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Effects of shear and walls on the diffusion of colloids in microchannels
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Colloidal suspensions flowing through microchannels were studied for the effects of both the shear flow
and the proximity of walls on the particles’ self-diffusion. Use of hydrostatic pressure to pump micron-sized
silica spheres dispersed in water-glycerol mixture through poly(dimethylsiloxane) channels with a cross section
of 30 × 24 μm2, allowed variation in the local Peclet number (Pe) from 0.01 to 50. To obtain the diffusion
coefficients, image-time series from a confocal scanning laser microscope were analyzed with a method that,
after finding particle trajectories, subtracts the instantaneous advective displacements and subsequently measures
the slopes of the mean squared displacement in the flow (x) and shear (y) directions. For dilute suspensions, the
thus obtained diffusion coefficients (Dx and Dy) are close to the free diffusion coefficient at all shear rates. In
concentrated suspensions, a clear increase with the Peclet number (for Pe > 10) is found, that is stronger for Dx

than for Dy . This effect of shear-induced collisions is counteracted by the contribution of walls, which cause a
strong local reduction in Dx and Dy .
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I. INTRODUCTION

Understanding the diffusion of colloidal particles in mi-
crochannel flows is important for both fundamental and
practical reasons. Shear flows can be strong enough to cause
anisotropy in the diffusion coefficient, which in turn can lead
to structural inhomogeneity or ordering [1–6]. Additionally,
the confining walls which are required to set up the flow
have their own influence on the particle dynamics. Especially
how the combination of the two effects works out is far from
understood as most research efforts into (anomalous) diffusion
have been focused on either the shear flow [7–18] or the wall
confinement at rest [19–27].

Fundamental studies of shear-induced diffusion at low
volume fraction (where particle interactions are generally
weak) were performed for both Brownian [28–30] and non-
Brownian [10,17,18] suspensions. Studies on dense colloidal
suspensions are scarcer. In two recent papers addressing
this regime, string formation in simple shear flow was
observed [1,2] and explained from anisotropy in the diffusion
coefficient. Possible implications hereof for directionally
dependent colloidal interactions were mentioned. Earlier, also
shear-induced migration in concentrated suspensions was ob-
served [16,31–34] and explained using anisotropic diffusion.
Stokesian dynamics simulations [35,36] have significantly
contributed to the understanding of diffusion in concentrated
systems by taking into account both the structural and the
hydrodynamic effects.

The current scarceness of investigations into shear-induced
diffusion of Brownian suspensions [1,8,28,29] could partly be
ascribed to difficulties in measuring diffusive behavior that is
superimposed onto a flow. This applies in particular to flows
at high Peclet number (Pe) where relatively small thermal
motions are superimposed onto large advective displacements.
But also the complexity of the phenomenon may have
hampered studies. Phenomena, such as anisotropic diffusion
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and structure formation have shown a rich behavior even for
simple [e.g., hard sphere (HS)] systems in well-defined (e.g.,
simple shear) flows [37,38]. Surprisingly, ordering of particles
has been observed only in oscillatory shear flow, and the
researchers [3] could not find any evidence of structuring in the
steady shear field. To what extent these phenomena could also
be influenced by gradients in shear rate is unclear at present. In
pressure-driven channel flows, the shear deformation patterns
are different than in Couette or parallel plate flows; this
might have consequences for the spatial distribution of the
particles and/or ordering in the fluid. A recent study [39] on
charged colloids in electro-osmotically induced flow showed
that the average diffusivity (in the flow direction) increases
with flow velocity in strongly interacting systems but not in
weakly interacting or dilute systems. The spatial distribution
of the diffusivity might have played a role but was not
accessible.

Confining walls are expected to play a role, especially in
narrow microscopic geometries where they occur in close
proximity to all particles. But the spatial extent of their
influence is only well known for a single particle near a
single wall in the absence of flow. Only a few studies
have been focused on diffusion in concentrated systems near
walls [20,21,23]. The interplay between the effects of the shear
and the wall on the diffusion is addressed here.

From an applied perspective, knowledge about the diffusive
behavior in flow is important to understand and design
the mixing of particles, the spreading of a liquid plug, or
the formation of concentration gradients perpendicular to the
flow direction. This applies in particular to microfluidics,
where colloids are used for various purposes. Most current
applications concern dilute systems using particles as tracers
or scavengers [40,41], but the flow of concentrated colloidal
fluids through microchannels (e.g., in filtration or after on-chip
synthesis) is emerging. Other practical scenarios where the dif-
fusive behavior of particles plays a role are drug delivery [42],
the operation of semisolid flow batteries [43], the handling of
nuclear waste [44], and stagnant or slowly moving slurries of
clay or sand particles in geological rock formations [45].
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Based on the foregoing considerations, it is clear that still a
lot of understanding needs to be gained about how the diffusive
behavior of Brownian particles is influenced by the magnitude
of the shear rate, its spatial variation, and the proximity of the
wall. In this paper, we consider the diffusion coefficient (in two
directions) of nearly hard sphere colloids in a Poiseuille-like
flow, generated by a pressure drop over a microfluidic channel.
Use of rectangular flow geometry allows considering local flow
patterns that are effectively two dimensional; the effects of the
shear and the wall can then be studied on a single plane. Due
to the lateral variation in the flow velocity, different local shear
rates are probed for a given overall flow rate. Repeating the
experiment for different pressure drops then allows to achieve
the same shear rate at different distances from the wall. This is
helpful in separating the contributions of the shear flow (i.e.,
local Peclet number) and the wall on the diffusion coefficients.
We measure the diffusive behaviors by applying particle
tracking on data that are collected with a confocal scanning
laser microscope. Although this method requires great care
to ensure that the advective displacements are adequately
removed before the diffusive ones are analyzed [46], it offers
two key advantages: (i) The measurements are directional,
i.e., both flow and shear directions are examined, and (ii)
the measurements are spatially resolved, i.e., a distinction is
made between the different flow lanes. This makes the method
particularly well suited for the study of micron-sized spheres
under (nearly) refractive index matched conditions.

As such, it is complementary to other methods: (confocal)
differential dynamic microscopy (DDM) [47–50] is able
to handle also smaller particles and less transparent fluids
but does not offer positional resolution and requires prior
knowledge of the intermediate scattering function (ISF) [48]
based on the suspension concentration. Without suitable the-
oretical models for ISF, DDM becomes difficult to implement
especially for concentrated suspensions. Alternatively, particle
image velocimetry [51,52] is more suited for measuring local
velocities but less so for diffusion and gets obscured for a
statistically inhomogeneous tracer patterns [51] or tracer flows
coupled with Brownian motion.

We study a low volume fraction (� = 0.03) to approach
the dilute limit and an intermediate concentration (� = 0.30)
to represent a typical situation for transport and mixing of
colloids that interact intensely but not strong enough to cause
ordering in the fluid. By comparing these two cases we will
inspect the contribution of interparticle collisions to shear-
induced diffusion. The scope of the addressed Peclet numbers
comprises the subrange of 0.01–50 for both concentrations and
as such is very well suited to examine both the thermally and
the hydrodynamically dominated regimes.

II. EXPERIMENTS

All experiments were performed at room temperature
(22 ± 1 °C).

A. Fluid preparation

Silica spheres with a 0.5 μm diameter core tagged with
fluorescein isothiocyanate and a 1.0 μm outer diameter (2a)
were synthesized [53,54] and suspended in water-glycerol

(1:4 by weight) mixtures. With this solvent the refractive
index of the particles is nearly matched (close enough for
confocal microscopy) whereas the viscosity η ∼ 100 ± 5 Pa s.
The fluorescence of the particles was found not to degrade even
after years of storage. Also the colloidal stability was preserved
over this period, despite the (omnipresent but weak) van der
Waals attractions. This implies that the particles carry some
weak surface charge. Inspection of suspensions with optical
microscopy did not show any evidence for long range ordering
(see Supplemental Material movie 1 [55]). This suggests that
the repulsions are only significant at short ranges (see Fig. 8
in Appendix A), and hence the particles should show a nearly
hard sphere behavior.

Volume fractions of 0.03 and 0.3 were achieved by mixing
weighed amounts. Measuring the mass density and the “dry
weight” fraction of a silica stock dispersion in pure water
and assuming no excess mixing volumes gave a mass density
of 1.89 g/ml for the silica. Using the solvent mass density
of 1.20 g/ml, we then calculated how much water-glycerol
mixture was needed to redisperse the silica present in a metered
amount of stock. Solvent transfer was then achieved by four
times repeated centrifugation and resuspension.

B. Microfluidics and microscopy

We used 2 cm long poly(dimethylsiloxane) (PDMS)
microchannels with rectangular cross sections [Fig. 1(a)].
The channel design was fabricated in SU8 by lithography,
replicated in PDMS, and bonded onto a 170 μm thick glass
coverslip. Teflon tubing (0.91 mm inner diameter) was used to
connect the inlet and outlet of the channel to elevated reservoirs
with the colloidal suspension and the solvent, respectively. To
facilitate the filling of the channel, it was first flushed with
pure solvent. Subsequently the hydrostatic pressure drop was
reversed to let the suspension flow in. After the particles had
reached the other end, the pressure difference was set to zero
and waited for 10 min to allow homogenization in the Y and
Z directions. The flow rate inside the channel was tuned by
adjusting (with submillimeter accuracy) the height difference
between the fluid columns. The lowest center line velocity
that could thus be reached was of O(0.01 μm/s). The highest

FIG. 1. (Color online) (a) Schematic of the experimental setup.
Typical (X,Y,Z) channel dimensions are 2 cm, 30, and 24 μm, and
CSLM represents a confocal scanning laser microscope. (b) Confocal
image taken at a height of 12 μm from the bottom of a suspension
at volume fraction 0.3, flowing through the channel from left to right
with a maximum velocity of 5.4 μm/s. Scale bar: 10 μm.
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explored velocity was 10 μm/s, which was still low enough
to avoid formation of a concentration peak at the channel
center [31,32]. After adjusting the pressure head (typically ten
values were explored per experiment) 1 min was given to let
the flow become steady again. Observations were made at a
distance of ∼1 cm (104 particle diameters) from the channel
inlet to avoid the entry length effect [31] and at the symmetry
plane 12 μm above the bottom to eliminate vertical shear
components.

Images [Fig. 1(b)] were obtained with an UltraView LCI10
CSLM in fluorescence mode using a 488 nm laser and a
100×/numerical aperture 1.3 oil objective giving a field of
(X,Y) view of 88 × 67 μm2 and an effective pixel size of
0.135 × 0.135 μm2. Most data were collected at a rate of 10 fps
using a Hamamatsu 12 bit CCD camera. Typically, 500 frames
were grabbed at � = 0.3 whereas it was 1500 frames at � =
0.03. Additionally, a few movies of the low volume fraction
sample were collected at the same magnification and frame
rates up to 100 fps using a Visitech Infinity-3 system equipped
with a Hamamatsu (flash 4.0) camera.

Accurate localization (along) of the X,Y plane where
the flow velocities are maximal is important for avoiding
contributions of velocity gradients in the Z direction. After
setting the pressure drop, this Z location was determined
visually by moving the objective using the piezopositioner
and judging the (changes in) flow speed. To allow a posteriori
verification, time series were recorded at different Z locations.
Our data analysis (as explained in Sec. II C) corroborated that
the velocity profile in the vertical direction had the expected
shape and that the optimal Z location was always very close to
the midplane of the channel.

C. Data analysis

To measure the velocity profile we extended publicly
available particle tracking codes [56,57] to allow accurate
measurement of diffusive motions that are superimposed
onto a flow [46]. Briefly, the flow velocity vx(y) is first
measured by dividing the Y range into bins and averaging
intrabin displacements over (many) frames. Using an iterative
scheme, subtraction of the (estimated) advective displacements
is used to improve the quality of the tracking per iteration
step. The diffusive motions are obtained from the trajectories
of the final iteration by first subtracting the instantaneous
advective displacements (this eliminates the effect of Taylor
dispersion [8,58]) subsequently calculating the mean squared
displacements (MSDs) in the x and y directions and finally
by fitting these obtained (lag-time dependent) MSDs to a
straight line in order to obtain Dx(y) and Dy(y). The measured
diffusion coefficients are short-time self-diffusion as the
involved time scale [O(10)] is much smaller than the long-time
[O(100)] measurements.

From the velocity profile vx(y), the local shear rate is de-
termined by taking the gradient: γ̇ (y) = dvx

dy
and subsequently

converted to the dimensionless Pe, defined as the ratio between
the Brownian diffusion time (τB = a2/D0) and the advective
diffusion time (τC = γ̇ −1) [31,32],

Pe = τB

τC

= a2γ̇ (y)

D0
, (1)

where a is the particle radius and D0 is its free diffusivity in
the dilute limit.

III. RESULTS AND DISCUSSION

A. Velocity profiles

The velocity profiles measured at different pressure drops
are illustrated in Fig. 2(a) for � = 0.03 and in Fig. 2(b)
for � = 0.3. They appear smooth for all concentrations and
pressure drops. The highest local velocity is 10 μm/s. Since
this produces elongated images of the particle for exposure
times of 100 ms, some additional experiments were performed
with a high-speed confocal system (Sec. II C). At the lowest
flow rate, the maximum velocity is only 0.01 μm/s. The
smoothness and near-parabolic shapes of the velocity profiles
indicate that they were accurately measured.

This is further corroborated by analyzing the mechanics
of the flow problem. For Newtonian fluids, the amplitude of
vx(y) should be proportional to �P, whereas its shape should
remain constant. The former turns out to be the case within
the measurement accuracy of the pressure drop. In Figs. 2(c)
and 2(d) we inspect the flow-rate dependence of the shape
of vx(y) by normalizing each curve via its maximum. The
changes in shape turn out to be small. Due to the way of
normalizing, the largest deviations are seen near the walls
where velocities are lowest. This is best visible for � = 0.03
[Fig. 2(c)]. However, at this volume fraction the suspension
should behave as a Newtonian liquid at all shear rates. The
deviations at low velocities might be due to (x) drift of the
microscope table, which gets incorporated in the measured
vx(y) as an offset. Usually in vibration isolated systems, a
microscope table will always show a slow motion with respect
to the objective (noise). This motion gets incorporated in the
found trajectories of the particle. In experiments without flow,
a correction for this drift is possible by tracking the center of
mass of all particles. In flow experiments, the motion contains
both the flow velocity and the table drift velocity. These two
are difficult to separate, but generally the drift is negligible:
except at very low local velocities.

In Figs. 2(c) and 2(d), also a comparison is made with
theoretical profiles for a Newtonian liquid in the given channel
geometry. Assuming no-slip boundary conditions at the walls,
the velocities can be expressed as [59]

vx(y,z) = 4h2�p

π3η0L

∞∑
n,odd

1

n3

[
1 − cosh

(
nπ

y

h

)
cosh

(
nπ w

2h

)
]

sin

(
nπ

z

h

)
,

(2)

with x, y, and z and �P as previously defined, h, w, and L as
the channel height, width, and length, and η0 as the viscosity.
The agreement between experiments and theory appears to
be good. Small deviations near the walls might be caused by
the finite size of the particles in the experiments: In reality
the particles also need to rotate to accommodate the velocity
gradient. This effect could change the flow pattern somewhat,
especially close to the walls. The Newtonian velocity profile
also appears to describe the experiments at � = 0.3 well.
In principle, flow curves of colloidal hard spheres should
show a transition from a low- to a high-shear plateau around
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FIG. 2. (Color online) Particle velocity profiles across the channel for different pressure drops. Panels (a) and (b) show the measurements
from the videos. Panels (c) and (d) show the comparison of normalized velocity profiles (black points) with theory (red lines). Particle volume
fractions are 0.03 for (a) and (c) and 0.3 for (b) and (d).

Pe ≈ 1. Measurement of the viscosity of a similar (near) hard
sphere suspension (water-glycerol mixture with 0.96 μm silica
spheres at � = 0.34) by Cheng et al. [60] for different shear
rates clearly shows the Newtonian nature of the suspension
between Pe numbers 3 and 110. Summarizing, the devia-
tions from the theoretical velocity profiles for Newtonian
fluids are modest and do not suggest that there are issues
regarding the correctness of the measured particle velocities
[61–63].

B. Diffusion coefficients

Typical MSDs obtained for an experiment at � = 0.3
are shown in Fig. 3 for both flow [Fig. 3(a)] and shear
[Fig. 3(b)] directions. The linearity of the data is good also
for the flow direction where (large) advective displacements
had to be subtracted first. Both MSDs are found to depend
on the y location; this is ascribed to the y dependence of the
local shear rate. Extrapolation of the linear fits to zero lag
time reveals that both MSDs have an offset of ≈70 nm2.
This value is close to the typical noise floor of an MSD
measurement [27] but still contributes significantly to the

magnitudes of the MSDs. Therefore Dx and Dy are calculated
from the slopes of the linear fits to the MSDs (using the Einstein
relation).

1. Influence of shear

In dilute suspensions (� = 0.03), both Dx and Dy are
practically equal to each other and almost independent of the
overall flow rate and the y location (data shown elsewhere [46])
Exceptions to this are only found in close proximity of the walls
due to the (anisotropic) hydrodynamic resistance close to the
wall. As the particles are only weakly interacting with each
other in dilute suspensions, their diffusive behavior should be
similar to that of a solitary particle at rest as well as in flow. In
contrast, for concentrated systems (� = 0.3), both Dx and Dy

do show a dependence on both overall flow rate and y location.
Representative examples are shown in Fig. 4 for a low and a
high flow rate.

Analyzing Dx(y) and Dy(y) in conjunction with the local
shear rate γ̇ (y) reveals that both diffusion coefficients are in-
fluenced by two opposing effects: (i) first of all, the diffusion is
enhanced by the local shear. At the center line y = 0 where γ̇ is
zero, Dx and Dy are equal whereas for |y| > 0 both Dx and Dy
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FIG. 3. (Color online) MSDs for a suspension at � = 0.3 for the experiment where vmax = 5.4 μm/s. Different datasets in the same panel
correspond to different locations: From bottom to top y = 4.5, 5.6, 7.5, 9.7, and 10.5 μm from the center line. This order corresponds to an
increasing local shear rate (γ̇ ). Panel (a) MSDs in flow direction (after correction for advection) and panel (b) MSDs in the velocity gradient
direction. Solid lines are linear fits to the experimental data.

show an (initial) increase. These observations can be attributed
to shear-induced collisions, which are well known to occur also
for noncolloidal fluids at high concentrations [8,15,16]. This
increase turns out to be stronger for Dx than for Dy . (ii) As
the side walls are approached, the diffusion coefficients reach
a maximum followed by a steep decrease. Considering that
the shear rate shows a continuous increase up to the point
where the wall is reached, this illustrates that the diminishing
effect that the wall has on Dx and Dy ultimately becomes
dominant.

More insight regarding shear-induced diffusion and the wall
effect can be obtained by collecting the results obtained at
different pressure drops in the same graph (see Fig. 5). Besides
a confirmation of the general trend, this also allows comparing
Dx and Dy at the same y location but different flow rates.
Clearly, both Dx and Dy increase systematically with the flow
rate for all y locations except at the center where γ̇ is zero
regardless of the velocity. This corroborates that both diffusion
coefficients are enhanced by shear (to an extent that depends
on the shear rate, or as we will see, the Peclet number).

FIG. 4. (Color online) Experimental results for a concentrated suspension (� = 0.3) (a) nearly at rest and (b) in a strong flow. Upper graph:
(black square) diffusion coefficients in the flow (x) and (red circle) shear (y) directions as a function of the lateral (y) position in the channel.
Lower graph: local velocity and shear rate in the same channel. The walls are located at y = ±15 μm. Symbols represent experimental data
whereas lines are to guide the eye.
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FIG. 5. (Color online) Diffusion coefficients in the flow (x) and shear (y) directions as a function of lateral (y) position for a suspension at
� = 0.3 studied at different flow rates. At y = 0, fluid elements are advected without any shear (irrespective of flow rates), and all the measured
Dx and Dy coincide. Maximum flow velocities (vmax): black squares:1.44 μm/s; red circles:2.24 μm/s; violet up-triangles:3.05 μm/s; blue
down-triangles: 3.89 μm/s; and green diamonds: 4.75 μm/s. Symbols represent experimental data whereas lines are to guide the eye.

To separate the contributions of the shear flow and the
wall, we utilize the fact that many different overall flow rates
were explored. As can also be seen from Figs. 2(a) and 2(b),
each curve covers a range of slopes (i.e., shear rates), and the
overlap is such that the same γ̇ can often be found in several
different curves: further away from the wall as the flow rate gets
higher. This allows making graphs of Dx and Dy vs y, under
the constraint that the shear rate is the same. Our analysis,
most significantly, revealed that (at least) for |y| � 0.7|y|max

the data at different velocities superimpose well. This finding,
which is in good agreement with the observation that peaks in
Dx(y) and Dy(y) are generally found at |y| ≈ 0.8|y|max (see
Figs. 4 and 5), has two implications. First, away from the walls,
the diffusion coefficients appear to be determined by the local
shear rate only. This makes it possible to construct master plots
for Dx and Dy as a function of γ̇ . And second, using these
master plots, it should be possible to quantify the wall effect
in the presence of shear.

We first discuss the effect of local shear alone. In Fig. 6 we
plot Dx and Dy as a function of Peclet number. To make the
plot more general, diffusion coefficients are normalized with
respect to their value in the absence of shear. Interestingly, for
the dilute system [� = 0.03, Fig. 6(a)], Dx and Dy are found to
be equal within their uncertainty ranges for all Peclet numbers.
Moreover, a clear dependence on the Peclet number is absent.
This confirms that under dilute conditions, the motion of a
particle is simply a superposition of an unimpaired Brownian
diffusion and a spatially dependent advection (in the limiting
case, all particle interactions are neglected). Qiu et al. [8],
Orihara and Takikawa [9], and Takikawa and Orihara [28],
who used an oscillating flow to study shear-induced diffusion
in a very dilute system, observed a constant diffusivity
perpendicular to the flow direction as well.

Considering the diffusivity in the flow direction, Orihara
and Takikawa [9] and Takikawa and Orihara [28] found a
strong enhancement by shear. This apparent contrast with our
results can be ascribed to the contribution of advection: Unlike
the earlier studies [9,28], we have eliminated the local affine
motions (in order to highlight the effect of shear-induced
collisions). Hence both the earlier and our present findings

show that the particle motions in flow can be understood from
a superposition.

For the concentrated system (� = 0.3), the diffusivity of
the particle increases with Peclet number [Fig. 6(b)]. This
increase applies to both Dx and Dy and becomes noticeable
for Pe > 1. A transition from a thermally to a hydrodynamically
dominated diffusion regime is indeed expected to take place
in this Pe number range. Although in this respect our findings
are not unexpected, we also like to point out that here such a
master plot for Dx and Dy is reported for Brownian (near-hard
sphere) suspensions in pressure driven flow. Apparently, the
local Peclet number provides adequate specification of the
flow, i.e., knowing it suffices to calculate its contribution to
the two diffusion coefficients. A striking observation in
Fig. 6(b) is that once the shear dominated regime is reached, the
diffusion becomes strongly anisotropic. Since all affine motion
was taken out prior to calculation of the diffusion coefficients,
this trend indicates that that the shear-induced collisions have
a clear directionality. Superposition of diffusion coefficients
(Fig. 6) from different experiments where the data points
correspond to different shear gradients but the same Pe number
suggests that the gradients in the shear rate are not very
important for shear-induced diffusion.

It is interesting to compare our results to earlier findings.
Cheng et al. [1] studied a similar fluid in a plate-plate geometry
and found shear enhancement of the diffusion in the velocity
and vorticity directions. Remarkably, they used a power law
with an exponent of 0.81 to describe the lag-time dependence
of the x-MSD, whereas we found a linear behavior. Consid-
ering the effects of spatial confinement [27] on MSD, this
difference might be due to the stronger confinement (three to
ten particle diameters) in their system. In an early study using
Stokesian dynamics, Bossis and Brady [13] observed a reduc-
tion of short-time self-diffusion coefficients with increasing
shear. This opposing trend might be related to the fact that
they considered a monolayer of colloids. The enhancement
of the y-diffusion coefficient as we found appears in good
agreement with the shear-induced migration of particles from
the wall to the channel center found by other researchers for
concentrated suspensions at high Peclet numbers [31,32].
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FIG. 6. (Color online) Short-time self-diffusion coefficients in the flow (x) and velocity gradient (y) directions as a function of Pe. (a) At
� = 0.03, diffusion is isotropic and independent of Pe number. (b) At � = 0.3, the diffusion coefficient is isotropic up to Pe ≈ 5, after which
it increases with Pe. Beyond Pe = 10, diffusion becomes strongly anisotropic. Red points (circle) are for Dy , and black points (square) are for
Dx . Blue dashed lines indicate the diffusion coefficient at Pe = 0.

2. Combined influence of wall and shear

Given the master curves for Dx and Dy as a function of the
Pe, it is possible to make a quantification of the contribution
of the wall �Dx and �Dy for different shear rates. We remark
that in the presence of (strong) flow, the calculated effects are
less accurate than the data presented in Figs. 5 and 6 because
the diffusion coefficients become rather small close to the wall
and because more data processing steps (see Appendix B)
were needed to arrive at the results. Nevertheless they should
still be interesting since they indicate trends that have never
been measured. From the master plots (Fig. 6), we extrapolated
diffusion coefficients at all shear rates including near the wall.
Measuring the difference between extrapolated and observed
data for all experiments, we quantified the wall influence on
diffusivity.

To assess the accuracy, we first consider the experiment
at low volume fraction (0.03). Here the particles can be
reasonably approximated as isolated species whereas the
effect of shear is negligible. This renders a comparison of
the measured Dx and Dy with the theoretical expressions
meaningful. Approximatively, the reduction in diffusivity
relative to the free diffusion coefficient D0 can be expressed
as

β−1
x = Dx

D0

∼= 1 − 9

16

(
a

�y

)
+ O

(
a

�y

)3

(3)

for diffusion parallel to the wall [64–66], and

βy = Dy

D0

∼= 6 �y2 + 2a �y

6 �y2 + 9a �y + 2a2
, (4)

in the perpendicular direction [67]. Here a is the particle
radius whereas �y is the distance between the particle center
and the wall (note that �y � 0.5). Defining �Dx(�y) as
[1 − D0−Dx (�y)

D0
] and similarly for �Dy(�y) allows com-

parison of the experimental data with Eqs. (3) and (4).
The agreement between solid lines and black symbols in
Figs. 7(a) and 7(c) turns out to be fairly good; it is the noise
in the experimental data which precludes a more accurate
comparison.

In the presence of shear flow, we define �Dx as Dx(�y)
−Dx(Pe) where the latter term is interpolated from the master
curve (Fig. 6) after looking up the Peclet number at �y.
A detailed description of the procedure can be found in
Appendix B. Figure 7 shows �Dx(�y) and �Dy(�y) as a
function of normalized distance (�y/d) at rest and in flow
for � = 0.03 [panels (a) and (c)] and � = 0.3 [panels (b)
and (d)]. It is suggested by all graphs that, after correcting for
the direct effect of shear flow, the remaining deviation in the
diffusion coefficient is mainly due to the wall. In other words:
Indirect effects of the shear flow (e.g., via a change in the local
structure) are weak as compared to the local wall effect. This
could be expected for � = 0.03 but also appears to be the case
for � = 0.3.

Two additional remarks can be made: (i) For � = 0.3, Dx is
less suppressed by the wall as compared to �= 0.03 [Figs. 7(a)
and 7(b)], and (ii) the typical length scale over which Dx

and Dy are influenced by the wall appears to be smaller
for the concentrated fluid. This “increased hydrodynamic
screening” is in line with earlier experimental and theoretical
measurements [23,68].

IV. CONCLUSIONS

We studied the shear-induced diffusion of dilute and
concentrated Brownian near-hard sphere suspensions flowing
through microchannels. Direct measurements of such diffusion
coefficients in flow are scarce, and our results complement the
existing literature. Our measurements indicate that the local
Peclet number provides an adequate characterization of the
effect of flow on diffusion (except close to the walls). Diffusion
coefficients in the flow and velocity-gradient directions show
different dependences on Pe for dilute and concentrated
systems. At low volume fraction, both coefficients are equal
and practically independent of the shear rate, in line with
the definition. At high volume fraction, isotropic Brownian
diffusion dominates at low Peclet numbers (Pe <1) whereas for
Pe � 1 both diffusion coefficients grow due to shear-induced
particle collisions. For Pe > 10 the diffusion becomes strongly
anisotropic. Close to the wall, a strong reduction in diffusivity
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FIG. 7. (Color online) Change in normalized diffusion coefficients as a function of normalized distance (�y/d) from the wall. d (= 2a) is
the particle diameter. Symbols show the experimental data, and solid and dotted lines are the analytical solutions [Eqs. (3) and (4)] whereas
dashed lines indicate the free diffusion coefficient. Left panels (a) and (c) show the data for � = 0.03. Maximum flow speed (vmax): black
square: 0.16 μm/s; red circle: 5.4 μm/s; and green down-triangles: 10.6 μm/s. Right panels (b) and (d) show the data for � = 0.3. Here the
dotted lines are plotted just to visualize the difference with the experimental data for � = 0.03. vmax: black square: 0.13 μm/s; red circle:
0.80 μm/s; and green down-triangles 4.0 μm/s.

is observed for all concentrations and shear rates, indicating
that as the wall is approached, the effect of the wall dominates
over the effect of shear. We did not obtain evidence for a strong
coupling between the wall and the shear effects.
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APPENDIX A

We measured the pair potential (Fig. 8) of silica spheres
(diameter = 1 μm) in water-glycerol mixtures by approx-
imately measuring the two-dimensional radial distribution
function [g(r)] [69]. The potential falls steeply to (near) zero
within ≈50 nm. This distance seems comparable to other
near-HS systems.

APPENDIX B

For a neutrally buoyant particle in Newtonian liquid,
the effective diffusion (Deff) is equivalent to the Brownian

FIG. 8. (Color online) Pair potential normalized by kT (blue
circles) of silica spheres (d = 1 μm; diameter) in water-glycerol
solvent. r is the distance between two particle centers. � = 0.03.

052305-8



EFFECTS OF SHEAR AND WALLS ON THE DIFFUSION . . . PHYSICAL REVIEW E 91, 052305 (2015)

diffusion (DB),

Deff = DB, (B1)

Deff

DB
= 1. (B2)

In the presence of a flat wall, the effective diffusion coefficient
reduces due to wall influence,

Deff =DB+Dw (Dw indicates the influence of the wall only),

(B3)

Deff

DB
= 1 + Dw

DB
. (B4)

This is same as Brenner’s prediction [64–68]. Now we assume
that the shear effect acts additively with the wall effect and
hence shear-induced diffusivity (Deff

sh ) can be expressed as

Deff
sh = DB + Dw + Dsh (Dsh indicates the shear effect only) ,

(B5)

Deff
sh

DB
= 1 + Dw

DB
+ Dsh

DB
. (B6)

The master curve is constructed considering the data points
free from the strong wall effect. So the extrapolated diffusivity
(Dextra

m ) from the master curve contains only the shear term

which can be formulated in the following way:

Dextra
m = DB + Dsh, (B7)

Dextra
m

DB
= 1 + Dsh

DB
. (B8)

Now, if we subtract the observed diffusivity in shear (Deff
sh )

from the extrapolated diffusivity, we will end up with having
the wall effect only, and the relation becomes

Dextra
m − Deff

sh = (DB + Dsh) − (DB + Dw + Dsh) = −Dw,

(B9)

Dextra
m − Deff

sh

DB
= − Dw

DB
. (B10)

If we compare this with Brenner’s prediction [comparing
Eq. (B9) with Eq. (B4)], then the relation becomes

DBrenner = Deff

DB
= 1 + Dw

DB
= 1 − Dextra

m − Deff
sh

DB
. (B11)

The general normalized form can be represented as

�Di = 1 − Dm,i − Di

DPe=0
, i = x,y, (B12)

where Dm,i is the extrapolated diffusivity from the master
curve. So, for dilute concentration, the wall effect on diffusivity
at rest as well as in flow can be compared with an analytical
solution [64–67].
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