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Self-assembly of active colloidal molecules with dynamic function
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Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals
and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically
coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity
decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and
ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature
of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions
when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with
time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern
of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows
that catalytically active colloids could be used for designing self-assembled structures that possess dynamical
functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the
design principle of proteins.
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I. INTRODUCTION

It is fascinating to learn how nature exploits sophisticated
mechanisms to keep time [1], since having a system with
temporal structure such as spontaneous oscillations in an
overdamped inertialess world is far from trivial. Oscillators
are ubiquitous in biology [2], and they often play a vital
role, such as the example of mitotic spindle oscillations that
regulate the key function of chromosome separation during cell
division [3]. Oscillatory behavior typically arises through co-
ordination of many stochastic components [4] and could have
remarkable characteristics, such as self-tuning to criticality
in the case of hair bundles [5–7]. Another notable example
of temporal structure is the run-and-tumble behavior in the
swimming pattern of micro-organisms: The trajectories have
relatively long run segments that are intercalated with burstlike
tumble events when the orientation of the swimming micro-
organism is completely randomized [8]. This behavior has
been extensively studied for many bacteria that are propelled
by rotary motors and stiff flagella but has also been observed
for eukaryotic algae that swim via synchronized beating of
flexible flagella [9,10]. For Escherichia coli, the coupling
between a highly sensitive chemotactic circuitry and the
motility mechanism has been unraveled to exquisite detail [11].

It will be desirable to make artificial microscopic devices
with autonomous dynamic functionality, such as those de-
scribed above, through self-assembly of nanoscale building
blocks, as is the case with the biological examples. Since the
turn of the century, there have been numerous manifestations
of synthetic devices with mechanical functionality using a
number of different approaches, including self-assembled
DNA nanostructures [12,13], actuators that are triggered by
global oscillatory chemical reactions [14,15], and magneti-
cally actuated artificial microswimmers [16,17] and artificial
cilia [18–20]. A particular class of such active systems [21] that
uses long-range phoretic interactions [22,23] has been shown

to lead to the emergence of collective activities including
pattern formation and spontaneous oscillations [24,25], as well
as swarming [26], in the case of homogenous solutions. In
heterogenous mixtures, chemotactic interactions could lead
to spontaneous formation (self-assembly) of active colloidal
molecules with nonequilibrium activity or function that is
determined by their stable 3D structure; a notion that follows
the design principle of proteins [27].

The model for self-assembled active molecules presented
in Ref. [27] was used to demonstrate the formation of low-
weight colloidal molecules that exhibit different types of static
activity, namely translational and rotational self-propulsion.
The type of activity depends on the global parameters and
the number of colloids that composed each assembly. Here
we show that the model allows for the self-assembly of
colloidal molecules that adopt time-dependent configurations,
increasing the possible states that active matter can manifest.
Specifically, we show that a molecule can switch spon-
taneously between active and passive states, mimicking a
behavior that resembles that of bacteria in their run-and-tumble
motion. Also, we show that colloidal molecules can sustain
spontaneous oscillations with frequencies that can be tuned by
the global parameters and hence act as microscopic clocks.

II. THE MODEL

We consider a suspension of spherical colloidal particles
that have a catalyst coating on their surfaces, in a solution of
reactants that are catalytically converted into products at the
surfaces of the colloids. We choose a mixture of particles with
uniform coating and, for simplicity, use a model in which the
catalytic activities of the colloids are simplified into net pro-
duction or consumption of chemicals with given rates, which
we denote as surface activity [28–32]. An isolated colloid with
surface activity α, which is positive (negative) when the net
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activity amounts to production (consumption) of chemicals,
will produce a stationary spherically symmetric concentration
profile C around it given by C = C0 + ασ 2/(4Dr), where σ

is the diameter of the colloid, D is the (nominal) diffusion
coefficient of the chemicals, r is the distance to the center of
the colloid, and C0 is a reference concentration at infinity.

In presence of a concentration gradient a coated particle will
move with a velocity equal to V = − μ

πσ 2

∫
dS ∇‖C, where μ

is the phoretic mobility, which itself depends on the molecular
interactions between the coated surface and the dissolved
chemical. As in the case of α, this coefficient, too, can be
both positive and negative. Due to these phoretic effects, if
two or more colloidal particles are placed close to each other,
then they will acquire drift velocities that can be regarded
as effective nonequilibrium interactions. Remarkably, these
interaction are asymmetric as the gradient each particle creates
is controlled by its α, whereas its response the gradient
created by others is controlled by μ; two independent material
parameters. More explicitly, the drift velocity of particle 2
due to the activity of particle 1 will be proportional to α1μ2,
whereas the drift velocity of particle 1 due to the activity of
particle 2 will be proportional to α2μ1. When the effective
interactions between the particles are not symmetric, the
system cannot reach an equilibrium state because the condition
of detailed balance will not be fulfilled. This can manifest itself
in the form of frustration that leads to nonequilibrium fluxes.
For example, if α1 > 0 and μ1 > 0, while α2 > 0 and μ2 < 0,
1 will be repelled by 2 but 2 will be attracted by 1. In a mixture,
we generically have α1μ2 �= α1μ2 and, hence, nonequilibrium
colloidal activity. For dissimilar colloids, the condition of
detailed balance can be satisfied only by fine-tuning.

We assume that the solute concentration profile relaxes very
quickly to a comoving cloud when a colloidal particle moves.
This assumption is justified because the Brownian diffusivity
of the colloid, which we denote as Dc, is much smaller than D,
and the time scale for the relaxation of the solute cloud around
a colloid σ 2/D [33] that moves with a translational velocity
V is much smaller than the characteristic time scale of its
translation σ/V (as estimated from the values of the velocities
in Refs. [23] and [34]). That is, the Péclet number Pe = V σ/D

is small. Therefore, we can ignore the effect of advection,
which at finite Péclet numbers will distort this cloud [35], as
well as the possibility of spontaneous symmetry breaking at
large Péclet numbers [36]. Finally, we do not consider the
anomalous superdiffusion at relatively short time scales [33].

In the far-field approximation the drift velocity of particle
2 due to the activity of particle 1 is equal to

V2 = − μ2

πσ 2

∫
dS ∇‖

(
α1σ

2

4Dr

)
= α1μ2σ

2

24πD

r12

|r12|3 , (1)

where r12 = r2 − r1. The effective interaction is similar to
unscreened electrostatic interaction between charged colloidal
particles in a fluid. Hence, we can regard the two parameters
as generalized charges: α is responsible for the production
of the field and μ controls the response to the field. When
we are not in the far-field limit, the concentration profile
should be calculated by solving the diffusion equation with
the appropriate boundary conditions, and the resulting drift
velocities will be modified in the near-field region and in

general will not be pairwise additive. However, these many-
body and proximity effects will only quantitatively change
the predictions that emerge from an analysis based on the
calculation of the interactions in the far-field limit, where it
is pairwise additive, and not affect the qualitative features.
In particular, those effects preserve the main property of
the colloidal interactions, namely the asymmetry of action
versus reaction. This is because the asymmetry is due to the
fundamental difference in the nature of the two types of charges
and will be present at any level of multipoles for each of
them when we perform a multipole expansion. The far-field
approximation of the Coulomb interactions augmented with
short-range steric repulsion between the particles make the
basis of the highly successful and widely used restricted
primitive model (RPM) for charged colloids [37]. Here we
adapt this model to our nonequilibrium generalized Coulomb-
like system with the aim of exploring novel phenomena that
can take place in active matter.

We thus perform a Brownian dynamics simulation of
active colloidal particles by solving the following stochastic
equations:

dri

dt
= V0

∑
k �=i

α̃kμ̃i

σ 2rki

|rki |3 +
∑
k �=i

Uik + ξ i(t), (2)

where ξ is a random velocity represented by white noise of
intensity 2Dc with Dc being the (passive) diffusion coefficient
of the colloidal particles and Uik = −Uki is the steric repulsion
term that prevents particles from overlapping. Using α0

and μ0 as characteristic values for the surface parameters,
we have made the surface activity and mobility parameters
dimensionless by defining α̃ = α/α0 and μ̃ = μ/μ0. This
gives us an overall velocity scale of V0 = α0μ0

24πD
and the

dimensionless noise intensity of D̃c = Dc/V0σ , which we
regard also as a dimensionless temperature. For simplicity, the
interactions are computed assuming that the solute molecules
could diffuse in three dimensions (with the effective potential
decaying as 1/r) but the colloids are restricted to move in two
dimensions. To simulate the excluded volume term, we follow
the strategy devised in Ref. [38]. We advance the system in
time steps of δt = 0.001σ/V0 and, at each time step, compute
the drift velocity for each particle by summing all pairwise
interactions. The particles are then advanced using a forward
Euler scheme that adds the corresponding noise term. At this
stage, we identify pairs of overlapping particles and reflect
them, in order, by the same distance that they overlap. We
repeat the procedure until there are no remaining overlaps.

For simplicity, we have not included hydrodynamic interac-
tions between colloids. Since they respect the action-reaction
symmetry, we expect them not to alter the picture in a
fundamental way. To estimate their quantitative contributions,
we consider a number of illustrative limiting cases. For
spherical particles that do not belong to sterically stabilized
clusters, the hydrodynamic flow field decays as 1/r3 in the
far-field limit [39] and is thus sub-dominant as compared
to phoretically generated drift velocities. Particles that do
belong to clusters that are stabilized by steric interactions
experience net forces that act to stall them within the local
comoving frame of the cluster. These forces will generate
force-multipole flow fields in the far field. For example, a
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doublet stabilized by two opposing (and equal-strength) steric
forces will generate a force-dipole flow field that decays
as 1/r2 [40]. Since the force needs to balance the phoretic
drift, its magnitude will be proportional to V0, and the force-
dipole flow field will be proportional to V0σ

2/r2, which is
identical in form to the phoretically generate drift velocity that
will be experienced by other colloids. Consequently, such a
hydrodynamic interaction will only modify the prefactor of
the drift velocity and hence lead to order unity corrections in
the scale. In the near field, the hydrodynamic interactions will
modify the colloid drift velocities due to lubrication effects,
e.g., by maintaining a nonzero gap between attracting colloids,
changing only quantitatively the predictions made using this
simplified model. The near-field hydrodynamic interaction
will also modify the kinetic rate of cluster formation, as
discussed, e.g., in the context of passive colloidal clusters
in external shear flow [41]. Hydrodynamic interactions can
affect the stability of already formed clusters [42]. Again,
we can argue that the contributions from the hydrodynamic
interactions will be of similar form to the attractive drift
velocities that drive the formation of clusters in the first
place. Hence, their presence will shift the balance between
the competing terms in a way that will amount to effectively
renormalizing the coefficients.

In what follows we consider a binary mixture, with both
species—labeled A and B—having the same diameters but
different charges. We explore the case in which A and
B particles are mutually attracted (although with different
intensities), while identical particles repel each other. The char-
acteristic values α0 and μ0 are chosen such that for B particles
α̃B = μ̃B = −1 and μ̃A � 0. Without loss of generality, we
choose α̃A � 1 (the opposite case is obtained by exchanging
the role of A and B particles). Our study corresponds to
low-volume fractions and therefore the consumption of the
reactant takes place at a small rate. It is therefore a good
approximation to consider the concentration as being constant
over the observation time of our simulations.

III. OSCILLATORY INSTABILITY

The absence of action-reaction symmetry in the effective
interaction between colloids implies that the system does not
necessarily evolve toward minima of effective nonequilibrium
free energies: It is, in principle, possible to have residual
dynamics in the long-time limit, e.g., in the form of limit
cycles. The limit cycles will be asymptotic time-dependent
stable solutions where the system may be trapped (despite the
Brownian noise) until large perturbations occur, possibly in
the form of collisions of active molecule with other molecules
in the present case.

We are interested in finding low-weight molecules that can
sustain stable oscillatory motion. To isolate the oscillation
from other kinds of activity, we consider molecules with
polar and plane-reflection symmetries to avoid occurrence of
translational and rotational self-propulsion. Figure 1 presents a
sample configuration of the molecule with the aforementioned
symmetry, which we will consider. As A and B colloids mu-
tually attract, they will remain in contact if the noise intensity
is small. Therefore, although simulations are performed with
full dynamics, we can introduce a further simplification for

r
r1

r2

0

rcm

FIG. 1. (Color online) Configuration of a molecule with polar
and plane-reflection symmetries, where the colloids are free to move
with respect to one another subject to the constraint that A (orange,
light gray) and B (blue, dark gray) colloids remain in contact. It has
NA = 4 and NB = 8 colloids and there are 10 degrees of freedom.
The oscillations of this molecule are characterized by the parameter
χ = ([r1 − r2] × [rc.m. − r0]) · ẑ, where rc.m. is the position of the
center of mass, r1/2 are the positions of the two extreme particles, and
r0 = (r1 + r2)/2, as labeled in the figure.

the purpose of performing the analysis and consider the case
where the particles are restricted to remain in contact and
use d’Alembert’s principle to derive the dynamics of the
remaining coordinates (see Appendix). To parametrize the
motion of this molecule we chose the following generalized
coordinates: The x and y coordinates of the leftmost colloid
and all the angles that give the position of the colloids relative
to the previous one, going from left to right, always preserving
the condition that A and B colloids are in contact. The equa-
tions of motion that result after using d’Alembert’s principle
are first solved to find the equilibrium configuration (regardless
of it stability). Then the equations are linearized around
equilibrium, which are analyzed to find relaxation modes
with exponential time dependence eV0λt/σ . The dimensionless
eigenvalues λ depend on the values of the charges, and we
find that a Hopf bifurcation can take place. Figure 2 presents
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FIG. 2. Real and imaginary parts of the dimensionless eigen-
values λ of the linearized motion of the A4B8 molecule (shown in
Fig. 1) for α̃A = 1.5 and μ̃A = 0.7, where two complex conjugate
eigenvalues cross the imaginary axis, with imaginary parts of ±0.127.
Only the region close to the imaginary axis is shown. Not shown are
the three remaining eigenvalues, which are real and negative. The
null eigenvalue has degeneracy three. Increasing α̃A or decreasing
μ̃A moves the two critical eigenvalues to the positive real region,
inducing an instability that is saturated with nonlinear terms leading
to the development of a limit cycle at the Hopf bifurcation.
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FIG. 3. (Color online) Configurations of the A4B8 molecule [A
colloids in orange (light gray) and B colloids in blue (dark gray)]
that undergoes oscillatory motion at different phases of the cycle,
with α̃A = 1.5 and μ̃A = 0.6. The full motion is presented in the
Supplemental Material [43].

the eigenvalues at the bifurcation, where a pair of complex
eigenvalues cross the imaginary axis and acquire positive
real parts. There are three null eigenvalues associated to the
translational and rotational symmetries. At the bifurcation
all other eigenvalues are negative, corresponding to damped
motion. Consequently, as it is generically the case, in the
neighborhood of the Hopf bifurcation the stable fixed point
associated with the straight molecule gives birth to a small
stable limit cycle. The limit cycle corresponds to a bending
oscillation of the molecule, which, in turn, generates a periodic
oscillation of the center of mass in the transverse direction.
No rotation is obtained and the net translation in one cycle
vanishes. Figure 3 displays the configurations at different
phases of the cycle and the full motion is presented in the
Supplemental Material [43]. The period of the oscillation is
given by the imaginary part of the two critical eigenvalues and
the amplitude of the oscillation increases with the distance to
the critical point. A movie of the self-assembly process that
leads to the formation of the A4B8 molecule from an initial
random dispersion of colloids is presented in the Supplemental
Material [43].

The quality of the microscopic oscillator can be studied
by analyzing the temporal evolution of a simple observable.
We define χ = ([r1 − r2] × [rc.m. − (r1 + r2)/2]) · ẑ, where
rc.m. is the position of the center of mass and r1/2 are the
positions of the two extreme particles (see Fig. 1). This
observable measures the instantaneous deformation of the
cluster from the linear configuration, while being rotationally
and translationally invariant. Figure 4 (top) presents the typical
time evolution of χ and its power spectrum for different noise
intensities. There is a clear peak at ω ≈ 0.13V0/σ , consistent
with the frequency predicted by the eigenvalue analysis
(Fig. 2). There is a second peak, which corresponds to the
third harmonic (there is no second harmonic by symmetry). As
expected, the width of the central peak decreases by decreasing
the noise intensity. At D̃c = 5 × 10−5 the frequency is ω =
(0.1326 ± 0.0002)V0/σ , whereas for noise intensities larger
than D̃c = 2.5 × 10−3, the fluctuations become large and
break the cluster, which no longer oscillates. The oscillations
also become sharper by moving away from the transition, as
is shown in Fig. 4 (bottom), where the power spectrum peak
increases by increasing μ̃A.
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FIG. 4. (Color online) Top: Power spectrum density (PSD) of χ

in arbitrary units for α̃A = 1.5 and μ̃A = 0.6 and corresponding to
D̃c = 5 × 10−5 (red, light gray), D̃c = 5 × 10−4 (black), and D̃c =
2.5 × 10−3 (blue, dark gray). Inset: Temporal evolution of χ , which
measures the instantaneous deformation of the cluster, for μ̃A = 0.6
and D̃c = 5 × 10−4. Bottom: Power spectrum density of χ in arbitrary
units for α̃A = 1.5 and D̃c = 10−3 and corresponding to μ̃A = 0.7
(red, light gray), μ̃A = 0.6 (black), and μ̃A = 0.5 (blue, dark gray).

The colloidal oscillator A4B8 is the smallest molecule we
found where the first eigenvalues that cross the imaginary axis
are a complex conjugate pair. For smaller molecules with the
same structure, the first eigenvalue to cross the imaginary axis
is an isolated real value, producing a stationary instability
instead of an oscillatory one. It is nevertheless possible that
other smaller molecules with other structures or with more
components may present an oscillatory instability. We also
note that at equilibrium (̃αA = μ̃A) the matrix associated with
the linear dynamics is real and symmetric and therefore all
eigenvalues are real, and hence oscillations will not be possible
as expected.

IV. RUN-AND-TUMBLE MOTION

An alternative way to exhibit dynamic structure is obtained
in molecules that could acquire more than one stable configu-
ration, dynamically switching between them. A good example
of this behavior is demonstrated with the AB3 molecule. In
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FIG. 5. (Color online) Parametrization of the AB3 molecule [A
colloids in orange (light gray) and B colloids in blue (dark gray)].
The angle between the normal vector n̂1 and the x axis is given by ϕ,
whereas φ2 and φ3 measure the opening angle between consecutive
B colloids.

a wide range of parameters, this molecule is stabilized with
the A colloid located at the center and the three B colloids
maintaining contact with A and otherwise free to move in
the angular direction as sketched in Fig. 5. Depending on the
parameters, the B colloids can adopt symmetric or asymmetric
configurations resulting in isomers than can self-propel or
remain Brownian. As in the case of the oscillatory instability,
for the purpose of analyzing the possible configurations, their
stability, and the transitions among these configurations, we
consider the case where the temperature is sufficiently low
such that we can restrict the dynamics by imposing that
the B colloids always remain in contact with A (i.e., no
fluctuations occur in the relative A − B distances). Under
this approximation, the equations of motion for each colloid
(without the noise terms) are

VA = (V0μ̃A − U1)n̂1 + (V0μ̃A − U2)n̂2 + (V0μ̃A − U3)n̂3

VB1 =−(V0α̃A − U1)n̂1 + V0
n̂1 − n̂2

|n̂1 − n̂2|3 + V0
n̂1 − n̂3

|n̂1 − n̂3|3

VB2 =−(V0α̃A − U2)n̂2 + V0
n̂2 − n̂3

|n̂2 − n̂3|3 + V0
n̂2 − n̂1

|n̂2 − n̂1|3

VB3 =−(V0α̃A − U3)n̂3 + V0
n̂3 − n̂1

|n̂3 − n̂1|3 + V0
n̂3 − n̂2

|n̂3 − n̂2|3 ,

where the normal vectors n̂i are defined in Fig. 5 and Ui

are the magnitude of the constraint velocities, which will be
eliminated using d’Alembert’s principle.

The motion of the center of mass of the molecule can be
readily obtained as

V = 1
4 (VA + VB1 + VB2 + VB3)

= (μ̃A − α̃A)(n̂1 + n̂2 + n̂3), (3)

where it transpires that the molecule propels only under
nonequilibrium conditions (̃αA �= μ̃A) and when the confor-
mation is not symmetric (n̂1 + n̂2 + n̂3 �= 0). We now study
under which conditions the configuration is not symmetric.

To derive the motion of the molecule, we apply
d’Alembert’s principle (see Appendix), considering the fol-
lowing generalized coordinates for the relevant degrees of
freedom: the x and y coordinates of the central A colloid
and the three angles ϕ, φ2, and φ3 defined in Fig. 5. The angle
ϕ is cyclic, due to the rotational invariance, implying the con-
servation law ϕ̇1 + ϕ̇2 + ϕ̇3 + ẏ(cos ϕ1 + cos ϕ2 + cos ϕ3) −
ẏ(sin ϕ1 + sin ϕ2 + sin ϕ3) = 0, where ϕ1 = ϕ, ϕ2 = ϕ + φ2,
and ϕ3 = ϕ + φ2 + φ3 give the orientation of the three B

colloids with respect to the x axis. The remaining equations
of motion can be reduced to two coupled equations for φ2

and φ3, the bond angles of the molecule: φ̇2 = ω2(φ2,φ3)
and φ̇3 = ω3(φ2,φ3). The expressions for ω2 and ω3 are
straightforward to obtain but are quite involved and we do not
show them explicitly. Figure 6 presents the phase portrait in the
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FIG. 6. (Color online) Phase portrait in the φ2 − φ3 space in the
physical domain (φ2 + φ3 � 2π ). The phoretic charges are μ̃A = 1
(top left), μ̃A = 0 (top right), and μ̃A = 1/2 (bottom), while α̃A = 2
in the three cases. Stable fixed points are shown in green (light gray)
and saddle points in red (dark gray). The diagonal solid lines indicate
configurations with two equal angles. The stable configurations that
correspond to the Y and T isomers are indicated by arrows.
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φ2 − φ3 space where different fixed points appear depending
on the values of the phoretic charge μ̃A, while keeping α̃A

fixed (a similar picture is obtained by varying α̃A and fixing
μ̃A). In Fig. 6 (top left), there is only one stable fixed point
corresponding to the symmetric Y isomer (φ2 = φ3 = 2π/3),
which does not self-propel. In Fig. 6 (top right), a second stable
equilibrium with triple degeneration appears, corresponding to
the asymmetric T isomer, which self-propels in the direction
indicated by the double arrow in Fig. 6 (bottom). Finally,
Fig. 6 (bottom) presents the case of bistability between the
two isomers for an intermediate value of μ̃A. The bifurcation
between these phases occurs via the collision of the stable
fixed points with the saddle points.

To analyze the transitions between these states in the
presence of noise we make a further simplification by noting
that both the stable fixed points and the saddle points lie on
the lines where the molecule is partially symmetric, with two
bond angles being equal. Therefore, we consider the reduced
dynamics of a single variable φ = φ2 = φ3, which is governed
by the following equation:

φ̇ = ω(φ) + ξ = −(̃αA − μ̃A)
(2 cos φ + 1) sin φ

3 + cos 2φ

+ cos φ/ sin2 φ + √
2 sin φ/(1 − cos φ)3/2

(3 + cos 2φ)
+ ξ, (4)

where ξ is the resulting white noise after applying
d’Alembert’s method, with intensity 2Dc/(2 − sin φ2)σ 2. The
corresponding Fokker-Planck equation (using Stratonovic
convention [44]) is

∂P

∂t
= ∂

∂φ

[
− ω(φ)P + Dc/σ

2√
2 − sin φ2

∂

∂φ

(
P√

2 − sin φ2

)]
.

(5)

The resulting stationary distributions that is obtained by
solving Eq. (5) will depend on ω the Dc. However, in the
low-noise limit, the distributions are peaked around the stable
points, which we can obtain from ω only. We find that in
the range 0 � μ̃A < 0.0754 there is only one stable point at a
value of φ which is < 2π/3 and corresponds to the T isomer. In
the range 0.0754 � μ̃A < 0.5962 two stable equilibria exist,
corresponding to the coexistence of the T and Y isomers.
Finally, in the range 0.5962 � μ̃A the only stable point is
φ = 2π/3, namely the Y isomer.

In the bistable region, the molecule can exist in the two
isomeric configurations, making transitions between them due
to noise. The dynamics is similar to the run-and-tumble motion
performed by swimming bacteria as there is an alternation
between run periods performed by the T isomer that are
followed by near pauses during which the molecule acquires
the Y isomer and undergoes rotational diffusion only, leading
to the start of a new run phase with a random orientation.
Here the new orientation is decided by two complementary
processes. First, in the Y-isomer configuration, there is the
rotational diffusion of the cyclic variable ϕ. Second, when
the molecule transits to the a new T isomer, it can adopt any
of the three degenerate configurations. When the rotational
diffusion component is small, tumbling occurs to three possible
discrete new orientations, which is in contrast to bacteria that
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FIG. 7. Top: Trajectory of the center of mass showing the run-
and-tumble motion of an AB3 molecule for α̃A = 2, μ̃A = 0.48, and
D̃c = 2.5 × 10−3. The open and closed circles indicate the beginning
and the end of the trajectory, respectively. Bottom: Coarse-grained
speed of the center of mass for the trajectory in the top panel. The
dashed line indicates the threshold used to discriminate the run and
the tumble phases. Five runs and four tumbles are identified as seen
in the top panel.

tumble with a continuous distribution of angles [8]. A sample
trajectory of the center of mass is shown in Fig. 7 (top) where
the run-and-tumble motion is evident, and a video of this
motion is presented in the Supplemental Material [43]. The two
phases can be discriminated by looking at the coarse-grained
speed, which adopts values in the vicinity of 0.6V0 during the
run phase while it is close to zero in the tumble phase [Fig. 7
(bottom)].

We have calculated the duration of these phases in the
bistable region using the Brownian dynamics simulation by
imposing a threshold value on the coarse-grained speed [as
shown in Fig. 7 (bottom)]. The average times are presented
in Fig. 8. The residence times in the run-and-tumble phases
exhibit an exponential dependence on the value of μ̃A,
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(open symbols) phases as a function of μ̃A for fixed α̃A = 2. The
noise intensities are D̃c = 0.003 (squares) and D̃c = 0.005 (circles).

while they increase by reducing the noise intensity. There
is a crossover at μ̃A ≈ 0.51 where both phases have similar
durations. These behaviors are consistent with what we expect
from Kramers’s first-passage time theory [45].

V. CONCLUDING REMARKS

We have shown that active colloidal molecules can develop
rich dynamical structures, e.g., by having multiple stable fixed
points or limit cycles in the space of their conformations. A
key ingredient for obtaining these dynamical states is that the
colloidal molecules are not rigidly assembled; since they are
self-assembled, they are flexible and have internal degrees of
freedom that can be active in the same manner as the global
translation or rotation modes.

While we focused on the simplest examples that exhibit
temporal structure, we expect more complex temporal patterns
of behavior to appear for larger and more complex molecules.
An exemplar movie is presented in the Supplemental Material
where random self-assembly leads to the formation of a
sufficiently large oscillator that can break time-reversal sym-
metry and self-propel as a whole while beating its oscillatory
tail, exhibiting a pattern of motion that is reminiscent of
swimming spermatozoa [43]. Further work is needed to study
the full range of possible structures that can be achieved via
nonequilibrium self-assembly of catalytically active colloids.

The simple model used for the active colloids serves
as a proof of concept for self-assembly of molecules with
dynamic function, namely micro-oscillators and run-and-
tumble motion. The model is equivalent to a nonequilibrium
generalization of the RPM for charged colloids, which makes
several simplifying assumptions. RPM has been extremely
successful over a period of many decades and has been key to
understanding the physics of colloidal systems. This is because
those simplifications made it possible to explore the phase
space and identify interesting phenomena, which would later
be further scrutinized using more elaborate models that take
into account additional effects not included in RPM. In our
case, the model neglects hydrodynamic interactions and con-
siders only the far-field phoretic interactions. These and other
effects such as specific details of the catalytic reaction kinetics

should be included in order to have a realistic description of
the system that allows us to make quantitative predictions and
comparison with specific experimental systems. Therefore, in
practice, it is not guaranteed whether the particular examples
presented in this manuscript will perform their time-dependent
function when all these effects are included. However, these
details will only make quantitative changes, which means that
similar configurations will exhibit the reported functionality.
This is because those effects do not alter the main underlying
mechanism for dynamic function, which is the action-reaction
symmetry breaking that is present in the phoretic interactions.
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APPENDIX: D’ALEMBERT’S PRINCIPLE
IN OVERDAMPED DYNAMICS

Consider an ensemble of particles with overdamped dy-
namics

ṙi = FT
i ; i = 1,2, . . . ,N, (A1)

where FT
i = Fi + Fc

i is the total force acting on each particle
and Fc

i are constraint forces, where the mobilities have been
set to one for simplicity. In the case of colloidal particles, these
constraint forces keep the relative distances of the particles in
contact fixed.

Generalized coordinates qk , k = 1,2, . . . ,n � N , are de-
fined satisfying the constraints such that the particle po-
sitions can be uniquely calculated in terms of them; i.e.,
ri = ri(q1, . . . ,qn). With these generalized coordinates virtual
displacements δri can be constructed such that they satisfy, by
construction,

∑
i Fc

i · δri = 0. Therefore,∑
i

(Fi − ṙi) · δri = 0. (A2)

Using δri = ∑
k

∂ri

∂qk
δqk , the previous expression can be written

as ∑
k

(
Qk − ∂

∂q̇k

T

)
δqk = 0, (A3)

where

Qk =
∑

i

Fi · ∂ri

∂qk

(A4)

are the generalized forces, which do not depend on the
constraint forces, and

T =
∑

i

1

2
ṙ2
i (A5)

plays a role analogous to the kinetic energy.
As the virtual displacements in the generalized coordinates

are independent, the resulting equations of motion in the
generalized coordinates are

∂

∂q̇k

T = Qk; k = 1,2, . . . ,n. (A6)
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[4] F. Jülicher and J. Prost, Spontaneous oscillations of collective
molecular motors, Phys. Rev. Lett. 78, 4510 (1997).

[5] S. Camalet, T. Duke, F. Jülicher, and J. Prost, Auditory
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[45] To perform a quantitative comparison, we need to solve the
Fokker-Planck equation. For the transition from the run phase
to the tumble phase, the analysis can be done using Eq. (5)

as the transition path is along the imposed one-dimensional
trajectory in phase space. For the opposite case, i.e., going from
the tumble to a run phase, the analysis must be done with the full
equation for φ2 and φ3. We relegate this calculation to a future
publication.
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