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We present numerical studies of first-order and continuous filling transitions in wedges of arbitrary opening
angle ψ , using a microscopic fundamental measure density functional model with short-ranged fluid-fluid forces
and long-ranged wall-fluid forces. In this system the wetting transition characteristic of the planar wall-fluid
interface is always first order regardless of the strength of the wall-fluid potential εw . In the wedge geometry,
however, the order of the filling transition depends not only on εw but also on the opening angle ψ . In particular
we show that even if the wetting transition is strongly first order the filling transition is continuous for sufficient
acute wedges. We show further that the change in the order of the transition occurs via a tricritical point as
opposed to a critical end point. These results extend previous effective Hamiltonian predictions which were
limited only to shallow wedges.
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I. INTRODUCTION

Fluid interfacial phenomena have been a topic of intense re-
search within statistical physics for over three decades; see, for
example, the review articles [1–9]. It is now well established
that confining a fluid or, equivalently, placing it in a strong
external potential may induce novel phase transitions, scaling
behavior, and criticality distinct from those of the bulk fluid.
Well-studied examples of this include wetting transitions at
planar walls [4,8,10,11] and capillary condensation in parallel-
plate geometries [12,13] and capillary grooves [14–17].
For wetting phenomena it was quickly established that the
order of the transition depends very sensitively on the range
and strength of the competing wall-fluid and fluid-fluid forces.
In particular, in three dimensions, continuous (critical) wetting
transitions require, in general, a fine tuning of the interaction
strengths, meaning that in experiments and in model calcula-
tions alike, the transition is most often first order in character.
On nonplanar substrates, however, geometrical effects are also
important, and may strongly influence the order of any phase
transition. This is well illustrated by the filling transition
occurring for a fluid confined in a linear wedge formed by
two planar walls meeting at an opening angle ψ . In many
respects the filling transition is a missing link between wetting
and capillary condensation, connecting these apparently two
distinct phenomena, as well as showing several novel features.
Macroscopic arguments dictate that a wedge in contact with
a bulk vapor at two-phase coexistence is completely filled by
liquid if the contact angle θ < θf satisfies [18–20]

θf (T ) = π − ψ

2
, (1)

where (π − ψ)/2 is often referred to as the wedge tilt angle α.
The filling transition corresponds to the divergence in the ad-
sorption as θ (T ) − α → 0+ and can be induced either at fixed
T by increasing the tilt angle (i.e., making the wedge more
acute), or by increasing T → Tf causing the contact angle

to decrease until the condition θ (Tf ) = α is fulfilled. Wedge
filling therefore precedes any wetting transition in the sense
that Tf < Tw where Tw is the wetting temperature at which
θ (Tw) = 0. Indeed wedge filling does not actually require there
to be any underlying substrate wetting transition since it needs
only the familiar phenomenon of partial wetting. This makes
filling transitions easier to observe than wetting since one need
only tune the substrate geometry rather than the details of the
intermolecular interactions required to make the contact angle
vanish. On the other hand, assessing the order of the filling
transition is more difficult than for wetting since there is no
analog of the macroscopic contact angle whose measurement
would indicate the order of the phase transition. However, the
order of filling transitions can be distinct from that of wetting
and is key to understanding the more subtle aspects of the
phase transition. These include strongly enhanced interfacial
fluctuations and, in two dimensions, hidden connections with
critical wetting referred to as wedge covariance [21–23]. All
of these predictions arose initially from studies based on very
simple effective Hamiltonian models which generalized the
standard capillary-wave analysis of wetting transitions to the
wedge geometry. More recently, however, these predictions
have been tested using microscopic models both at the mean-
field level and beyond. For example, in two dimensions, in
addition to the known solution for wedge filling in the square
lattice Ising model at a right-angle corner [24,25], the transition
has been studied within a field theoretical continuum model
of fluid phase coexistence, which admits an exact solution for
arbitrary opening angles [26]. This has shown that the wedge
covariance has a deeper relation to the Lorentz invariance of
quantum field models in 1 + 1 dimensions. In addition in three
dimensions it has been possible to test predictions for the
order of filling transitions in simulations [27,28] and using
square-gradient theory [29] and modern density functional
models based on fundamental measure theory [30,31]. This
has illustrated that for right angle wedges the filling transition
may indeed be continuous even though the underlying wetting
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transition is first order. Interestingly the mechanism for this
change in order appears to be even more general than originally
thought based on simple effective interfacial models.

The purpose of the present work is to extend our recent
density functional studies of wedge filling at right-angle
corners to more general opening angles. In particular we
wish to show that filling transitions that were observed to be
first order (continuous) for a right-angle wedge, may become
continuous (first order) by making the opening angle smaller
(larger). Our article is arranged as follows: In the next section
we present our microscopic model and the derivation of a
long-ranged external potential arising from dispersion-like
forces, for a three-dimensional wedge with arbitrary opening
angle. We then consider a right-angle corner with two different
strengths of the wall-fluid potential, which give first-order
and continuous filling. These are then studied for different
opening angles showing the change in order as the wedge
is made more acute and open, respectively. We conclude
our paper with a discussion of the mechanism regarding the
change in the order of the transition.

II. DENSITY FUNCTIONAL THEORY

Within classical density functional theory the equilibrium
density profile ρ(r) is obtained from minimization of the grand
potential functional

�[ρ] = F[ρ] +
∫

dr(V (r) − μ)ρ(r), (2)

where V (r) is the external field and μ is the chemical potential.
All the information about the fluid model is contained in the
intrinsic free energy functional F[ρ(r)] which is often split
into an ideal gas and excess contribution. Thus,

F[ρ] = Fid[ρ] + Fex[ρ], (3)

where Fid[ρ] = kBT
∫

drρ(r)[ln (	3ρ(r)) − 1] and 	 is the
thermal de Broglie wavelength that can be set to unity without
loss of generality.

In the spirit of van der Waals theory, the excess term is
treated in a perturbative manner and is separated into (a) a
contribution modeling the repulsive hard-sphere (hs) core and
(b) a contribution from the attractive part u(r) of the fluid-fluid
intermolecular potential which is treated in simple mean-field
fashion. Hence we write

Fex[ρ] = Fhs[ρ] + 1

2

∫
drρ(r)

∫
dr′ρ(r′)u(|r − r′|) , (4)

where, in our analysis, u(r) is taken to be a truncated Lennard-
Jones-like potential

ua(r) =
⎧⎨
⎩

0 , r < σ ,

−4ε
(

σ
r

)6
, σ < r < rc ,

0 , r > rc .

(5)

which is cut off at rc = 2.5 σ . The hard-sphere term Fhs[ρ]
describes the repulsion between the fluid particles of diameter
σ which is approximated using Rosenfeld’s fundamental
measure theory as [32]

Fhs[ρ] = kBT

∫
dr�({nα}), (6)

where the {nα} are six weighted densities.

FIG. 1. Schematic illustrations of geometrical cross sections for
(a) planar wall, (b) rectangular wedge, (c) open wedge, and (d) acute
wedge. Translation invariance is assumed along the y axis.

In general, the external potential V (r) for arbitrary wall
shapes can be constructed by integrating a two-body wall-fluid
potential φw(r) over the volumeV of the wall which is assumed
to be of uniform density ρw:

V (r) = ρw

∫
V

dr′φw(|r − r′|) , (7)

where in our study φw(r) is taken to be

φw(r) = −4εw

(σ

r

)6
, r > σ . (8)

In addition we impose a hard wall repulsion V (r) = ∞
whenever the distance from surface of the wall is less than σ .
We work always in three dimensions but assume translational
invariance along the y axis so that the potential is only a
function of the Cartesian coordinates x and z (see Fig. 1).

For the simplest case of a planar wall occupying a half
space z < 0 [see Fig. 1(a)], the potential reduces to a pure

FIG. 2. Illustration of the finite-size domain used in the numerical
minimization of the grand potential functional in acute and open
wedges. Along the normals n1 and n2 the density is fixed to that of
the planar wall-fluid interface, ρπ (z), to mimic the interface with a
bulk vapor. The distance L is set at L = 40σ which is much larger
than the wetting film thickness at a planar wall.
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one-dimensional power law

Vπ (x,z) = 2αw

z3
, z > σ, (9)

where αw = − 1
3πεwρwσ 6 measures the strength of the interac-

tion. Similarly, for a right-angle corner [Fig. 1(b)] the potential
maybe written [30]

Vπ/2(x,z) = αw

[
1

z3
+ 2z4 + x2z2 + 2x4

2x3z3
√

x2 + z2
+ 1

x3

]
, x,z > σ,

(10)

where the subscript refers to the opening angle ψ . Notice that
far from the apex, x → ∞ or z → ∞, this potential reduces
to a pure power-law characteristic of the planar wall (9). The
potential (10) was used in our previous studies of wedge
filling [30,31]. Here, we extend this analysis to more general
wedges whose potential Vψ (x,z) can be readily obtained by
integrating the pair potential φw(r) over a volume of triangular
cross section which is added either to Vπ (x,z) or to Vπ/2(x,z).
For acute wedges, with ψ < π/2 [see Fig. 1(c)], the attractive
part of the potential is

Vψ (x,z) = αw

[
1

z3
+ cosec3ψ

(x − z cot ψ)3
+ 6x2z2 cot2 ψ + 3z4 cot2 ψ − 6x3z cot ψ + 2z4 + x2z2 + 2x4

2(x − z cot ψ)3z3
√

x2 + z2

]
, (11)

with the hard wall repulsion applying within the wall and a distance σ from it. It is clear that Vψ (x,z) reduces immediately to the
expression of Vπ/2(x,z) for ψ = π/2.

For open wedges [Fig. 1(d)], corresponding to ψ > π/2, on the other hand, the potential is more conveniently written as

Vψ (x,z) = αw

[
−6x2z2 tan2 ψ + 3x4 tan2 ψ − 6z3x tan ψ + 2x4 + x2z2 + 2z4

2(z − x tan ψ)3x3
√

x2 + z2
− sec3 ψ

(z − x tan ψ)3
+ 2x4 + x2z2 + 2z4

2x3z3
√

x2 + z2
+ 1

z3

]
,

(12)

together with the appropriate hard wall restriction. It is easy to
verify that this recovers the potential for the right-angle corner
when ψ = π/2 and also the planar wall when ψ = π .

The grand potential functional �[ρ] is minimized numer-
ically on a two-dimensional Cartesian square mesh of grid
size 0.1 σ with appropriate boundary conditions. We first
determine the equilibrium profile for a planar wall ρπ (z) at
temperature T and chemical potential μ. This one-dimensional
density profile is than imposed as a boundary condition on
the two-dimensional density along the normals n1 and n2

at a distance L = 40 σ from the apex along each wall (see
Fig. 2). Previous studies of filling at a right-angle corner have
shown that distance L is large enough to avoid significant
finite-size effects and mimic the interface between the wall
and the reservoir fluid.

III. RESULTS

We work at two-phase bulk coexistence and at subcritical
temperatures T < Tc which, for our truncated Lennard-Jones-
like potential, occurs at kBTc/ε = 1.41. Throughout this work
we consider two wall-fluid interaction strengths corresponding
to (i) εw = 0.8ε and (ii) εw = 0.9ε. We begin by considering
the wetting properties of each planar wall-fluid interface
determining the temperature dependence of the contact angle
θ (T ), the wetting temperature Tw, and, from the numerically
determined binding potential, the order of the wetting transi-
tion. For both values of εw the transition is unequivocally first
order. This is to be expected since the wall-fluid interaction
is long ranged while the fluid-fluid potential is effectively
short ranged. We then consider a right-angle wedge and,
from determination of the free energy and adsorption, locate
the filling transition temperatures Tf which are shown to
be completely consistent with the thermodynamic result (1).
However, the filling transitions are now of different order; the

transition for the weaker potential for which Tw and Tf are
closer to Tc is continuous, in contrast to the stronger potential
for which the transition is first order. We then investigate what
happens to the location and order of these transitions when the
opening angle ψ is varied. In particular for each value of εw

we determine the value of the opening angle at which the order
of the filling transition changes. Finally, from a numerically
constructed wedge binding potential we are able to determine
whether the change in order occurs via a tricritical or critical
end point.

A. Planar wall-fluid interface

We consider first a planar wall of infinite area A, with
the power-law potential (9), in contact with a bulk fluid
of volume V at pressure p. Imposing that ρ(∞) = ρl or
ρ(∞) = ρg (corresponding to the bulk liquid and gas densities,
respectively) determines the equilibrium profiles ρ(z) and
surface tensions γ = (� + pV )/A for the wall-liquid (wg)
and wall-gas (wg) interfaces, respectively. Then from Young’s
equation γwg = γwl + cos θγlg, where γlg is the liquid-gas
interfacial tension, we determine the temperature dependence
of the macroscopic contact angle θ (T ). This is shown in
Fig. 3, and indicates the presence of a wetting transition
occurring at kbTw = 1.37ε for εw = 0.9ε and kbTw = 1.4ε for
εw = 0.8ε. The asymptotic behavior as T → Tw is consistent
with θ (T ) ∼ (Tw − T )

1
2 , indicating that the wetting transitions

are both first order, as expected (see inset). As a further check
on this we have numerically determined the binding potential
W (�) = �(�)/A − γwl − γlg, where �(�) is the grand potential
of a wetting layer constrained to be of thickness � (see Fig. 4).
These show an activation barrier between the partially wet and
completely wet states close to Tw confirming the first-order
nature of the transitions. More generally, from the plots for
θ (T ) we can now test the thermodynamic prediction (1) for
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FIG. 3. Temperature dependence of the contact angle for the
wall strengths εw = 0.9ε and εw = 0.8ε showing wetting transitions
at kBTw = 1.37ε and kBTw = 1.4ε, respectively. In the inset, a
log-log plot illustrates the vanishing of θ in the vicinity of each
Tw . This is consistent with the expected first-order singularity
θ (T ) ∼ (Tw − T )

1
2 ; the straight lines have slope equal to 1/2. From

the temperature dependence of the contact angle one may also read off
the macroscopic prediction for the location of the filling temperature
in wedges of opening angle ψ according to θ (Tf ) = (π − ψ)/2.

the location of the filling transition in wedges with different
opening angles, beginning with the right-angle corner.

B. Right-angle wedge

We now consider the filling transitions in a right-angle
wedge, corresponding to the potential Vπ/2(x,z), for the two
different values of εw. Using the plots of θ (T ), the macroscopic
result (1) predicts that kBTf /ε ≈ 1.33 for εw = 0.9ε and
kBTf /ε ≈ 1.375 for εw = 0.8ε. First consider the excess
adsorption, defined for the wedge-gas interface by

� = 1

L2

∫
dx

∫
dz[ρ(x,z) − ρg] . (13)

For large enough coverage, i.e., for mesoscopically large
values of the excess adsorption, � ∝ �2

w(ρl − ρg)/L2, where
�w is the perpendicular distance of the liquid-vapor interface
from the wedge apex. For the stronger wall-fluid potential,
εw = 0.9, the adsorption shows a jump, close to the predicted
value of Tf , between two states corresponding to small and
large coverage of liquid near the wedge apex. This is reflected
in the temperature dependence of the grand potential which
shows that two branches cross at Tf = 1.335 which is in
excellent agreement with Eq. (1) (see Fig. 5). The coexisting
profiles are shown in Fig. 6. Note that in the higher coverage
state the interface is essentially flat and meets the walls at
the correct contact angle θ (Tf ) ≈ π/4. The coverage of this
state scales with L2 corresponding, in the thermodynamic
limit, to a completely filled wedge. For the weaker wall
potential, however, there is no coexistence and the adsorption
(and grand potential) has a single branch which rapidly,
but smoothly, increases as the temperature is raised towards
Tf (see Fig. 7). This indicates that the filling transition is
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W
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FIG. 4. Numerically determined binding potential functions for
the planar wall-fluid interface. Panel (a) refers to wall strength
εw = 0.9ε and T < Tw , while panel (b) refers to εw = 0.8ε and
T > Tw . The presence of the potential barrier indicates that the
wetting transition is of first order in both cases, but note that the
barrier is an order of magnitude smaller for εw = 0.8ε consistent
with Tw being much closer to Tc.

continuous despite the fact that the wetting transition is first
order.

C. Nonrectangular wedges

Consider first the stronger wall, εw = 0.9ε, for which
the filling transition is first order for the right-angle wedge,
ψ = π/2. We now close the wedge so that the opening angle
ψ = 45◦ and repeat our analysis, determining the tempera-
ture dependence of the adsorption and grand potential after
minimizing �[ρ] from low-density and high-density initial
configurations. Once again we find hysteresis in the adsorption
but this is now much diminished indicating the transition is
only weakly first order, see Fig. 8. Correspondingly there are
two branches to the grand potential but these now meet almost
tangentially at kBTf /ε = 1.28. Again this value of Tf is in full
agreement with the macroscopic prediction (1). The coexisting
states at the filling temperature are displayed in Fig. 9. Note that
the small decrease in the adsorption with increasing T in the
high coverage phase is simply due to the decrease in the ρl − ρg

and does not reflect the position �w of the interface which is
saturated. Decreasing the opening angle further reduces the
hysteresis which eventually vanishes when the wedge is very
acute, when ψ ≈ 20◦. This is illustrated in Fig. 10 which shows
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FIG. 5. Adsorption (a) and excess grand potential density (b) as
functions of temperature for a rectangular wedge with wall strength
εw = 0.9ε. Two distinct branches are obtained by minimization of
�[ρ] from initial low-density (solid lines) and high-density (dashed
lines) configurations. The branches in the grand potential cross
at kBT = 1.335ε consistent with the thermodynamic prediction
obtained from Eq. (1). The hysteresis is indicative of a first-order
filling transition.

only a smooth but rapid increase of the adsorption as T → Tf

where kBTf /ε ≈ 1.2. In this highly acute wedge the filling
transition has therefore become continuous.

The opposite happens for the weaker potential εw = 0.8
for which the filling transition was already continuous for the

FIG. 6. (Color online) Coexisting equilibrium density profiles
for a rectangular wedge with the wall strength εw = 0.9ε at the filling
temperature kBTf = 1.335ε. (a) The low-density state corresponds
to the adsorption (solid) lines in Fig. 5; (b) the high-density state
corresponds to the desorption (dashed) lines in Fig. 5. In the
high-density state, the liquid-vapor interface meets the wall at the
contact angle θ = π/4 in agreement with the macroscopic prediction
of Eq. (1).
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FIG. 7. Temperature dependence of the adsorption in a rectangu-
lar wedge with wall strength εw = 0.8ε. The curve has its maximum
gradient at kBT /ε ≈ 1.38 very close to the location of the filling
transition kBTf ≈ 1.378ε predicted by Eq. (1). There is no hysteresis,
indicating that the filling transition is continuous.

right-angle wedge. In this case, opening the wedge eventually
induces hysteresis when ψ ≈ 120◦ (see Fig. 11) indicating that
the filling transition, like the underlying wetting transition, is
first order. For ψ = 120◦ the crossing of the branches of the
grand potential determines kBTf = 1.385ε which is in perfect
agreement with Eq. (1). The coexisting states at Tf are shown
in Fig. 12.
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FIG. 8. Adsorption (a) and excess grand potential density (b) as
functions of temperature for a wedge with opening angle ψ = 45◦ and
wall strength εw = 0.9ε. The filling transition is located at kBTf ≈
1.28ε and is weakly first order.
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FIG. 9. (Color online) Coexisting equilibrium density profiles
for a wedge with opening angle ψ = 45◦ and wall strength εw = 0.9ε

at the filling temperature kBTf = 1.28ε.

IV. DISCUSSION AND CONCLUDING REMARKS

In this work, we have presented a nonlocal density func-
tional study of filling transitions in open and acute wedges,
extending previous studies which were restricted to right-angle
corners. In our model the walls of the wedge themselves exhibit
a wetting transition (at temperature Tw) which is always first
order in nature regardless of the strength of the wall-fluid
interaction εw. We have found that in the wedge geometry,
the location of the filling transition temperature Tf is always
in agreement with the thermodynamic prediction θ (Tf ) =
(π − ψ)/2, indicating that Tf can be arbitrarily lowered below
Tw by decreasing the opening angle ψ . In addition we found
that by reducing the opening angle, one can always drive the
filling transition to second order implying that the adsorption
continuously changes from micro- to macroscopic at Tf .
This generalizes our earlier studies of filling at right-angle
corners and shows that the change in order is not restricted to
transitions in the proximity of Tc.

Our central finding, that it is possible to induce continuous
filling for sufficiently acute wedges, is in partial agreement
with longstanding predictions of simple effective Hamiltonian
theory for filling in open wedges (with ψ ≈ π ) [22]. Such
interfacial models also predict a change in order from first
to continuous filling, when the filling temperature Tf is
sufficiently below Tw such that there is no activation barrier
in the binding potential W (�), defined for wetting at the
planar wall. Within such models this means that for wedges
made from walls that only exhibit first-order wetting, the
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FIG. 10. Temperature dependence of the adsorption for a wedge
with opening angle ψ = 20◦ for wall strength εw = 0.9ε. The filling
transition at kBTf ≈ 1.22ε is continuous.
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FIG. 11. Hysteresis in the adsorption as a function of temperature
for a wedge, with opening angle ψ = 120◦, and wall strength
εw = 0.8ε.

filling transition is first order when the wedge is open, but
continuous when it is sufficiently acute. This is in qualitative
agreement with our findings. However, the mechanism behind
the change of order cannot be exactly the same as that
within the interfacial Hamiltonian description. This is because
within our present study only the wall-fluid potential is long
ranged which means that binding potential for wetting at a
planar wall always has an activation barrier. The activation
barrier would not be present if one could induce a change
in the sign of the leading-order term in the binding potential
(Hamaker constant) which in turn needs a balance between the
strengths of long-ranged wall-fluid and long-ranged fluid-fluid
potentials. Therefore, if one strictly applied the predictions of
the interfacial Hamiltonian model to the present system, then
the filling transition would always be first order albeit very
weak since the strength of the activation barrier is rather small
at Tf .

So what is the reason for this discrepancy? One option
is that the finite-size restrictions in the present numerical
study have rounded the filling phase transition, which for
larger domain sizes L would be (weakly) first order. While
we cannot completely rule out this possibility, it is notable that
the numerically determined location of the filling transition
is always in excellent agreement with the thermodynamic
result θ (Tf ) = α. The location of the transition therefore
is certainly not strongly influenced by the finite size. As
a check on this we have repeated our analysis of filling a
rectangular corner for εw = 0.8 ε for the much large domain

FIG. 12. (Color online) Coexisting equilibrium density profiles
for a wedge with opening angle ψ = 120◦ and wall strength εw =
0.8ε at the filling temperature kBTf = 1.385ε.
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size up to L = 100σ which again shows only a smooth
increase in the adsorption consistent with continuous filling.
The second option, which appears more likely to us, is
that the original effective Hamiltonian description does not
capture all the details of the filling transition. There are
indeed plausible reasons for believing this since the original
interfacial Hamiltonian model is only applicable to shallow
wedges and to filling temperatures Tf far from Tc where
a simple sharp-kink description of the interface structure is
reliable. If the wedge is very acute or if Tf ≈ Tc then a
sharp-kink approximation ceases to be valid. However, these
are precisely the conditions where we find a change in the
order of the filling transition. Extending the original effective
Hamiltonian model of filling to these regimes requires, at least,
both a soft-kink treatment of the nonplanar interface and a fully
nonlocal description of the interface-wall potential. In addition
in acute wedges, packing and volume exclusion effects are
almost certain to play an important role and are clearly visible
in the density profile. For continuous and weakly first-order
filling transitions, the free-energy landscape, determining for
example the energy cost of maintaining a coverage of order
� ∝ �2

w, is so shallow that any extra stress on the liquid-vapor
interface may strongly effect the phase transition. Given
that packing effects are completely neglected in the original
effective Hamiltonian theory it appears to us highly likely that
this is the source of any new physics within the microscopic
density functional description of filling. Incorporating all
these features into the interfacial Hamiltonian theory is
extremely challenging, indeed so much so that a microscopic
density functional treatment is a much more tractable way of
studying the problem. Our results suggest that further work is
required to understand how packing effects can lead to extra
terms in the binding potential for wedge filling which may
compete with those arising directly from the intermolecular
forces.

A very subtle question which we have not yet addressed
concerns the precise nature of the change in order of the
transition. In principle this may happen via one of two
mechanisms: a tricritical point or a critical end point. If
there were a critical end point, then in the range of ψ

values where the filling transition is continuous there would
still be a metastable low coverage state even at the filling
temperature Tf . In Fig. 13 we show plots of the numerically
determined grand potential, obtained via partial minimization,
as a function of a constrained value �w of the thickness of
liquid from the wedge apex, in the second-order filling regime.
Figure 13(a) corresponds to T slightly below Tf , while in
Fig. 13(b) it is slightly above Tf . Both graphs have a linear
contribution ∝ (Tf − T )lw proportional to the film thickness
which changes sign at the filling temperature. This has a
purely thermodynamic origin arising from the surface tensions
and is responsible for the macroscopic prediction (1). As the
temperature is increased the location of the minimum smoothly
increases and eventually disappears close to Tf when the
linear term changes sign. It is clear there is no local minimum
when T > Tf indicating that the change in order of the filling
transition is via tricriticality. This means if we were to sit
along the line of first-order filling transition temperature Tf

and decrease the opening angle ψ , the adsorption of the low
coverage phase would diverge continuously as we approach
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FIG. 13. Constrained grand potential as a function of the film
thickness �w for a right-angle wedge with the wall strength εw = 0.8ε.
(a) For temperatures below the filling temperature kBTf = 1.378ε the
potential exhibits a single minimum which continuously shifts away
from the wedge apex as the temperature increases. (b) The tail of
the binding potential has a negative slope as required since T > Tf .
There is no potential barrier between a local minimum and a global
extremum, indicating the change in order is via a tricritical point
rather than a critical end point.

the tricritical value of ψ . However, studying the nature of this
divergence in more detail would be extremely difficult due to
finite-size constraints.

Finally, we mention that our density functional study is
mean field in nature and neglects long wavelength fluctuation
effects associated with thermal wandering of the interface
along the wedge. These certainly do not alter the location of
the filling boundary, θ (Tf ) = (π − ψ)/2, which is determined
by surface thermodynamics, nor the underlying mechanism
for the change in the order of the phase transition, which
depends on the competition between geometry and long-
ranged intermolecular forces. The only influence of thermal
fluctuations of any import concerns the roughness ξ⊥ of the
liquid-gas interface, which in the regime where the filling
transition is second order is expected to diverge according to
a universal power law ξ⊥ ≈ (Tf − T )−1/4. This is not allowed
for in mean-field density functional studies, which, as is well
known, always yield an interfacial width of order the bulk
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correlation length. In the presence of long-ranged intermolec-
ular forces, however, the roughness ξ⊥, even allowing for
interfacial wandering, is always much less than the equilibrium
film thickness of liquid adsorbed near the wedge apex, and
mean-field predictions for all other quantities of interest should
be reliable.
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