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Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation
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The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory
for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the
key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and
the coarse-grained water model (mW), we explicitly computed the heterogeneous ice nucleation rates in the
supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation
rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure
further yields the estimate of the potency factor, which measures the ratio of the heterogeneous nucleation
barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively
with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our
numerical study thus provides a strong support to the quantitative power of the theory and allows understanding
ice nucleation behaviors under the most relevant freezing conditions.
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I. INTRODUCTION

The freezing of water nearly all proceeds with assistance
from foreign substances, a process known as heterogeneous
nucleation. In clouds, the dominant candidates for heteroge-
neous ice nucleation are bacteria, pollen grains, mineral dusts,
soot particles, and high-molecular-weight organic compounds
[1,2]. Despite its ubiquity, the microscopic picture behind such
prevailing process still remains elusive because of the complex
and stochastic nature of the heterogeneous nucleation event.
In particular, the mechanisms controlling heterogeneous ice
nucleation are not well understood.

Although a molecular understanding is still missing, the
thermodynamic rationale behind the heterogeneous nucleation
was already provided in 1950s by the classical theory for
heterogeneous nucleation [3,4], an extension to the classical
nucleation theory (CNT) [5] for homogeneous nucleation, on
the basis of macroscopic arguments. According to CNT, the
formation of a critical nucleus needs to overcome a free energy
barrier �G∗

hom through spontaneous fluctuations. In the case of
a spherical solid nucleus forming from the supercooled liquid,
the free energy barrier can be expressed as

�G∗
hom = 16πγ 3

ls

3(ρ�μls)2
, (1)

where γls is the solid-liquid interface free energy, �μls is the
chemical potential difference between liquid and solid, and
ρ is the density of liquid. The homogeneous nucleation rate
Rhom varies with the nucleation temperature T following the
Arrhenius equation [6]:

Rhom = Ahom exp(−�G∗
hom/kBT ) , (2)

where Ahom is the kinetic prefactor. For homogeneous ice
nucleation, both experiments [7–11] and simulations [12–17]
suggest that the temperature dependence of the homogeneous
ice nucleation rate may be quantitatively described by CNT,
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with parametrization being refined by the controlled experi-
ments [18].

When a foreign flat wall (W) is present, the solid nucleus
can preferentially form at the interface between the liquid and
the wall [Fig. 1(a)]. At its critical size, the solid embryo is
under the unstable equilibrium with respect to the dissolution
and the growth, which also indicates a mechanical equilibrium.
At the liquid-solid-wall triple junction, solving the equation of
equilibrium yields the Young’s equation

γlw = γsw + γls cos θc , (3)

where γlw and γsw are the surface tensions for liquid-wall
and solid-wall interfaces. θc defines the contact angle of
solid embryo on the flat wall, with θc = 0 and θc = 180◦
indicating the complete wetting of the wall by solid and liquid,
respectively. If the solid nucleus is further assumed to be part
of the sphere, i.e., a spherical cap, its volume Vcap can be
expressed as Vcap = f (θc)Vsphere, where

f (θc) = (1 − cos θc)2(2 + cos θc)/4 , (4)

and Vsphere is the volume of the sphere containing the cap.
Remarkably, under the framework of classical theory for
heterogeneous nucleation, the factor f (θc) coincides with the
ratio of the free energy barriers between the heterogeneous
and homogeneous nucleation, i.e., f (θc) = �G∗

het/�G∗
hom. It

thus follows that

f (θc) = �G∗
het

�G∗
hom

= Vcap

Vsphere
. (5)

Equation (5) provides a simple but robust explanation
for the preference of the heterogeneous nucleation over the
homogeneous nucleation. Instead of forming a spherical
nucleus from spontaneous thermal fluctuations, only part of
the sphere Vcap needs to be nucleated when a foreign surface
is present. Accordingly, the free energy barrier is reduced
by the same factor f (θc) by which the volume of critical
nucleus is reduced. Since f (θc) measures the degree of the
free energy reduction, it is also known as the potency factor.
According to Eq. (4), the potency factor f (θc) for a foreign wall
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FIG. 1. (Color online) (a) A solid critical nucleus forms at the
interface between liquid and a foreign flat wall, with a solid contact
angle θc. The contact angle θc can be determined by the surface
tensions through Eq. (3). The solid nucleus is assumed to be part of
a sphere (dashed line) with a radius r∗, i.e., a spherical cap with the
volume Vcap = f (θc)Vsphere. (b) The potency factor f (θc) increases
from 0 to 1 (homogeneous), as the solid contact angle θc varies from
0 to 180◦.

is determined by the solid contact angle θc and varies between
0 and 1, as shown in Fig. 1(b). A wall with a lower solid
contact angle yields a lower potency factor f (θc), thus further
enhancing heterogeneous nucleation. Then the heterogeneous
nucleation rate can be expressed by

Rhet = Ahet exp[−f (θc)�G∗
hom/kBT ]. (6)

Although the classical theory for heterogeneous nucle-
ation offers a qualitative explanation to the prevalence of
heterogeneous nucleation, its quantitative validity remains
unconfirmed. Auer and Frenkel [19] employed the umbrella
sampling method to calculate the nucleation barrier of the
hard-sphere crystal that completely wets the smooth walls,
and found that the computed barrier height is substantially
higher than that predicted by the CNT. The disagreement was
attributed to the omission in the CNT of the line tension
at the liquid-solid-wall triple junction, which may become
non-negligible when crystal completely wets the wall. In a
recent study by Winter et al. [20], the total surface energies of
the liquid nuclei (of both spherical and spherical cap shape)
were directly obtained by Monte Carlo simulation for the
Ising lattice gas model. It was found that the obtained surface
energies could be comparable with the capillary approximation

employed by CNT, if the line tension effects at the triple
junction are considered.

In this work, we show that the heterogeneous ice nucleation
on a graphitic surface indeed supports the quantitative power
of the theory. In particular, the validity of Eqs. (5) and (6)
is strongly supported from the ice nucleation rates computed
explicitly using the forward flux sampling method over a wide
temperature range. Our work thus provides the first validation
of heterogeneous CNT in the partially wetting regime where
the potency factor is far enough from zero.

II. SIMULATION DETAILS

Our molecular dynamics (MD) simulations were carried
out using the coarse-grained model of water (mW) [21].
The intermolecular interaction between water and carbon was
adopted from a recent parametrization of the two-body term
of the mW model, so that the strength of the water-carbon
interaction reproduces the experimental contact angle (86◦) of
water on graphite [22]. The model was recently employed in
direct MD simulations to study the heterogeneous ice nucle-
ation on carbon surfaces [22–24], where the nonequilibrium
freezing temperature of ice was found to increase due to the
preferential nucleation of ice on a carbon surface. Here we
employ the forward flux sampling (FFS) method [25,26] to
systematically and explicitly compute the heterogeneous ice
nucleation rates at various temperatures where spontaneous
ice nucleation becomes too slow to occur in direct simulation.
The details of the rate constant calculations can be found
in Appendix A. Our MD simulation includes 4096 water
molecules and 1008 carbon atoms, in a nearly cubic cell
with a periodic boundary condition. The isobaric-isothermal
canonical ensemble (NPT) with a Nośe-Hoover thermostat
was employed, with a relaxation time of 1 and 15 ps for
temperature and pressure, respectively. A time step of 5 fs was
used. It should be noted that while the homogeneous nucleation
rate is measured by the nucleation frequency per unit volume,
the heterogeneous nucleation rate should be characterized by
the nucleation frequency per unit area. However, because the
simulation volume of liquid is small and ice nucleation on the
carbon surface is strongly preferred, it is convenient to describe
the heterogeneous nucleation rate Rhet on the basis of volume
in order to facilitate a direct comparison with Rhom.

III. NUMERICAL VERIFICATION OF EQ (5)

Figure 2 shows the computed heterogeneous ice nucleation
rates (in logarithm) as a function of nucleation temperature,
in the range of 220–240 K. To quantitatively explore the
catalytic activity of the graphitic surface, we compare the
obtained heterogeneous ice nucleation rates with the reported
homogeneous ice nucleation rates from the previous work [12]
using the FFS method and the mW water model, as shown in
Fig. 2. It is clear that a graphitic surface yields the significantly
enhanced ice nucleation rates under all temperatures studied.
Our results thus support the finding by Lupi et al. [22] and
confirm the enhanced ice nucleation capacity of the carbon
surface.

The calculated heterogeneous ice nucleation rates at various
temperatures allow assessing the quantitative validity of
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FIG. 2. (Color online) Temperature dependence of ice nucleation
rate (logarithm) in the mW water model for both homogeneous ice
nucleation and the heterogeneous nucleation on a graphitic surface.
The solid red dots and blue squares represent the calculated ice
nucleation rates by using the FFS method. The dashed red and blue
lines indicate the fitting on the basis of the CNT for homogeneous
nucleation [Eq. (7)] and the extension for heterogeneous nucleation
[Eq. (8)], respectively. The data of homogeneous nucleation were
extracted from Ref. [12].

Eq. (6). To do this, we fit the obtained heterogeneous ice
nucleation rates at various temperatures according to the
theory of nucleation, using the procedure employed by Li
et al. in analyzing the homogeneous ice nucleation [12].
In this procedure, the chemical potential difference �μ

is approximated as a linear function of temperature, i.e.,
�μ = H (T − Tm)/Tm, where Tm is the equilibrium melting
temperature (274.6 K) of ice in the mW model and H is a
constant. The liquid-solid interface energy γls is assumed to
be temperature independent. It is noted that both assumptions
have been verified for the mW water model in different
simulation studies [17,27]. For homogeneous ice nucleation,
it was shown that the independently calculated homogeneous
ice nucleation rate can be fitted according to the following
expression:

ln(Rhom) = ln(Ahom) + Chom

(T − Tm)2T
, (7)

where ln(Ahom) = 114.07 ± 1.86 and Chom = −16πγ 3
lsT

2
m/

(3kBρ2H 2) = −3.72 ± 0.08 × 107 K3 are the fitting con-
stants [12]. We note that the nucleation barrier �G∗

hom =
kBChom/(T − Tm)2. The fitting yielded an estimate of γls =
31.01 ± 0.21 mJ m−2, which agrees well with the surface
tensions computed through other approaches for the mW water
model [17,28].

Remarkably, the obtained heterogeneous ice nucleation
rates are also found to fit well the classical theory for
heterogeneous nucleation, as shown in Fig. 2. Specifically,
the calculated ice nucleation rates Rhet can be fitted according
to

ln(Rhet) = ln(Ahet) + Chet

(T − Tm)2T
. (8)

The fitting yields the estimate of the kinetic prefactor
for heterogeneous nucleation ln(Ahet) = 102 ± 7.70, which

is consistent with that for the homogeneous nucleation
ln(Ahom) = 114.07 ± 1.86 [12]. More importantly, the other
fitting constant Chet = −1.70 ± 0.07 × 107 K3 allows estimat-
ing the reduction of the nucleation barrier, as Chet/Chom =
�G∗

het/�G∗
hom ≡ fb(θc). By comparing the fitting constants

C from the heterogeneous and homogeneous ice nucleation,
we obtain the potency factor for the graphitic surface fb(θc) =
0.456 ± 0.019. This corresponds to a solid contact angle
of θc ∼ 86.6◦. It is noted here that θc is the contact angle
between ice and graphene and should not be confused with the
water-graphene contact angle 86◦, although their magnitudes
coincide here.

It is then of interest to further test the validity of Eq. (5),
namely, the potency factor fb(θc) can be also quantitatively
related to the volumetric ratio fv(θc) of the critical nucleus
of the heterogeneous nucleation and the homogeneous nu-
cleation. We note that such verification becomes possible
in our study because the size of the critical nucleus λ∗ can
be independently estimated from the ensemble of nucleation
trajectories obtained in the FFS calculation. Using the defi-
nition that the critical nucleus has the equal probabilities of
dissolving and growing completely, i.e., with a committor
probability pB = 0.5 [29], we obtained the estimate of the
critical nucleus size λ (number of water molecules contained
in the critical ice nucleus) at various nucleation temperatures,
as shown in Fig. 3. According to CNT, the critical size of
the spherical nucleus in homogeneous nucleation is expressed
by λ∗

hom = 32πγ 3/[3ρ2(�μ)3]. For the mW water model,
since γ is nearly temperature independent and �μ = H (T −
Tm)/Tm [17], the critical size λ∗

hom exhibits the following
temperature dependence:

λ∗
hom(T ) = 32πγ 3

3ρ2H 3

1
(

Tm

T
− 1

)3 = Bhom
(

Tm

T
− 1

)3 , (9)

where Bhom is the temperature-independent constant. The
obtained critical size λ∗

hom at various temperatures are found to
fit well according to Eq. (9), as shown in Fig. 3(a). The good
fit is not unexpected because previous studies [13,15] have
shown the critical ice nucleus from homogeneous nucleation
is nearly spherical. The fitting procedure yields the constant
Bhom = 1.752 ± 0.027. For the heterogeneous ice nucleation,
the same fitting procedure was found to equivalently apply to
the calculated critical nucleus size λ∗

het, through

λ∗
het(T ) = Bhet

(
Tm

T
− 1

)3 , (10)

which yields the constant Bhet = 0.840 ± 0.014. By compar-
ing the two fitting constants B, one obtains the volumetric ratio
fv(θc) ≡ λ∗

het/λ
∗
hom = Bhet/Bhom. Remarkably, the obtained

volumetric ratio fv(θc) = 0.480 ± 0.011 agrees quantitatively
with the potency factor fb(θc) = 0.456 ± 0.019 estimated
from the nucleation barriers. The quantitative validity of
Eq. (5), an important conclusion from CNT and its extension,
is thus strongly supported through the molecular simulation
results based on the mW water model.
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FIG. 3. (Color online) (a) Variation of the critical ice nucleus
size with temperature for both homogeneous and heterogeneous
nucleation. The critical size is estimated based on the committor
probability analysis, which yields λ∗

het: 145 ± 5 at 225 K, 205 ± 10
at 230 K, 288 ± 7 at 235 K, and 410 ± 10 at 240 K, respectively.
(See Appendixes A and B for more details.) The critical size for
homogeneous nucleation was obtained in Ref. [12]. The simulation
data and the fitted curves are represented by data points and solid
lines, respectively. (b) A snapshot of the critical ice nucleus forming
from homogeneous ice nucleation at 240 K. (c) A snapshot of the
critical ice nucleus forming on graphene surface at 240 K.

IV. DISCUSSION

The verified quantitative validity of the CNT (and its
extension) then allows predicting ice nucleation behavior
in the presence of a heterogeneous nucleation center. The
nucleation efficacy of the foreign surface can be generally
described based on its potency factor f . Using the fitted
kinetic prefactor Ahom (≈Ahet) and Chom, and Eq. (8), one
obtains both the heterogeneous ice nucleation rate and the
corresponding critical nucleus size, as a function of the
nucleation temperature, for different potency factors f . As
shown in Fig. 4, the predicted ice nucleation rates clearly
indicate the preference and the relevance of the heterogeneous
nucleation at the moderate and low supercooling. For example,
at 250 K, a nucleation center with the potency factor of
f = 0.1 (equivalent to a solid contact angle θc = 52.5◦) yields
an ice nucleation rate about 100 orders of magnitude higher
than that of homogeneous nucleation at the same temperature.
Intriguingly, the sizes of the critical nuclei from these relevant
nucleation events fall within the range of a few hundred to a few
thousand water molecules. This implies that the most relevant
ice nucleation events mediated by an effective nucleation
center under a low supercooling, i.e., −10 ◦C ∼ −20 ◦C, can
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FIG. 4. (Color online) The predicted temperature variation of (a)
ice nucleation rate R(T ) and (b) critical size of ice nucleus λ∗(T ) in the
mW water model due to the presence of a heterogeneous nucleation
center with different potency factor f . A small potency factor f

indicates a strong ice nucleation efficacy, and f = 1 corresponds to
homogeneous ice nucleation. (c) The predicted variation of the critical
size λ∗ for different potency factor f , subject to a fixed nucleation
rate.

be possibly modeled by molecular simulations through using
a reasonable number (103 ∼ 104) of water molecules.

Interestingly, when the ice nucleation rate R is fixed, the
theory of nucleation predicts that the critical size λ∗ decreases
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with the potency factor f [Fig. 4(c)], and a homogeneous
nucleation yields the minimum critical nucleus. This may
appear surprising, but the prediction can be understood by
the fact that the heterogeneous nucleation producing the same
ice nucleation rate occurs at a much elevated temperature
[Fig. 4(a)]. For example, an ice nucleation rate of 1020 m−3 s−1

would require a homogeneous nucleation temperature
Thom ≈ 225 K but a heterogeneous nucleation temperature
Thet ≈ 260 K for the nucleation center with a potency factor
f = 0.1. The prediction [Fig. 4(c)] shows the critical nucleus
for such heterogeneous nucleation at 260 K contains about
1220 water molecules (i.e., 1/10 of the critical size of the
homogeneous nucleation at 260 K), larger than the critical size
(310) of the homogeneous nucleation at 225 K. As the solid
contact angle θc decreases with the nucleation efficacy (Fig. 1),
a strong ice nucleation center yields a more “flat” ice nucleus
that appears increasingly two-dimension like. It is noted that
in such scenarios the possible effect from the line tension at
the triple junction can be non-negligible [19,20]. However, its
quantitative effect on the ice nucleation rate is unclear. Using
the density of ice, one can estimate the radius of the spherical
segment (i.e., the frustum of the spherical cap) to be of the
order of a few nanometers, implying that the dimension of an
effective ice nucleation site is typically of the order of 101 nm.
This estimate may be used as an important parameter in
experiments for potentially observing ice nucleation in situ and
designing an effective strategy for controlling ice nucleation.
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APPENDIX A: CALCULATION OF ICE
NUCLEATION RATES

We employed the forward flux sampling (FFS) method [26]
to compute the ice nucleation rate on graphitic surface.
The method has been applied to successfully study the
homogeneous ice nucleation [12] using the mW water model.
In FFS, the rate constant for the transition from the basin
A to the basin B is obtained through the “effective positive
flux” expression [30]: RAB = �̇λ0P (λB |λ0), where �̇λ0 and
P (λB |λ0) are the initial flux rate crossing the first interface
λ0 from basin A, and the probability for a trajectory starting
from λ0 to reach basin B, respectively. The interfaces are
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FIG. 5. (Color online) Calculated growth probability P (λ|λ0) as
a function of ice nucleus size λ for heterogeneous ice nucleation on a
graphitic surface at 225 K, 230 K, 235 K, and 240 K. The interfaces λi

used in FFS simulation correspond to the abscissa of the data points.

defined based on an order parameter λ, i.e., number of water
molecules contained in the largest ice cluster. The ice-like and
liquid-like water molecules are identified based on the local
order parameter q6 [12], and an ice-like water molecule is
defined as the one with q6 > 0.5. More details of computing
q6 can be found in Ref. [12]. The initial flux rate can be
computed by direct molecular dynamics simulation, through
�̇λ0 = N0/(t0V ), where N0 is the number of successful
crossings to the interface λ0 from basin A, t0 is the total
time of the initial sampling, and V is the simulation volume.
As our recent work [31] has demonstrated the importance
of the initial sampling on the reliability of the final nucleation
rate, particularly in a heterogeneous environment, a sufficiently
large sampling time (t0 > 300 ns) is used for computing �̇λ0

to ensure the convergence. The growth probability P (λB |λ0)
is obtained through P (λB |λ0) = ∏n

i=1 P (λi |λi−1) and the
individual crossing probability P (λi |λi−1) = Ni/Mi−1, where
Ni is the number of successful crossings (∼ 110) to the
interface λi , and Mi−1 is the number of trial shootings
(typically of 103) from the interface λi−1. More details for
computing P (λB |λ0) are explained in Refs. [32] and [12]. The
statistical uncertainty of nucleation rate is mainly attributed
to the error in the calculated P (λi |λi−1), which includes
the variance of the binomial distribution of Ni and the
landscape variance of the configurations collected at the
previous interface λi−1 [26]. The calculated initial flux rate
�̇λ0 , growth probability P (λB |λ0), and the final nucleation

TABLE I. Calculated initial flux rate �̇λ0 , growth probability P (λB |λ0), and nucleation rate R for heterogeneous ice nucleation on a
graphitic surface using the mW water model and the FFS method. The critical nucleus size λ∗ is determined by the committor probability
analysis on the basis of the computed growth probability.

T/K �̇λ0 (m−3 s−1) P (λB |λ0) Nucleation rate R (m−3 s−1) Critical size λ∗

225 1.69 × 1034 7.64 ± 2.16 × 10−4 1.29 ± 0.36 × 1031 145 ± 5
230 1.12 × 1034 4.83 ± 1.83 × 10−6 5.41 ± 2.05 × 1028 205 ± 10
235 8.90 × 1033 1.51 ± 0.74 × 10−10 1.34 ± 0.66 × 1024 288 ± 7
240 4.19 × 1033 2.23 ± 1.49 × 10−15 9.34 ± 6.24 × 1018 410 ± 10
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FIG. 6. (Color online) Calculated committor pB as a function of
the nucleus size λ for heterogeneous ice nucleation on a graphitic
surface at various nucleation temperatures. The dotted lines indicate
the upper and lower boundaries of the calculated pB on the basis of
the estimated error bar of pB. The horizontal dash line corresponds
to a pB = 0.5 and intersects the both boundaries of the calculated
pB, which yields the estimate of the uncertainty of λ∗.

rates R are listed in Table I for the heterogeneous ice nucleation
at 225, 230, 235, and 240 K. The computed growth probability
P (λ|λ0), as a function of nucleus size λ, is also shown in Fig. 5.

At 220 K, ice nucleation becomes accessible in direct
molecular dynamics simulation. Three out of four trajectories
lead to spontaneous ice crystallization, with a total simulation
time around 30 ns, which yields an estimate of the nucleation
rate of the order of 1032 m−3 s−1.

The size of the critical ice nucleus λ∗ can be numerically
determined by the committor probability pB [29]. A critical
crystalline nucleus is defined as the one with 50% probability
of growing completely into crystal, i.e., pB = 0.5. The
committor pB as a function of nucleus size λ is obtained on the
basis of the computed growth probability P (λi |λi−1), and the
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FIG. 7. (Color online) The computed histogram of committor pB
for heterogeneous ice nucleation at 230 K at the interface λ = 210.
The Gaussian distribution function with the same intrinsic mean and
standard deviation is shown as the red line.

critical sizes λ∗ under different temperatures are determined
(Fig. 6) and listed in Table I.

APPENDIX B: pB HISTOGRAM ANALYSIS

To understand whether the size of the nucleus λ is a
good approximation to the actual reaction coordinate, we
carried out the committor distribution analysis near the critical
size λ∗ ≈ 205 for the heterogeneous nucleation at 230 K.
There were 110 configurations selected from the interface
λ = 210 and each one received 20 shootings with Boltzmann
distributed velocities. The obtained committor distribution is
shown in Fig. 7, along with the Gaussian distribution with the
intrinsic mean μ and standard deviation σ [33]. The calculated
distribution is peaked at μ = 0.521, with an overall agreement
with the intrinsic committor distribution, indicating that λ

fairly accurately describes the actual reaction coordinate and
is thus a good order parameter.
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