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Wrinkles and folds in a fluid-supported sheet of finite size
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A laterally confined thin elastic sheet lying on a liquid substrate displays regular undulations, called wrinkles,
characterized by a spatially extended energy distribution and a well-defined wavelength A. As the confinement
increases, the deformation energy is progressively localized into a single narrow fold. An exact solution for the
deformation of an infinite sheet was previously found, indicating that wrinkles in an infinite sheet are unstable
against localization for arbitrarily small confinement. We present an extension of the theory to sheets of finite
length L, accounting for the experimentally observed wrinkle-to-fold transition. We derive an exact solution for
the periodic deformation in the wrinkled state, and an approximate solution for the localized, folded state. We
find that a second-order transition between these two states occurs at a critical confinement Ag = A%/L.
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I. INTRODUCTION

Morphological transitions are often induced by confine-
ment or by spatially constrained growth. Structures emerge
spontaneously when the energy injected into a system through
the confinement process ceases to distribute uniformly. These
phenomena are observed in various contexts ranging from
the folding of geological layers [1] to patterns in biological
membranes and monolayers [2-7] and the formation of
fingerprints [8,9]. Besides the initial morphology, occurring
for small confinement, various subsequent transitions may be
observed as the confinement increases.

Many model systems have been developed to study the
influence of confinement on morphological transitions [10-16]
using rods [17—19] or sheets resting on some substrate [20-31].
Among them, the experimental model system of a thin elastic
sheet, lying on a fluid substrate [32—41] and subjected to in-
plane uniaxial compression, deserves special interest [42—49].
Beyond a certain critical confinement Ay, which vanishes
for an incompressible sheet, the sheet buckles, displaying
regular undulations with a characteristic wavelength A over its
entire length [2,42] (Fig. 1). Beyond a certain confinement A,
another transition occurs, where the wrinkles start attenuating
except near the center of the sheet, and the deformation energy
gets localized into a single fold [42].

In the case of an infinitely long sheet, an exact solution
describing the complete evolution of the morphology with
increasing confinement proves that such a wrinkle-to-fold
transition, strictly, should never occur [45], i.e., Ap — Awy.
The infinite-sheet morphology is always localized, but the
localization decay length diverges as the buckling threshold
Ay is approached.

Even if an infinitely long sheet is a useful idealization
of real systems allowing a good agreement with experiment
[46], the apparent discrepancy between theory and experiment
concerning the existence of a wrinkle-to-fold transition should
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be resolved. Experiments are obviously performed with finite
sheets. We demonstrate that a second-order wrinkle-to-fold
transition does occur for finite sheets. In Sec. III we construct
an exact periodic solution for wrinkles of arbitrary amplitude
in a finite sheet. An exact solution for a localized deformation
in a finite sheet has evaded us. Hence, in Sec. IV, we derive an
approximate localized solution using a multiple-scale analysis.
In Sec. V, we identify the order parameter of the transition in
the context of the Landau theory of second-order transitions.
We show how both periodic and localized solutions match at
the critical confinement, Ap = A2 /L. In Sec. VI, we discuss
the experimental implications of our theory, its limitations, and
future extensions.

II. SYSTEM AND GOVERNING EQUATION

The system studied here is composed of a thin incompress-
ible elastic sheet (Aw = 0) of length L, width W, and bending
modulus B, lying on a fluid of mass density p. The sheet
is uniaxially confined by a distance A along the x axis and
deforms in the xy plane. The shape of the sheet is described
by the parametric equation,

s

x(s) =/
L2

h(s) = / '
—L)2

where ¢(s) is the angle between the local tangent to the sheet
and the x axis at a given arclength s (see Fig. 1). The total en-
ergy of the system E is composed of the bending energy of the

sheet, E, = (WB/2) f fﬁz ¢*ds, and the deformation energy
of the substrate, E, = (Wpg/2) ffﬁz h? cos ¢ ds, where the
dot denotes an s derivative [42,45]. The displacement along
the direction of confinement is given by

L/2
a= |

—L/2

and is related to the applied load necessary to confine the sheet

by P = dE /dA.In the following, except where it is explicitly

cos ¢(s")ds’, (1a)

sin¢(s")ds’, (1b)

(1 —cos¢)ds, )
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FIG. 1. (Color online) Schematic morphological evolution of a
compressed finite sheet floating on a liquid. The scheme shows
the emergence of a wavelength A upon small confinement, A >
Ay, the growth in amplitude of the wrinkle state for intermediate
compression, and the transition to a fold state beyond some critical
confinement Ag. Here 7 and 71 are the tangent and normal to the sheet
surface, respectively. ¢(s) is the angle between the local tangent
and the horizontal direction x, and the arclength along the sheet is
parametrized by s. h(s) is the vertical elevation of the sheet.

mentioned, we use units such that the energy is rescaled by B,
and lengths are rescaled by (B/pg)"/* = /2. As a result,
the applied load P is rescaled by (Bpg)'/?.

To find the equilibrium shape, one should minimize
the total energy under appropriate constraints. This can be
reformulated as a dynamical problem [45] with an action

S = f—Lﬁz L(¢p,h,¢.h), where
L=1¢+1ih’cos¢p — P(1 —cos¢ — A/L)
—Q(s)(sing — h). 3)

In Eq. (3), P and Q(s) are Lagrange multipliers introduced
to take into account, respectively, the global constraint (2)
and the local geometrical constraint between h and ¢. The
conjugate momenta are defined as py = 9L/ 3¢ = dpand p), =
dL/0h = Q and are used to construct the Hamiltonian H =
DPe® + pnh — L. Since £ has no explicit dependence on s, the
Hamiltonian is a constant for a given displacement A,

H = %pé+phsin¢— %hzcos¢+ P(1 —cos¢p — A/L)
=C. “)

Hamilton’s equation, py = —0H/0¢, yields the following
equation:

é + (h*/2 + P)sing + p,cos¢ = 0. (5)
Eliminating p; between Eqgs. (4) and (5), we obtain
disimp—%¢2COS¢+%h2+P—ﬁcos¢=0, (6)

where P = P(1 — A/L) — C is a shifted value of the load,
dependent on boundary conditions. Differentiating Eq. (6)
once, we obtain the well-known equation for Euler’s elastica,

¢+ (1*+P)p+h=0, (7)

where the local normal force exerted on the elastica is given
by the hydrostatic term k. A second differentiation gives the
equation governing the system evolution,

¢ +36°¢+ P +sing = 0. ®)
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Finally, Eq. (6) is used to relate the physical load P to the
shifted value P. For hinged boundary conditions, where & and
h (and also ¢) vanish at the boundaries, we have

P = Pcosp(£L/2) — $(£L/2)sing(£L/2).  (9)

As a result, once the solution ¢(s) is obtained, the physical
load P can be computed from P. Note that in the limit of an
infinite sheet, where ¢(+L/2) — 0, P and P coincide.

The total rescaled energy per unit length of the system reads

L)2
El¢(s)] = %/ 2ds(q'>2 + h%cos ). (10)
—L/

The energy, the displacement A, and the equation giving the
equilibrium shape of the sheet can also be written in terms of
h instead of ¢ using & = sin ¢:

L)2 P2
E[h(s)] = %/ ds (1 ﬁ/ﬂ +h*V1 —hZ), (11)

L2

L/2
Alh(s)] =/ ds(1 — V1 —h?). (12)

L2

The shape of the sheet is determined from minimization of
either E, given the displacement A, or the function,

G =E — PA, (13)

given the load P.

III. EXACT PERIODIC SOLUTIONS
A. General results

We first study general solutions of Eq. (8) without specify-
ing the boundary conditions. In order to construct a periodic
solution of Eq. (8), we recall the connection existing between
this equation and the dynamics of a physical pendulum [45,52].
For this purpose, we consider the total energy U, of a
pendulum,

)
U, =2k*q* = % +¢*(1 — cos p), (14)
where ¢ is the natural frequency of the pendulum, and k
is a constant determined by the pendulum’s total energy or,
equivalently, by boundary conditions. (In the analogous elastic
sheet these two parameters are related to the natural wrinkling
wave number, 27 /A, and the total displacement A.) The
equation of motion is obtained by differentiating U, in the
above equation,

é +q*sing = 0. (15)

Differentiating twice this last equation and eliminating
g% cos ¢ and ¢ sin ¢ using, respectively, Egs. (14) and (15),
we obtain

$ +30°6 + (1 —20g°¢ = 0. (16)

Adding Eq. (15) multiplied by g2, we finally obtain the
equation describing the morphology of a confined floating
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sheet [see Eq. (8)]:
¢ +39°¢+ P +sing =0,
P=qg*(1-2k"+q "

(17a)
(17b)

Therefore, any solution of Eq. (15) is also a solution of Eq. (8)
with P given by Eq. (17b).

It is well known that Eq. (15) admits a periodic solution for
0 < k < 1 in terms of Jacobian elliptic functions [50,56]:

¢(s) = 2arcsin [k sn(g(s + s9),k)] . (18)
The profile h(s) = ij/z sin ¢(s)ds’ is thus given by

2k
h(s) = " [en(g(s + s0).k) — en(q(—L/2 + 50).0)] . (19)

This solution has a periodicity of 4K (k)/q, where K (x) is the
complete elliptic integral of the first kind [50]. Finally, the
horizontal displacement is given by

L)2
A= 2k2/ sn?(g(s + s0),k) ds
—L/2

2
=21 -~ {80 + 50N (20)

where £(x,k) is the Jacobi epsilon function [50]. The quantities
so and ¢q are fixed to satisfy the boundary conditions whereas
the parameter k is related to the confinement ratio, A /L.

B. Hinged sheets

For hinged boundary conditions both & and & vanish at
s = £L /2. The second derivative of the sheet profile, Eq. (19),
is given by

ii(s) = 2kg cn(g(s + s0),k)(2 dnz(q(s +50),k)—1). (21)

The dn function varies between (1 —k%)'/? and 1; conse-
quently, so long as k < 1/+/2, the last factor in Eq. (21) does
not vanish. As shown below, the relevant values of k are smaller
than 1/3 provided L > 3A. Larger values of k lead to periodic
solutions unstable against localization.

Due to the periodicity of the solution, there exists an
infinite number of possible solutions depending on the number
of nodes. From Eq. (19), h(L/2) = 0 provided that gL /2 +
qso = —qL/2+ gso+ 4n K (k). From Eq. (21), h(L/2) =0
provided that gL /2 + gso = (2n, + 1)K (k), with n; and n,
positive integers. Due to the definite parity of the solution
(either symmetric or antisymmetric), the condition h(—L /2) =
0 is then automatically satisfied. We have the following two
possibilities. (a) If so = 0, then £(L/2) = 0 automatically, for
any g, due to the even parity of the cn function in Eq. (19).
We are left with the condition for A(L/2) = 0 which gives
gL =22n, + 1)K (k). (b) If s9 # 0, then the two conditions
above must be satisfied simultaneously, giving gL = 4n; K (k)
and gso = [2(ny — ny) + 1]K (k). Thus, combining these two
results, we have

_ 22p + DK (k)
- L

_22pK®K)
g = 2@PKE

with s = 0, (22)

with gso = K(k), (23)
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where p is a strictly positive integer. Finally, the solution reads

¢(s) = 2 arcsin [k sn(gs + e K (k),k)], (24a)
h(s) = Zq—kcn(qs + eK (k),k), (24b)
where ¢ = (1 4+ (—1)")/2 and
2nK (k)
=—7 n=1273... (25)

Symmetric solutions correspond to n of odd parity and
antisymmetric solutions are obtained with an even parity of
n. The number of nodes of the solution is equal to n + 1
(counting the two nodes at the boundaries).

C. Pressure, displacement, and amplitude

From Eq. (24a), we have
cosp(L/2) =1 —2k*, ¢(L/2) = F2kq*V'1 — k2,

sing(L/2) = £2k+/1 — k2. (26)

The expression for the applied load is then obtained from
Eq. (9) together with Eq. (17b):

P=qg*+ (1 —-2k%q % 27)

From this infinity of possible solutions for a given value of L,
only the one minimizing P is selected, which fixes the value
of n; see below.

The parameter k is related to the confinement A by using
Eq. (20):

A=2r -2 [E((n + K.k + E(n — oK )],  (28)
q

where we used the expression (25) for ¢, gso = K (k), and
the fact that £ is an odd function. When n = 2p + 1 such that
& = 0, we obtain

A=2L— fg((zp + DK, k) = 2L — i(2p + DE®K)
q q

=2L(1- E@) 29

where E (k) is the complete elliptic integral of the second kind
[50]. When n = 2p such that ¢ = 1, we have

2
A=2L - 7 [E(@p+ DK k) +E(@2p — DK,k (30)

E(k)
- %) 3D

Therefore, the relation between k and A is the same for
symmetric and antisymmetric solutions. The decrease of the
applied pressure P as a function of the confinement A is given
by the parametric equation (A(k), P (k)) given by Egs. (27) and
(31) and using Eq. (25).

However, we still have to determine the optimal value of
n minimizing P. For L = Nx (L/A = N/2), it can be shown
thatn = N provided k is small enough. Above some threshold,
k = k*,wehaven = N — 1. As A(k) is an increasing function
of k [Eq. (31)] this means that for small confinement we have

=2L — 8—pE(k) =2L (1
q
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FIG. 2. (Color online) Evolution of the exact periodic solution
for different values of A /A and L/A = 3.5 (N = 7), where x(s), h(s)
are given by Egs. (1a) and (24b), respectively, and ¢(s) is given by
Eq. (24a). The corresponding evolution for the numerical solution
of Eq. (8) is also shown. P and P, correspond to the numerical and
the periodic solutions, respectively (P = P, for A /A < 0.2825). The
wrinkle-to-fold transition occurs at A /A >~ (0.2825.

n = N before reaching a threshold, A(k*), above which the
compressed system prefers to remove half a wavelength from
the profile, n = N — 1. However, if A(k*) > Ap, where Ag
is the critical confinement for which the periodic solution is
unstable against the localized solution, then n = N for all the
values of confinement where the periodic solution is stable.
The threshold k* can be obtained by searching for which
value of k the pressure P has the same value for n = N and
n=N—1. We found that A(k*)/L ~ (k*)*> =2n/3L =
A/3L, where we used a first-order expansion for the con-
finement which is enough for this discussion (using the full
expression leads to the same conclusion). Comparison with
Ap/L = A2 / L2, which is derived in the next section, shows
that for L > 3A the optimal value of n is always n = N (with
L = Nm). Notice that it leads also to k < 1/3. From now on,
we assume that the length of the sheet is at least as large as three
times the wrinkle wavelength. As a result, when N is odd, the
solution is symmetric and when N is even, it is antisymmetric.
For L = N, we thus have n = N and the expression for the
pressure reads

, w1 —2KY)

4
b=k = e

(32)

Let us summarize the scheme for calculating the exact
periodic solution. Given L = Nm, we have n = N. Given
A/L we find k from Eq. (31). The values obtained for n
and k are substituted in Eq. (25) to obtain g. These values
of k and g are used in Eqgs. (24b) and (27) to obtain the
height profile and the pressure. This solution is unique thanks
to the monotonic-increasing nature of the right-hand side
of Eq. (31). Finally, the pressure-displacement relation is
obtained parametrically from Egs. (31) and (32); see Fig. 4.
Figure 2 shows the evolution with increasing confinement of
the exact periodic solution for L = 7 (L /A = 3.5) comparing
it to the numerical solution of Eq. (8). For A /A < 0.2825, the
numerical solution is periodic. This threshold is close to the
critical wrinkle-to-fold confinement computed in Sec. IV for
large sheets, Agp/A = 0.2857.
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Since it is expected that this exact periodic solution is
unstable against localization for large enough confinement,
we give below its expansion for small A. We expand Egs. (31)
and (32) in small k to obtain A = Lk* + O(k*) and P =
2 — 2k% + O(k*). Thus, to leading order in small relative
confinement, we have

P~2(1 A 33
=2(1-7). (3)

The amplitude of the profile is A = 2k/q [see Eq. (24b)]. For
L = Nm, we have

LI (34)
T Kk~ VLT
The corresponding profiles for small confinement are
h(s) = Acoss, symmetric profile, (35a)
h(s) = Asins, asymmetric profile. (35b)

Thus, to leading order in A /L, our exact solution reproduces
the expressions for P, A, and h(s), known for the wrinkle
state [2,6,11,25]. Notice that, because we consider L > 3A,
and a transition to the localized solution occurs for A /L =
A2 / L2, the maximum relative compression relevant for the
periodic solution is A/L < 1/9 ~0.11, which is indeed
small. Therefore, a first-order expansion is quite sufficient for
describing the wrinkle state.

IV. APPROXIMATE LOCALIZED SOLUTIONS

A. Construction of the localized solution

We have not been able to find exact physical solutions for
folds in a finite sheet. Exact localized solutions of Eq. (8) for
a finite sheet do exist; yet, these profiles are not solutions of
the present physical problem, as they have a finite height at the
boundaries. We describe them in Appendix A for the sake of
mathematical interest and possible relevance for other systems
to be studied in the future.

We resort to a perturbative calculation, extending the
multiple-scale analysis of Ref. [44] to a finite system.
The main motivation is to enable an accurate analysis
of the wrinkle-to-fold transition, as will be presented in Sec. V.
We therefore assume a very long (yet finite) sheet compared to
the wrinkle wavelength, L >> A. It has been established that, as
L is made larger, the region of stable wrinkles shrinks and their
amplitude diminishes [43,44]. Thus, the critical values of the
pressure and displacement for the wrinkle-to-fold transition,
Pr and Ap, can be assumed arbitrarily close to the ones for the
flat-to-wrinkle transition, Py = 2 and Aw = 0, as L is taken
to be arbitrarily large.

At the transition from a wrinkle state to a localized one,
we anticipate that the undulations of wavelength A will
be attenuated over a much larger length scale of order L.
Therefore, the sheet profile contains two length scales, a short
one (A) and a long one (L). To obtain this profile near the
transition, we then substitute in the energy, Eqgs. (11)—(13), a
multiple-scale function of the form,

h(s) = cos(kes) Z ejHj(es) ~ € cos(kcs)H (es), (36)

Jj=1
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and consider hinged boundary conditions,
h(£L/2) = h(£L/2) = 0. 37)
In this expansion, the small parameter € is given by
€= (Pw—P)"?, (38)

where Py = 2 is the critical flat-to-wrinkle pressure. k. is
the wave number of the fast oscillations; from the known
flat-to-wrinkle transition we expect to get k. = 1 [2,42]. We
have selected a symmetric profile; an antisymmetric one is
obtained by replacing the cosine with a sine and leads to
a similar analysis. For simplicity, we restrict the discussion
to commensurate sheets, L = N (i.e., L/» = N/2), where
odd and even N correspond, respectively, to symmetric and
antisymmetric solutions. (We will later check the effect of this
approximation numerically.)

Asin Ref. [44], we substitute the profile Eq. (36) in Eq. (13),
expand in powers of €, and integrate over the fast oscillations
(which cancel the terms proportional to € and €?), to obtain a
systematic expansion of the energy,

G = Goe® + Ge* + O(e%). (39)

Analysis of the leading order reproduces the known wrinkling
transition with Py =2 and k. = 1 (A = 27) without any
constraint on H;. This gives G¢ = 0, reducing the energy of
the system to G = G €*. The function H; is determined by
minimizing the functional G, given by

Gy~ 2 / o HS) - ~ B+ 1H2) (40)
~ = - — - s,
T2 ), 16 T4

where S = €s, and a prime denotes a derivative with respect
to §. Variation of Eq. (40) gives the amplitude equation
for H; [44],

H{(S)+ $H; — 1H; = 0. 41)

The boundary conditions of vanishing height, h(+L/2) = 0,
are automatically satisfied since cos ((N/2)w) =0 for odd
N. The boundary conditions of vanishing bending moment,
h(£L/2) = 0, impose

H{(S = +eL/2) = 0. (42)

Equations (41) and (42) always have the trivial constant
solution, H, = V2, corresponding to wrinkles. In addition,
Eq. (41) has solutions in terms of Jacobian elliptic functions
[51]. Out of the 12 Jacobian functions, only one is found to
provide a physical solution [57],

H(S) =4k dn(k S,m), «k = ; 43)
22 —m

In this section using the other definition of the modulus m
[51] makes the presentation more elegant. It is related to the
modulus & of Sec. [l by m = k*. Themodulusm (0 < m < 1)
changes with the displacement A [see Eq. (50) below]. The
pressure is also related to the modulus m using the boundary
condition (42) [58],

kel = 2K (m), (44)

where K (m) is the complete elliptic integral of the first kind
[51], which is half the period of the function dn [51], k(m)
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FIG. 3. Localized height profiles for a sheet of length L /A = 10.5
for various values of the confinement parameter.

is defined in Eq. (43), and € = +/2 — P. Equations (36), (43),
and (44) yield the height profile i(s) of the sheet for a given
m,

h(s) = 4xe dn(kes,m) cos(s) (45a)

8K (m) (ZK(m)
= dn
L L

s,m) cos(s), (45b)

for L/A = N/2.

The resulting profiles are demonstrated in Fig. 3. In the
limit m — 0, the function dn(u,m) — 1, and from Eq. (45b)
we recover the wrinkled profile, A(s) = V/2€ cos(s) [43]. In
the opposite limit, m — 1, we have dn(u,m) — 1/ cosh(u),
which recovers the approximate localized fold for an infinite
sheet [43,44], h(s) = 2¢ cos(s)/ cosh(es/2). These two limits
are further treated in Sec. IV B. Thus, m serves as the order
parameter of the wrinkle-to-fold transition, as will be discussed
in Sec. V. The antisymmetric counterpart of Eq. (45b) is
obtained by replacing cos(s) with sin(s).

To further characterize the extent of localization, we define
the decay length of the envelope as

‘HI(O) 2 L
H(©0)| — 2ymK(m)’

where the last equality follows from Eq. (45b). The decay
length diverges (¢ — oo) whenm — 0, and vanishes (¢ — 0)
as m — 1. This defines the two limits of weakly and strongly
localized profiles to be discussed below. Note, however, that
the leading order of the multiple-scale analysis is not strictly
valid in the strongly localized limit. The crossover between
these two limits, £ = L, where the localization should become
observable, occurs at m >~ 0.096.

3

(40)

B. Pressure, displacement, and amplitude

Using Eq. (44) together with Eq. (38), we obtain the
expression for the pressure associated with the localized
solution,

16 5
P(m) =2~ 52~ mK(m)" A7)

Since we know that for an infinite sheet the wrinkle state is
always unstable against the localized state [44], we expect that
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FIG. 4. (Color online) Pressure as a function of displacement for
a sheet of length L/A = 10.5, showing the second-order transition
between the wrinkle state (exact solution, green solid line) and the
fold state (multiple scale approximation, red dash-dotted line). P is
the physical dimensional pressure. Numerical solution (circles) of Eq.
(8) indicates that the parametric Egs. (31) and (32) for the wrinkle
state, and Eqs. (47) and (50) for the fold state, provide the correct
evolution of P as a function of A. The pressure-displacement relation
for a confined infinite sheet, Eq. (58), is shown for comparison (exact
solution, black dashed line).

this transition should occur at an arbitrarily small displacement
for a sufficiently long sheet. Therefore, we expand the
expression (12) of the displacement to the leading order in
€,

A~ -/ ds h. (48)

L2

Using the expression (45a) for h, averaging over the fast
oscillations (short length scale), and performing the integral
over the slow envelope (long length scale), we obtain

A = 8ke E(kel/2,m), (49)

where £(x,m) is the Jacobi epsilon function, and « is given as
a function of m in Eq. (43). Using Eq. (44), the displacement
associated with the localized solution reads
16

A(m) = 8xe E(K(m),m) = IK(m)E(m), (50)
where E(m) is the complete elliptic integral of the second kind
[51]. Since both A, given by Eq. (50), and P, given by Eq. (47),
are functions of m, the evolution of the pressure as a function

of the displacement is given by the parametric form [A(m),
P(m)]. This evolution is demonstrated in Fig. 4.

1. Weakly localized limit

As m grows from zero the profile ceases to be purely
periodic and begins to localize. In the weakly localized
limit, m < 1, the symmetry has already been broken, but the
localization length is still larger than the system size, £ > L.
In this limit, therefore, the deviation from the wrinkle state will
be hard to resolve experimentally. Nevertheless, as mentioned
above, m =~ 0.1 is sufficient to reach & >~ L

The displacement given by Eq. (50) is an increasing
function of m. We notice that, in the limit m — 0, the
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displacement takes a finite value,

Ar = A(0) =472 /L = A?/L. (51)

This means that the localized solution emerges only beyond
this finite displacement in the case of sheets of finite length.
For a confinement smaller than Ap, the shape of the sheet
is described by the periodic solution constructed in Sec. III.
In Appendix C we obtain the critical wrinkle-to-fold confine-
ment, up to a constant prefactor, Ag ~ A2 /L, from a simple
scaling analysis.
For small m we have

2,2
A(m) = Ar + +O0m), (52)
8L
Py =2— S 3T oy, (53)
m)y=2— — — m
L? 4L
The parameter m can be eliminated to obtain
2A A—A
_2——F—6< F). (54)
L L

The profile for m = 0 is obtained from Eq. (45b),

4
h(s) = I coss, m=0. (55)
Although this profile describes periodic wrinkles, it has a
finite amplitude since it is obtained for a finite displacement,
A = Ap.

Once m > 0, the profile is no longer periodic and its
extrema have different heights. The height of the central fold,
Ao = |h(0)|, and that of the extremum next to it, A; =~ |h()|,
are of special interest since they are used to experimentally
characterize the evolution of the localized profile [42]; see
also Sec. VI and Fig. 7. (The localization makes the second
extremum shift slightly from s = 7, but this shift is of higher
order than our present approximation.) From Eqgs. (45b) and
(52) we get

A—A 1/2
Ao 2[( F) ,

12
A _—+2J§cos( 7 )(A A) . (56b)

L

which are valid for A > Ag. The slopes of both Ay and A
diverge at Ag, with an exponent of 1/2, as is typical for a
mean-field second-order transition.

(56a)

2. Strongly localized limit

In this limit of m — 1 we have

16
A(m) = =K (m). (57a)

P(m) ~2— gK(m)z. (57b)

Eliminating the parameter m between these two last
relations leads to

A2 72 (AN
P=2——=2——<—>, (58)
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FIG. 5. (Color online) Phase diagrams of an incompressible fluid-supported sheet. (a) Phase diagram on the displacement-length plane.
For 0 < A < A2/L the sheet forms extended wrinkles, and for A > A?/L a localized fold is formed. The rectangle shows the range of the
experimentally determined phase boundary [42] (see also Fig. 7). (b) Phase diagram on the pressure-length plane. P is the physical dimensional
pressure. Wrinkles are stable for 2 — 2A2/L? < P < 2, and a fold is stable for P < 2 — 2A2/L?. The wrinkle-fold line is a second-order
transition. Note how the region of stable wrinkles in both diagrams vanishes in the limit of an infinite sheet. In both diagrams, the theoretical
transition curves are compared to the numerical transition obtained by solving Eq. (8) and analyzing the periodicity of the numerical solution
from the relative height of its extrema. Numerical results for both commensurate (L being an integer or half-integer multiple of A) and
incommensurate sheets are presented, showing a negligible discrepancy between these two and the theoretical prediction for L 2 2A.

which coincides with the exact pressure-displacement relation
for infinite sheets [45]. In this limit, we also have dn(u,m) —
1/ cosh(u) [51], such that the profile (45b) becomes

A cos(s)

2 cosh(s/€)’
which coincides with the approximate localized fold for an

infinite sheet [43,44]. The amplitude Ay is thus given by the
following simple relation,

Ao =A)2,

h(s) = §=8/A, (59)

(60)

which again is identical to the exact result for an infinite sheet
[45].

V. WRINKLE-TO-FOLD TRANSITION

Below a critical value of €L = egL = 23?7, Eq. (44) has
no solution for m. Thus, below this critical confinement, the lo-
calized solution does not exist, and the only possible envelope
is the trivial constant one, corresponding to wrinkles. At egL
itself Eq. (44) admits m = 0 as a unique solution, and for larger
values of €L, with m > 0 as a unique solution, the envelope
grows continuously, corresponding to increasingly localized
patterns. Accordingly, we define the order parameter of the
wrinkle-to-fold transition as m, and its control parameter as

t=¢lL, =€l =27 (61)

A. Landau expansion

A clear way to present the continuous transition is through a
Landau expansion of the energy G in the small order parameter.
The Landau expansion is to be performed on the energy prior
to minimization. For this purpose, we use the following form

for the envelope:
2 2K (m)
dn Sm),

V2—m

H{(S) = (62)

T

where we have substituted the boundary condition (44) in
the argument of the profile given by Eq. (43), but not in its
amplitude. Therefore, H{'(S) satisfies the boundary conditions
but does not yet minimize the energy.

Substituting Eq. (62) in Eq. (40) and expanding to fourth
order in small m, yields

3
128

AG =~ (17 — %) (m* + m®) + 32:(357F — 337%)m*, (63)
where AG = 32L(G — Gw)/€?, and Gw = Le*/4 is the
energy of the wrinkles. The appearance of the m> term has
no significance for the transition because of its vanishing
prefactor. Upon minimization of AG with respect to m we
obtain
m = 8[(v — )/3te]'/?, (64)
with a critical exponent, 8 = 1/2, as usual for a mean-field
second-order transition.
Using the expression (61) of ¢ in Egs. (33) and (38) for
P and A, we recover the critical values derived in Sec. IVB 1
from the analysis of weakly localized folds. We repeat here
these central results:

Pr=Py—17/L*=2—87%/L% (65)

Ap =1} /(2L) = 47*/L. (66)
The value of Ap ~ 39.5/L corrects an earlier, higher estimate
of Ap = 48/L, which was obtained by using an Ansatz profile
that was not an energy minimizer [43]. Equations (65) and
(66) confirm that the wrinkle-to-fold transition can be made
arbitrarily close to the flat-to-wrinkle one with increasing
size of the sheet. Consequently, this separate second-order
transition appears only in finite systems.

In Fig. 5 we summarize the phase diagrams of the
incompressible fluid-supported sheet on the A-L and P-L
planes. Note that these scaled diagrams are parameter-free.
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FIG. 6. (Color online) (a) Evolution of the rescaled pressure as a function of the relative displacement for various sheet lengths L. P is the
physical dimensional pressure. The graphs show the evolution of the pressure for the periodic state (wrinkles) together with the bifurcations

toward the localized state (fold)at A /L = Ag/L = \*/L*and P =2 —

2Afg/ L. These bifurcations decrease the energy of the system compared

to the periodic state. (b) Evolution of the amplitudes of the pattern, rescaled by the wrinkles wavelength, as a function of the relative displacement
for the same sheet lengths as those used in (a). The wrinkle amplitude grows as (A /L)"/? until the points A/L = A*/L* and A/A = A/Lx are
reached, where the localized state emerges. The evolution of the amplitude of the central fold, A, and of the fold next to it, A, are shown.

B. Matching at the transition

Below the wrinkle-to-fold transition and considering small
wrinkles (to first order in A /L), we have found in Sec. I C,

p=2(1-2 A—z\/K h(s)=A 67
_ <_z), 0=2/ 5. hs)=Agcoss).  (67)

At the wrinkle-to-fold-transition, we have shown that A =
Ap = A?/L and P = Pz =2 — 2A?/L?. Slightly above the
transition, the weakly localized solution is characterized by
(see Sec. IVB 1)

P=2<1—

22
A0:f+2«/§<

7)ol
L
A — A
L

A — Ag
L

>1/2

2
h(s) = I cos(s), at the transition. (68)

Comparing Egs. (67) and (68), we see that the transition is
continuous. The discontinuity appears in the pressure deriva-
tive, with (dP/dA)y o =—2/L and (dP/dA)s_, pr =
—6/L. Hence, the continuous transition is of second order
(discontinuity in the second derivative of E with respect to
A). The pressure associated with the localized solution is
smaller than the one associated with the periodic solution
once A > Ap, as illustrated in Fig. 6(a). Since P = dE/dA,
the localized state has a smaller energy compared to the
energy of the periodic state. The latter is thus unstable once
A > Ag. The evolution of the amplitudes of the wrinkle and
localized states as the displacement increases is shown in
Fig. 6(b).

VI. DISCUSSION

A. Experimental consequences

The system parameters are the length L and bending
modulus B of the thin elastic sheet, and the density p
of the liquid. The experimental control parameter is either
the displacement A or the force per unit length P. The
measured quantity is the height profile, including the wrinkles
wavelength A, and height extrema [42].

The order parameter m, which we have defined here,
characterizes the decay of the envelope away from the center
of the fold. Experimentally, one may look instead at the height
difference between two consecutive local extrema A, and
A; [42]. These two definitions of the order parameter are
equivalent close to the transition. Indeed, from Eqgs. (52) and
(56) we find

Mexp %[sin(m/zL)]zm + O(m?),

bt}
Ao
252
8L?
Using Eq. (52), or equivalently Eq. (64), this result is written
as a function of the experimental control parameter A:
72 A

Bt

where A is given by Eq. (51).

The evolution of the pattern amplitude as a function of the
displacement can also be measured. Such data are available in
Ref. [42], whose main purpose was to show the universality
of the folding state where all the data collapsed onto a
master curve for large enough confinement. Indeed, in the
large-confinement regime, the sheet deformation is localized
in a small region, comparable to the wrinkle wavelength A, and
does not depend significantly on the sheet length L, provided
that L is sufficiently large compared to A. The data of Ref. [42]

m + O@m?* A% /LY. (69)

A — Af

2 (70)

Mexp =
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FIG. 7. (Color online) (a) Definitions of the amplitudes Ay and
A, for the localized state. (b) Comparison between the experimental
evolution of Ag and A, (rescaled by A) with increasing confinement
for finite sheets [42], and the prediction of Eq. (45b) where Ay =
[h(0)| and A = |h(sr)|. The evolution of the amplitudes of the exact
solution for an infinite sheet is also presented [45].

are reproduced in Fig. 7 together with the evolution of the
amplitudes predicted by the present theory. (Note that, to
comply with the presentation of the experimental data, the
amplitude in Fig. 7 is drawn as a function of A /A rather than
A/L as in Fig. 6(b).)

Our theory is valid for large enough sheets and conse-
quently for a sufficiently small relative confinement A /L < 1.
See, for example, the deviation of the amplitude A; at
large A/L for a small system with L/A =3.5 (Fig. 7).
On the other hand, at large A /X, as the localization length
becomes significantly smaller than L, the exact predictions
for an infinite sheet [45] become accurate for finite sheets
as well (see Fig. 7). Finally, for the localized state we
have assumed a commensurate sheet (L being an integer or
half-integer multiple of 1). Yet, as shown in Fig. 5, the effect
of incommensurability becomes negligible already for sheets
larger than 21, making it inconsequential experimentally.

The authors of Ref. [42] inferred from their experiments
that the wrinkle-to-fold transition occurred at a value of
A =~ 0.31 for all sheet lengths L, whereas our theory gives
an L-dependent critical displacement [see Fig. 5(a)]. As
seen in Fig. 7, it was natural to draw that conclusion given
the experimental error. The rectangle shown in the diagram
of Fig. 5(a), representing the range of the experimentally
determined thresholds (Fig. 7), is consistent with the
theoretical prediction. Clearly, accurate experimental data
focusing on the transition region are still needed. For this
purpose we summarize the predictions for the amplitude
evolution below and above the transition.

A 1 /AN
'X:;<Z> ’
A

A 2 (A — AR\
For A > Ap: °:—+£( - F) . (71b)

_ 1/2
AF) . (Tl¢)

(71a)
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In Sec. IV, we derived the properties of the critical wrinkle-
to-fold transition at which the localization length £ diverges.
As for critical phenomena in a finite system, the transition
will be observable in practice only when the localization
length becomes smaller than the system size, § < L. We find,
however, that the displacement required to get £ ~ L is larger
than Ag by only 0.4%. Thus, the finite size of the system
should have a negligible effect on the experimentally observed
critical displacement.

B. Conclusion

In the present work we have derived an exact solution for
the wrinkle state in a finite fluid-supported sheet. The theory
developed for fold localization, however, is restricted to large
sheets; it is correct to first order in A /L. A higher-order theory
(next order in € of the multiple-scale expansion) would not
change the main conclusions obtained above. It is expected to
slightly modify some quantitative predictions such as the value
of the critical wrinkle-to-fold confinement Ag. The possibility
to discriminate experimentally between the present theory of
the transition and a higher-order one is doubtful.

Although we found exact localized solutions for the
governing Eq. (8), these do not give the physical profile of
the sheet (see Appendix A). Mathematically, the inability to
derive physical localized profiles from these solutions may
indicate that such profiles belong to a different branch of
solutions to the nonlinear governing equation. Such a branch
is yet to be found. If it exists, it will probably coincide, in the
limit L — o0, with the exact solution known for this limit [45].

An important extension to the present theory is the
inclusion of finite compressibility of the sheet. This will allow
us to treat the flat-to-wrinkle transition, and thus construct
the complete “phase diagram” of the floating sheet including
the two transitions. This extension will be presented in a
forthcoming publication.
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APPENDIX A: EXACT LOCALIZED
SOLUTIONS TO EQ. (8)

In this appendix we derive exact localized solutions to
Eq. (8), which are not physical solutions of our problem
treated here, but may be of use in future research. Equation (8)
is a member of the sine-Gordon-modified-Korteweg-de Vries
hierarchy [52] in which the sine-Gordon equation is a lower
member. Consequently, a solution of the sine-Gordon equation
is also a solution of Eq. (8). Using the separation of variables

proposed by Lamb [53], the following function,
¢(s,t) = 4arctan (F(s)/ G(1)), (AD)

is a solution of the sine-Gordon equation provided F' and G
satisfy the following differential equations [54],

(F')? = =k F* + uF* + 1,
(G =kG*+ (n— DHG* — A,

(A2a)
(A2b)
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where «, @, and A are arbitrary constants. The function (A1)
with ¢t = s is also a solution of Eq. (8) if F and G satisfy the
relations (A2) and provided that

P=2—4pu. (A3)

Introducing some scaling parameters [55], Af (8s) = F(s)and
g(ws) = 1/G(s), Eq. (A2) becomes

(P =Bk A [P+ uf? +2A72, (Ada)

@)V =0 [—2g* +(u—Dg> +kl.  (Adb)

Solving Eq. (A4) allows one to determine f and g and
to obtain an exact solution of Eq. (8). Those equations are
satisfied by the Jacobi elliptic functions with arguments Ss
and ws and parameters ky and k,. The various parameters are
fixed by comparison between Eq. (A4) and those satisfied by
the Jacobi functions:

sn(s,k): (v) = K2yt — (1 + Ky + 1, (A5a)
en(s.k): (y) = —k*y* + k> = 1)y* + 1 — k>, (ASb)
dn(s,k): ()2 = —y* + 2 — k)y? — 1 + k% (A5c)

Hinged sheets

We choose f = cn(Bs.ks) and g = sn(w*s,k}) or g =
cn(a)’s,kéj) such that

¢(s) = 4arctan[A cn(Bs, k) sn(w™s,k])],
¢(s) = 4arctan[A cn(Bs,k ) cn(a)_s,kg_)].

(A6a)
(A6b)

Equations (A6a) and (A6b) lead to symmetric and antisym-
metric solutions, respectively. Comparison between Eq. (A4)
and Eq. (AS) for the particular choices of f and g fixes six
parameters (among eight parameters for each parity of ¢) as a
function of A and f as follows:

oo LA A%)p2]'/?2

1+ A2 ' (A72)
1/2
w=[1+A2+,32—1] , (A7b)
1 + A2 1/2
=
_ g+ A -1 77
g ZA[I—A4+(1+A2>2/32} -9
kp= ol + AT+ pHY2, (ATe)
2A% 4+ (A* = 1)p?
T (+ay (A7D

The expressions of ¥ and A are not needed in the following
and are not written. The amplitude A of the solutions (A6)
is related to the displacement A through Eq. (2) whereas 8
should be fixed to satisfy the boundary conditions.

For hinged boundary conditions both /4 and h=dcose
vanish at s = +L/2. From Eq. (7), this is equivalent to
¢(:|:L/2) ¢)(:|:L/2) = 0. The condition ¢>(L/2) 0 for the
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FIG. 8. (Color online) Evolution of the normalized height of the
exact solution (A6a) at the boundaries as a function of the normalized
displacement. The dots indicate the position of the threshold, Ag/A,
below which the profile is periodic. The shaded area corresponds
thus to the wrinkle state. This area is delimited by the relation
h(£L/2)/h(0) = 0.279 Ag/A = 02791 /L.

symmetric solution (A6a) leads to the constraint,

dn(x,ks)sn(x,k ) sn(y, k)
cn(x,k¢)en(y,kg ) dn(y,kd) S

(A8)

where x = BL/2and y = w*' L /2. Due to the definite parity of
the solution, (i)(—L /2) = O1is automatically satisfied. A similar
relation is easily obtained for the antisymmetric solution
(A6b) which is not written here. For a given amplitude
A, and a given sheet length L, Eq. (A8) fixes B. The
displacement A, and the pressure P are then computed from
Egs. (2) and (A3), respectively. Finally, P is computed from
Eq. 9).

It is, however, impossible to satisfy both boundary condi-
tions with the solutions (A6). For the exact periodic solution
(18), both (i)(s) and ¢(s) are proportional to cn(g(s + so),k)
such that they can simultaneously vanish at the bound-
aries with a suitable choice of g (and so); see Eq. (22).
Here, ¢(L /2) and ¢(L /2) cannot simultaneously vanish
for the same value of B. Therefore, the height of the
profile assumes a finite value at the boundaries as shown in
Fig. 8. Notice, however, that h(+L/2)/h(0) decreases as L
increases.

Nevertheless, despite the fact that it does not properly
satisfy the boundary conditions, this solution is a very
good approximation of the numerical solution satisfying both
boundary conditions. Figure 9 shows a comparison between
this exact localized solution and the numerical solution of
Eq. (8). The agreement is good especially near the central fold
and for large enough confinement.

APPENDIX B: ACCURACY OF Ap AND Py

The critical displacement A, and pressure Pp, at which
the transition from wrinkles to fold occurs has been computed
in Secs. IVB 1 and V. These expressions are obtained from
matching, at the first order in A /L, between the exact periodic
and the approximate localized solutions (see Sec. V B),
and converge toward the exact values in the limit L — oo.
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FIG. 9. (Color online) Evolution of the solution (A6a) for dif-
ferent values of A/A and L/A =5.5, where x(s), h(s) are given
by Eq. (1) and ¢(s) is given by Eq. (A6a). The corresponding
evolution for the numerical solution of Eq. (8) is also shown.
For A/A < Ag/X = 0.182, the numerical solution is periodic and
coincides with the solution reported in Sec. I11.

Although a rigorous derivation of the error on these two
quantities is only possible if their exact expressions are known,
an estimation of the rate of convergence can be obtained from
the exact periodic solution.

Indeed, since at the transition P(A) coincides for both the
periodic and the localized solutions, the exact expressions of
Arp and Prp should satisfy Eqs. (31) and (32) for the same
k = k.. This is not the case with the approximate expressions
we have obtained in this paper. Therefore, we define two
quantities, 55 and Jp, as follows:

AR -AF
SA = W with P(kc) = PF, (Bla)
Sp — M ith Ak = A (B1b)
P = P(g(’) w c/) — F»

where A(k), P(k), Pp, and Ap are given by Egs. (31), (32),
(65), and (66), respectively. With the exact expressions of Ap
and Pr, we have k. = k. and §, = 8p = 0. The quantities 6
and Sp are thus a measure of the error introduced and of the
rate of convergence toward the exact expressions of the critical
displacement and pressure.

Expanding both A(k) and P(k) up to k*, we obtain at the
leading order in A./L:

A4 3¢ A6

Figure 10 shows that the evolution of 5§, and §p as a function
of L /X obtained by solving numerically Eq. (B1) agrees well
with the asymptotic expression (B2) even when L /X is not
so large. Therefore, the expressions of Ap and Pg derived in
the paper converge toward the exact values as L=2 and L™,
respectively.

APPENDIX C: SCALING APPROACH

In this section, we show that some of the results
obtained in the main text, and in particular the critical
confinement at which a wrinkle-to-fold transition occurs,
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FIG. 10. (Color online) Evolution of §, and p as a function of
the sheet length (normalized by the wavelength) obtained by solving
numerically Eq. (B1). The asymptotic behaviors (B2) are also shown.

can be qualitatively recovered using a simple scaling ap-
proach. As formulated in Sec. II, the bending energy of the
sheet E, and the deformation energy of the substrate E
read

WRB L/2 .
Ep = — $ds, (CDH
2 Joip
w L/2
E =P8 / h? cos ¢ ds, (C2)
2 Joip

and the displacement along the direction of confinement is
given by

L2
A =/ (1 — cos ¢)ds. (C3)

L2

1. Small displacement

For small displacement, leading to small sheet deformations
(<1, wrinkles emerge with an amplitude A, wavelength A,
and curvature ¢ ~ A/A? (see Fig. 11). The energies thus scale
as

E,~ BWLA?/A*, E,~ pgWLA2. (C4)
The balance of these two energies leads to
h~ (B/pg)'*. (C5)

In the limit ¢ < 1, the relation between the amplitude and the
displacement is given by

L/2 L/2
A ~ > ds ~ / (dh/ds)*ds ~ L(A/L)*.  (C6)
—L/2 —L/2
Wrinkles Fold
SN NS \‘*f‘I A
- 2
v

FIG. 11. Schematics for wrinkles and fold patterns.
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2. Large displacement

The total energy of the system can be written as

E B L/2 . 08 L/2
=2 s + == / h*ds (C7)
w 2 —L/2 —L/2
L/2
_bg h2(1 — cos ¢ )ds (C8)
2 Joip
~ BAP® + pgAA% — pgA’A, (C9)

~ pgA*Ag? + AA? — A%A], (C10)

where A is the spatial extent of the pattern, ¢ its typical
curvature, and A its amplitude.

For wrinkles, we have A ~ L, (]5~A/A2, and A ~
A/ A /L [see Eq. (C6)]. The wrinkle energy can thus be written
as

Ew/W = pgi’la A/x—bG/LYA/A, (C11)
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where a and b are numerical constants. For a fold, we have
A ~ £, the fold width, ¢ ~ £7!,and A ~ A (see Fig. 11). The
fold energy can thus be written as
Ep/W = pgl(c? /4604 /€ + ELA* — d A3, (C12)
where ¢, ¢, and d are numerical constants. A minimization of
Er with respect to £ gives £ = (c/2¢)A*/A and the energy
becomes
Ep/W = pghlc AJx —d(A/A)). (C13)
Requiring that the wrinkles and fold energies match at A =
Afp gives a quadratic equation for Ar. Demanding that Ag
vanishes when L diverges yields a = ¢. A wrinkle-to-fold
transition occurs when Ey, > E or, equivalently, usinga = c,
when A > Ag = (b/d)A*/L. Thus, this simple analysis has

recovered the correct scaling of Ap with respect to A and L.
As shown in Sec. V, the prefactor b/d turns out to be exactly 1.
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