the exact result for any deformation and aspect
ratio, we need to include the odd-order terms to the expansion
in Eq. (95). While we may keep the generalized ζ correction
for the even-order terms, we have no such correction [51] for
the odd orders. Consequently, this sum converges slowly and
we require mt = 12 in addition to the sufficiently large nt = 7
to obtain a good agreement with the full numeric result for K1

in Fig. 3(a). Within the stability range of the nematic phase
[59], Fig. 3 reveals that we can truncate this expansion in a
reasonably good approximation at nt = mt = 3. In this case,
we only need the explicit formulas shown in Appendix B.
Therefore, we possess a useful analytic approximation for the
Frank elastic coefficients, given by Eq. (95).

In Table II, we compare our results for the elastic
coefficients obtained with different variants of FMMT to
computer simulations [33,34] and DFT results [22,24] for
hard spherocylinders with an aspect ratio of l = 5. The
nematic order parameter S ≈ 0.73 is found in simulations
after equilibration of a system with initial packing fraction
η = 0.4418 [33,34]. Using both values as an input for our
calculations violates the equilibrium condition from Eq. (71).
However, this strategy, providing the possibility to cross-check
future results with our analytic expansion, is worth being
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FIG. 3. (a) Splay elastic constant K1 and (b) bend elastic constant
K3 as a function of the packing fraction η. We compare the analytic
formulas from the expansion in Eq. (95) at different truncation orders
nt and mt to the numeric FMMT values according to Eq. (93), which
involves the full mixed weight function. Unless mentioned otherwise,
mt = 0. As in Fig. 2, we use φ

(TR)
3 and verify a quick convergence of

the even-order terms in Eq. (95), setting mt = 0. As our best analytic
approximation for K1, we add odd-order terms up to mt = 12 to
the result for nt = 7. The result for K3 for mt = 0 and nt = 7 is
indistinguishable from the full FMMT result. The diamonds denote
the result, which we obtain using only the formulas we provide in
Appendix B. The nematic phase is stable to the left of the vertical
dashed line.

compared to the simulations. The third term φ
(TR)
3 from

Eq. (55) yields a good agreement for K1 and K2, whereas
K3 is overestimated. For φ

(T)
3 from Eq. (56), the values

are significantly smaller and only the result for K3 appears
reasonable. It is difficult to draw further conclusions from this
single available data point.

As we already see from the DFT results of Somoza and
Tarazona [22] and Poniewierski and Hołyst [24], the equilib-
rium nematic order parameter S of different approaches may
differ noticeably. In our calculation using φ

(TR)
3 or φ

(T)
3 , its value

corresponding to η = 0.4418 is respectively larger or smaller
than in all considered references. Therefore, a comparison
becomes difficult. We also fix the order parameter and calculate
the corresponding equilibrium density according to Eq. (71).
This strategy provides the best basis for a comparison. The
elastic coefficients are much more sensitive to changes in the
nematic order parameter than in the density, which we notice
from the different results in Table II. Quantitatively, our results
seem to be closer to the simulations at the same value of S when
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TABLE II. Elastic coefficients of hard spherocylinders with
aspect ratio l = 5. We compare FMT to different references using
the ζ approximation in Eq. (94) and the exact expression for the
second term in Eq. (93) together with both third terms φ

(TR)
3 and φ

(T)
3

from Eqs. (55) and (56). Our input parameters are constrained by the
equilibrium condition, Eq. (71). The first row of our results for each
functional is at fixed packing fraction η = 0.4418. The dashes in the
seventh and tenth row indicate that the nematic phase is unstable
in this case. We show further results corresponding to the fixed
nematic order parameters S = 0.727 and S = 0.791, obtained in other
references for η = 0.4418. The simulation data are from the works
of Allen and Frenkel (multiplied by 9/4) [33] and more recently
Fischermeier et al. (using two different fit methods) [34], where the
number in brackets denotes the error in the last digit. The DFT results
are by Poniewierski and Hołyst [24] and Somoza and Tarazona [22].
In the last two rows, we show our (nonequilibrium) FMT results
imposing both the packing fraction and the nematic order parameter.

Kε η S βK1D βK2D βK3D

0.4418 0.901 0.951 0.457 5.276

FMMT, TR 0.3658 0.727 0.401 0.181 1.222
0.3809 0.791 0.507 0.233 1.836
0.4418 0.849 0.607 0.309 3.089

ζ = 5/4, TR 0.3831 0.727 0.382 0.176 1.211
0.4063 0.791 0.477 0.229 1.863
0.4418 0

FMMT, T 0.4992 0.727 0.590 0.277 1.735
0.5181 0.791 0.761 0.360 2.593
0.4418 0

ζ = 5/4, T 0.5547 0.727 1.553 0.699 4.952
0.6071 0.791 2.470 1.148 9.721
0.4418 0.652 0.366 0.174 0.955

ζ = 1.6, T 0.4733 0.727 0.480 0.238 1.499
0.5174 0.791 0.622 0.325 2.377

AF [33] 0.4418 0.73 0.83(25) 0.59(7) 1.10(11)
Fi [34] 0.4418 0.727 0.763(45) 0.348(24) 1.226(45)
Fi [34] 0.4418 0.727 0.812(19) 0.352(16) 1.583(27)
PH [24] 0.4418 0.728 0.513 0.239 1.526
ST[22] 0.4418 0.791 0.630 0.297 2.403

FMMT, TR 0.4418 0.727 0.741 0.332 2.274
FMMT, T 0.4418 0.727 0.423 0.198 1.247

we use Tarazona’s expression φ
(T)
3 in the third term. However,

this version of the functional yields a diverging free energy
per particle for infinitely long rods at finite packing fraction
[51] and therefore needs to be queried. In particular, the poor
description of the equation of state results in an unstable
nematic phase at the packing fraction η = 0.4418. We also
consider the ζ correction, Eq. (94), for the truncated expansion
in Table II. The semiempirical choice ζ = 5/4 [46,51], which
is convenient to describe the isotropic-nematic transition with
φ

(TR)
3 , does not provide a sufficiently good approximation for

FMMT (see also the results for nt = 1 in Fig. 3), and neither
does the fit value ζ = 1.6 [46] with φ

(T)
3 .

Figure 4 shows the results for K (MM)
ε (η) and K (MM)

ε (S) at
l = 5 using the full FMMT functional with the third term by
Tarazona and Rosenfeld, as considered in Ref. [59]. Indeed,
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FIG. 4. Elastic coefficients K (MM)
ε of hard spherocylinders using

φ
(TR)
3 with an aspect ratio of l = 5. The solid, dotted, and dashed

lines or symbols correspond to splay, twist, and bend, respectively.
As a function of (a) the packing fraction η and (b) the nematic order
parameter S, we compare our FMMT results to computer simulations
for η = 0.4418 [34] and other DFT values [22,24] corresponding to
η = 0.4418 and η = 0.5181. Note that these functionals, as well as
FMMT, predict different equilibrium order parameters.

we see that the nematic order parameter S is more suitable for
this plot, as the two different DFT results [22,24] fit together
in a better way and confirm the qualitative behavior of our
predictions. We also see that the bend constant K3 increases
more rapidly with S than K1 and K2, which we expect from
the discussion of the limit S → 1 in Sec. III D. In Fig. 5, we
compare the behavior of the elastic coefficients for different
aspect ratios l. We always observe the relation K3 > K1 > K2

[15]. The twist constant K2 exhibits a similar behavior as
K1 for splay, whereas the bend constant K3 increases more
rapidly with larger l. Hence, the ratios K3/K1 and K3/K2

appear to diverge for l → ∞, whereas K1/K2 remains finite,
as we predicted analytically by Eqs. (115) and (113).

IV. SUMMARY

In this work, we explored the foundation of FMT, providing
some mathematical essentials from integral geometry. We
defined the geometric weight functions in a mathematically
convenient way through curvature measures and introduced
the notion of mixed measures as a new type of building
block. Within this family of density functionals, we found
a general approach to calculate the Frank elastic coefficients
in the nematic phase of arbitrarily shaped hard bodies.
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FIG. 5. (a) Splay, (b) twist, and (c) bend elastic coefficients of
hard spherocylinders as a function of the packing fraction η. We
show the FMMT results K (MM)

ε using φ
(TR)
3 for different aspect ratios

l = L/D. The gray extension is beyond the stability limit of the
nematic phase [59].

This application demonstrates the two main purposes of
our new FMMT. The first one is to verify the convergence of
expansions, which are easier to implement. For the present
problem, we provide an analytic series representation. How-
ever, we should consider a systematic expansion including
odd-order terms [65] to improve the convergence for short
rods. The shortcomings of the ζ correction for inhomogeneous
systems [51,59] also show up in this work. Second, this work
constitutes an example where the factorization of a two-body
measure into quantities of one body [46,47], which is desirable
regarding the numerical implementation, actually complicates
the calculation. When expanding the functional, the analytic
evaluation of higher-order contributions is considerably easier
with one eight-dimensional integral involving a mixed weight
function than several individual four-dimensional integrals for
each component of a rank-r tensor.

For the first time, we present a closed analytical solution
of the Poniewierski-Stecki equations beyond the Onsager
approximation. These expressions still depend implicitly on
the nematic order parameter S(α), which is found numerically

by minimizing the free energy at given density with respect
to α. An interesting application of our formulas is to input
both the packing fraction and the nematic order parameter
from simulations or experiments as an alternative to the
(highly involved) direct measurement of the elastic constants.
However, there are not enough simulation data available to
make a statement about the accuracy of such an approach.

Regarding the density functional, we can think of some
possible improvement in future work. Its third term has a
remarkable influence on the values of the elastic coefficients
as it does for the equation of state [51]. The current expression
by Tarazona and Rosenfeld [57] is the only one including at
most rank-2 tensors to account for extremely confined systems
and the phase diagram of very long rods, while predicting the
same equation of state as FMT in the hard-sphere limit [51].
For a quantitative improvement of our results, the third term
needs to be revisited, which appears to be a very elaborate
task. A better approximation could involve a parameter to fix
the third virial coefficient of the monodisperse system [51,73]
or, more desirably, an additional mixed weighted density or
tensors of higher rank. In any case, the expression for the
elastic coefficients from Eq. (3) is universal and can be used
for any FMT-like functional. Moreover, we expect that Eq. (95)
can be used to calculate analytic elastic coefficients for other
systems than a fluid of hard spherocylinders.
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APPENDIX A: INVERSION FORMULA

In this section, we derive Eq. (33). We start by integrating
both sides of Eq. (14) over all translations x of the body K in
a Borel set B ⊂ Rd , obtaining

∫
B

dx
d∑

ν=0

κd−ν�
d−νΦν(K + x,A) (A1)

=
∫

B

dxλ(q ∈ K� : p(K + x,q) ∈ A). (A2)

Subsequently, we write the d-dimensional volume as an
integral over q to obtain∫∫

Rd×Rd

dxdqIB(x)IK�
(q − x)IA[p(K + x,q)], (A3)

where we used the indicator function IA(x) which is 1 if x ∈
A and 0 otherwise. Now we perform a point reflection of
the body, as depicted in Fig. 6, and a variable substitution,
(x,q) → (r,z) = [p(K + x,q),x + r − q], to write Eq. (A3)
as ∫∫

Rd×Rd

drdzIB[p(r − K,z)]I−K�
(z − r)IA(r), (A4)
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x

K + x

r − K

B

r

A

FIG. 6. Illustration of the original body K + x (solid loop), its
point inversion r − K (dashed loop), and the two Borel sets A and
B (shaded regions). The arrow denotes r − x = p(K + x,y) − x =
r − p(r − K,z).

where we used −p(K,x′) = p(−K, − x′) for any point x′,
which implies x = z + q − r = p(r − K,z).

Reversing the steps leading to Eqs. (A4) and (A3), we obtain
the identity

∫
A

dr
d∑

ν=0

κd−ν�
d−νΦν(r − K,B), (A5)

which has to be equal to Eq. (A1) for all �, such that the
identity must also hold for all terms individually:∫

B

dxΦν(K + x,A) =
∫

A

drΦν(r − K,B). (A6)

This can be written as Eq. (33) by setting A = dr, B = dr1

and K = I(0,−y) = I(x,x − y) − x and using

r − I(0,−y) = r − [Bi(0) ∩ (Bi(0) − y)]

= [r − Bi(0)] ∩ [r − Bi(0) + y] = Ī(r,r + y).

(A7)

APPENDIX B: HIGHER-ORDER TERMS OF THE ELASTIC COEFFICIENTS

In this Appendix, we list additional contributions to the Frank elastic coefficients in terms of nematic order parameters P̄2n

from Eq. (70). So far, we only wrote the formula for the leading term K
[2]
ε,2 in Eq. (92) to make Sec. III C more compact. In this

alternative representation, the formulas in Eq. (89) read

βK
(TR)
1,3 D = 81η3l2S(4S + 3P̄4)

28π (3l + 2)3(1 − η)2
+ 81η3l3S

(
320S + 9P̄4 + 325S2 + 396P̄ 2

4 − 210SP̄6
)

2240π (3l + 2)3(1 − η)2

+ 81η3l4S(S − P̄4)

7π (3l + 2)3(1 − η)2
+ 81η3l5S

(
80S − 3P̄4 − 15S2 − 132P̄ 2

4 + 70SP̄6
)

560π (3l + 2)3(1 − η)2
,

βK
(TR)
2,3 D = 81η3l2S(6S + P̄4)

28π (3l + 2)3(1 − η)2
+ 81η3l3S

(
480S + 3P̄4 + 295S2 + 132P̄ 2

4 − 70SP̄6
)

2240π (3l + 2)3(1 − η)2

+ 27η3l4S(S − P̄4)

7π (3l + 2)3(1 − η)2
+ 27η3l5S

(
80S − 3P̄4 − 15S2 − 132P̄ 2

4 + 70SP̄6
)

560π (3l + 2)3(1 − η)2
,

βK
(TR)
3,3 D = 81η3l2S(S − P̄4)

7π (3l + 2)3(1 − η)2
+ 81η3l3S

(
80S − 3P̄4 − 15S2 − 132P̄ 2

4 + 70SP̄6
)

560π (3l + 2)3(1 − η)2

+ 27η3l4S(3S + 4P̄4)

7π (3l + 2)3(1 − η)2
+ 27η3l5S

(
60S + 3P̄4 + 85S2 − 132P̄ 2

4 + 70SP̄6
)

140π (3l + 2)3(1 − η)2
, (B1)

or

βK
(T)
1,3D = −81η3l3S2[(4S + 3P̄4) + 4l2(S − P̄4)]

112π (3l + 2)3(1 − η)2
,

βK
(T)
2,3D = −27η3l3S2[(18S + 3P̄4) + 4l2(S − P̄4)]

112π (3l + 2)3(1 − η)2
,

βK
(T)
3,3D = −27η3l3S2[3(S − P̄4) + l2(3S + 4P̄4)]

28π (3l + 2)3(1 − η)2
, (B2)

when we use the respective factor from Eq. (90) or Eq. (91). We also find analytic formulas for the contributions K
[r]
ε,2 from

Eq. (85), corresponding to the expansion of the mixed weight function from Eq. (44).
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The first two even next-to-leading terms after Eq. (92) read

βK
[4]
1,2D = 3η2l2

(
1056S2 + 2277SP̄4 + 4801P̄ 2

4 + 2646P̄4P̄6
)

4312π (1 − η)(3l + 2)2
+ 9η2l4

(
132S2 − 187SP̄4 + 300P̄ 2

4 − 245P̄4P̄6
)

2156π (1 − η)(3l + 2)2
,

βK
[4]
2,2D = 9η2l2

(
682S2 + 253SP̄4 + 927P̄ 2

4 + 294P̄4P̄6
)

4312π (1 − η)(3l + 2)2
+ 3η2l4

(
132S2 − 187SP̄4 + 300P̄ 2

4 − 245P̄4P̄6
)

2156π (1 − η)(3l + 2)2
,

βK
[4]
3,2D = 3η2l2

(
264S2 − 759SP̄4 + 1377P̄ 2

4 − 882P̄4P̄6
)

1078π (1 − η)(3l + 2)2
+ 3η2l4

(
198S2 + 374SP̄4 + 555P̄ 2

4 + 490P̄4P̄6
)

1078π (1 − η)(3l + 2)2
(B3)

and

βK
[6]
1,2D = 3η2l2

(
402 688S2 + 1 228 656SP̄4 + 2 995 824P̄ 2

4 + 2 474 304P̄4P̄6 + 2 139 683P̄ 2
6 + 1 164 240P̄6P̄8

)
4 932 928π (1 − η)(3l + 2)2

+ 9η2l4
(
12 584S2 − 21 164SP̄4 + 46 800P̄ 2

4 − 46 795P̄4P̄6 + 31 213P̄ 2
6 − 22 638P̄6P̄8

)
616 616π (1 − η)(3l + 2)2

,

βK
[6]
2,2D = 3η2l2

(
390 104S2 + 204 776SP̄4 + 867 672P̄ 2

4 + 412 384P̄4P̄6 + 474 565P̄ 2
6 + 194 040P̄6P̄8

)
2 466 464π (1 − η)(3l + 2)2

+ 3η2l4
(
12 584S2 − 21 164SP̄4 + 46 800P̄ 2

4 − 46 795P̄4P̄6 + 31 213P̄ 2
6 − 22 638P̄6P̄8

)
616 616π (1 − η)(3l + 2)2

,

βK
[6]
3,2D = 3η2l2

(
6292S2 − 25 597SP̄4 + 53 703P̄ 2

4 − 51 548P̄4P̄6 + 41 405P̄ 2
6 − 24 255P̄6P̄8

)
616 616π (1 − η)(3l + 2)2

+ 3η2l4
(
37 752S2 + 84 656SP̄4 + 173 160P̄ 2

4 + 187 180P̄4P̄6 + 120 393P̄ 2
6 + 90 552P̄6P̄8

)
4 932 928π (1 − η)(3l + 2)2

. (B4)

Compared to Eq. (92), we find the additional order parameters P̄6 and P̄8. Note that these expressions for are not unique, as we
find relations like

715SP̄6 − 525P̄ 2
4 + 104P̄4P̄6 − 910P̄ 2

6 + 616P̄4P̄8 = 0, (B5)

using our representations from Eq. (68) with Eq. (70) in terms of α. We choose the formulas with the least number of terms
including the highest order parameter P̄r+2. The odd-order elastic coefficients [note the minus sign in Eq. (45) for odd values
of r]

βK
[3]
1,2D = 45η2l2

(
32S2 + 69SP̄4 + 46P̄ 2

4

)
784π (3l + 2)2(1 − η)

,

βK
[3]
2,2D = 45η2l2

(
20S2 + 23SP̄4 + 6P̄ 2

4

)
784π (3l + 2)2(1 − η)

,

βK
[3]
3,2D = 45η2l2

(
8S2 − 23SP̄4 + 15P̄ 2

4

)
196π (3l + 2)2(1 − η)

, (B6)

βK
[5]
1,2D = 3η2l2

(
19 360S2 + 41 745SP̄4 + 55 956P̄ 2

4 + 60 711P̄4P̄6 + 35 672P̄ 2
6

)
94864π (1 − η)(3l + 2)2

,

βK
[5]
2,2D = 3η2l2

(
12 100S2 + 13 915SP̄4 + 18 036P̄ 2

4 + 20 237P̄4P̄6 + 6860P̄ 2
6

)
94864π (1 − η)(3l + 2)2

,

βK
[5]
3,2D = 3η2l2

(
4840S2 − 13 915SP̄4 + 17 307P̄ 2

4 − 20 237P̄4P̄6 + 12 005P̄ 2
6

)
23 716π (1 − η)(3l + 2)2

, (B7)
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and

βK
[7]
1,2D = 3η2l2

(
1 830 400S2+3 946 800SP̄4+7 131 360P̄ 2

4 +9 713 760P̄4P̄6+7 977 788P̄ 2
6 + 4 846 149P̄6P̄8 + 2 706 858P̄ 2

8

)
19 731 712π (1 − η)(3l + 2)2

,

βK
[7]
2,2D = 3η2l2

(
1 144 000S2+1 315 600SP̄4+2 648 160P̄ 2

4 +3 237 920P̄4P̄6 + 2 145 416P̄ 2
6 + 1 615 383P̄6P̄8 + 611 226P̄ 2

8

)
19 731 712π (1 − η)(3l + 2)2

,

βK
[7]
3,2D = 3η2l2

(
457 600S2 − 1 315 600SP̄4+2 175 120P̄ 2

4 − 3 237 920P̄4P̄6+2 619 344P̄ 2
6 − 1 615 383P̄6P̄8 + 916 839P̄ 2

8

)
4 932 928π (1 − η)(3l + 2)2

,

(B8)

include order parameters up to P̄r+1. We also determined higher-order terms, but the formulas are too long to be included here.
Ignoring the odd-order contributions K

[2n+1]
ε,2 completely, it appears convenient to add up the even-order terms according to

the generalized ζ correction from Eq. (52). Interestingly, we find that then the leading order, which is proportional to P̄2(nt−1)P̄2nt ,
cancels when calculating the average constant K̄ε , which is then proportional to P̄ 2

2nt
. Hence, the ratios diverge in the limit α → 0

and this approach fails to predict the expansion defined in Eq. (107).
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Condens. Matter 8, L577 (1996).

[56] Y. Rosenfeld, M. Schmidt, H. Löwen, and P. Tarazona, Phys.
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