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We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic,
Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely,
a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function
dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully
captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory
behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of
hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a
predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact
the particle kinetics.
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I. INTRODUCTION

Describing the motion of nanoparticles is an essential topic
in many applications of colloidal hydrodynamics such as tar-
geted drug delivery [1–3], pathogen detection [4,5], quantifica-
tion of expressed protein expression [6,7], microfluidics-based
sorting [8–11], and microrheology of soft matter [12–14].
In such applications, nanoparticles have tailored affinities
with the target, and the interplay between hydrodynamic
interactions, adhesive interactions, Brownian motion, and
other external forces impacts the motion of the nanoparticle
across different regimes (see Fig. 1). Direct numerical
simulations (DNSs) of fluctuating hydrodynamics equations
can resolve the correct hydrodynamic and thermal correlations
of the particle over the fluid viscous relaxation time τν = a2/ν

(a being the particle radius and ν the fluid kinematic
viscosity) [15–18] but due to computational overhead
cannot access pharmacodynamic timescales (ms-hours).
Implicit-solvent simulation methods (e.g., Brownian or
Stokesian dynamics [19,20]) explore dynamics efficiently
over longer diffusive time scales [O(a2/D) with D being
the particle diffusivity]. However, they do not naturally
encode the correct temporal correlations over the time
scale of τν . To address these limitations, in this article
we present a composite generalized Langevin equation
(GLE) formalism as a unified framework for resolving the
nanoparticle dynamics in the presence of hydrodynamic
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correlations, thermal motion, and an external potential
mimicking binding forces in different hydrodynamic regimes
(e.g., bulk, near-wall, and lubrication, as shown in Fig. 1).

GLE is a mathematical construct for the particle equation
of motion that incorporates a memory function denoting a
systematic resistance and a complementary random fluctuating
force. Rigorously, GLE for a Brownian particle near a
boundary can be formulated from the Zwanzig-Mori projection
formalism [21] with all the hydrodynamic modes accurately
included. However, the main difficulty originates from the
fact that different hydrodynamic modes correlate at different
time scales, especially when boundaries are introduced. In
such circumstances, inevitably, relevant approximations for
the projection operator and the memory function would be
necessary. On the other hand, in the analytical treatment of
Felderhof [22], the motion of a Brownian particle near a planar
wall is addressed from the perspective of frequency-dependent
admittance in the point-particle limit. Although the velocity
autocorrelation function may be obtained with a hydrodynamic
spectrum in the frequency domain, the time-domain equation
of motion for the particle is tractable only in the case
without a bounding wall; in the presence of a planar wall,
only an approximation to the long-time asymptotic limit
can be recovered. Consequently, in this article we apply a
physically motivated approach by incorporating the generic
hydrodynamic correlations at the relevant time scales into a
single composite GLE. For bulk and near-wall regimes, we
employ the analytical form of the memory function resulting
from the solution of the linearized Navier-Stokes equation
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FIG. 1. (Color online) Schematics of a Brownian particle: (a)
model of a particle with radius a bound by a spring with the
spring constant k at a position h separated from a wall; (b)
trapping a particle using optical tweezers (weak harmonic potential
with k ≈ 10−6–10−5 N/m [24,26]); (c) ligand-functionalized particle
interacting with a polymer tether or polymer-grafted particle binding
to receptors on the substrate or cell (near-wall or lubrication regime
depending on the ratio of (h − a)/a under a moderately strong har-
monic potential with k ≈ 10−4–10−2 N/m [27,28]); (d) nanoparticle
of radius a = 50–250 nm bound to the cell via antibody-antigen
interactions coinciding with the lubrication regime [for molecules of
size O(10 nm), (h − a)/a � 1], and a strong harmonic potential with
k = 0.1–1 N/m.

and construct a suitable GLE to incorporate the stochastic
effects. For the lubrication regime, we construct a GLE
based on transverse lubrication flows within the particle-wall
gap. In each case, the transition in the temporal correlations
is handled within the composite structure, where for early
times a “bulk like” interaction is considered, and for long
times the hydrodynamic-wall effect is included. We validate
our approach by comparing the computed particle velocity
autocorrelation function (VACF) with available analytical
solutions for the bulk [23] and near-wall regimes [22,24] and
provide new predictions for the lubrication regime. Through
analyzing the nanoparticle VACF and position autocorrelation
function (PACF) (Cv = 〈U (t)U (0)〉 and Cx = 〈δx(t)δx(0)〉),
we demonstrate how one may simultaneously characterize
nanoparticle dynamics subject to adhesive interactions and
other external forces while incorporating hydrodynamic cor-
relations and maintaining thermal equilibrium in multiple
regimes. In order to elucidate the effect of hydrodynamics on
activated processes, we analyze particle trajectories to estimate
kinetic rates for nanoparticle crossing a predefined milestone
using the reactive flux formalism [25].

The remainder of the article is structured as follows: We
present our theoretical description of the GLE framework in
Sec. II and numerical method in Sec. III followed by results
and discussions in Sec. IV. In Sec. IV we validate thermal
equilibrium of our stochastic simulations (Sec. IV A), delin-
eate our autocorrelation functions in different hydrodynamic
and adhesion regimes (Sec. IV B), and discuss milestoning
rates based on dynamical trajectories (Sec. IV C). Finally,
conclusions are given in Sec. V.

II. THEORY: THE GLE FRAMEWORK

The translational equation of motion (mdU
dt

= ∑
i Fi) for a

Brownian particle with mass m and velocity U at position x

subject to an external harmonic potential force, Fext(x) = −kx,
can be cast into a GLE that in one dimension reads

M
dU

dt
= −

∫ t

−∞
ζ (t − t ′)U (x,t ′) dt ′ − kx(t) + R(t), (1)

where M is the particle effective mass (described below), ζ (t)
is the frictional memory kernel capturing the hydrodynamic
interactions, and R(t) with 〈R(t)〉 = 0 is the thermal
fluctuating force on the particle. ζ (t) and R(t) are linked via
the second fluctuation-dissipation theorem [29], 〈R(t)R(t ′)〉 =
kBT ζ (|t − t ′|) with Boltzmann constant kB and temperature T .

The frictional force Fdrag acting on a Brownian spherical
particle in an unbounded, incompressible fluid (“bulk
regime”) is obtained by solving the time-dependent Stokes
equation of an incompressible fluid of density ρ surrounding
a no-slip solid particle surface and integrating the resulting
hydrodynamic stress on the surface. In the frequency domain,
Fdrag(ω) = −ζ ∗(ω)U (ω) with the time-dependent drag
coefficient ζ ∗(ω) = 6πηa + 6πa2√iωρη + (2/3) πa3iωρ

[30–32]. The first term represents the Stokes’s friction, the
second term arises from the diffusion of fluid momentum
around the particle surface, and the third term represents
the fluid inertia added to the particle inertia. The resulting
equation of motion in the time domain is written as

M
dU

dt
= −6πηaU (x,t) + 3a2√πρη

×
∫ t

−∞
|t − t ′|− 3

2 U (x,t ′) dt ′ − kx(t) + R(t) (2)

with M = m + (2/3) πa3ρ = 3m/2 and (2/3) πa3ρ be-
ing the added mass. Comparing Eqs. (1) and (2) yields
ζ (t) = 12πηaδ(t) − 3a2√πρηt−

3
2 , also suggesting that we

may write R(t) = Rw(t) + Rc(t) with a white noise cor-
relation 〈Rw(t)Rw(t ′)〉 = 12πηakBT δ(t − t ′) and a colored
noise correlation 〈Rc(t)Rc(t ′)〉 = −3a2√πρηkBT |t − t ′|− 3

2 ,
and 〈Rw(t)Rc(t ′)〉 = 〈Rw(t)〉〈Rc(t ′)〉 = 0.

In scenarios depicted in Fig. 1(c), the planar wall causes
the hydrodynamic response of the fluid to be altered, which
leads to a more complex relaxation spectrum of the particle
velocity. Linear hydrodynamics suggests that the particle
velocity can be written as a perturbation about the bulk
case: U (x,t) = U0(x,t) + U ′(x,t). When the particle is not
very close to the wall (“near-wall” regime, h/a 
 1), prior
studies for motion perpendicular to the wall [33–35] predicted
the correct transient scaling of Cv,⊥ ∼ t−

7
2 over intermediate

times (τν < t � τw = h2/ν) before the true long-time scaling
is observed. Recently, it was indicated by analytical theories
[22,24] and optical trap experiments [24,26] that Cv,⊥ shows
a U0(x,t)-dominant t−

3
2 power-law decay for τν � t � τw,

and a U ′
⊥(x,t)-dominant anticorrelation t−

5
2 power-law decay

for t 
 τw, where the diffusion of fluid momentum is highly
impacted by the wall. Although Cv,⊥ can be obtained through
a time-Fourier analysis of the particle equation of motion in
the absence of thermal fluctuations [22,24], for purposes of
particle tracking, it is desirable to obtain the particle trajectory
and directly calculate the correlation functions. In order to
bridge the aforementioned hydrodynamic correlations due to
U0(x,t) and U ′

⊥(x,t) into a particle equation of motion, at the
phenomenological level, we propose a “composite GLE” that
explicitly encodes the pertinent time scales using a bridging
function. If one solves a Langevin equation with a white noise
alone over the characteristic time scale of τw, the average
velocity would behave as ∼U (0)e− t

τw . Therefore, a natural
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choice of the bridging function would be e− t
τw and we arrive at

M
dU⊥
dt

= −6πηaβU⊥(x,t) − A1(t)
∫ t

−∞
|t − t ′|− 3

2 U⊥(x,t ′) dt ′

− A2(t)
∫ t

−∞
|t − t ′|− 5

2 U⊥(x,t ′) dt ′ − kx(t) + R(t),

(3)

where β = (1 − 9a
8h

)−1 corrects the O(a/h) enhanced
resistivity to the particle motion and denotes Lorentz’s
steady-state friction coefficient [36]. M = (3m/2)(1 − a3

8h3 )−1

is obtained from the high-frequency admittance
[22,24] and shows how the wall affects the particle
effective mass, A1(t) = −3a2√πρη(e− t

τw ) gives the

amplitude of the intermediate-time t−
3
2 correlation, and

A2(t) = 9
8am

√
ρ

πη
β2(1 − e− t

τw ) complements A1(t) and

yields the amplitude of the long-time t−
5
2 decay. R(t) =

Rw(t) + e− t
τw Rc1(t) + (1 − e− t

τw )Rc2(t) with 〈Rw(t)Rw(t ′)〉 =
12πηaβkBT δ(t − t ′), 〈Rc1(t)Rc1(t ′)〉 = −3a2√πρηkBT |t −
t ′|− 3

2 , 〈Rc2(t)Rc2(t ′)〉= 9
8am

√
ρ

πη
β2kBT |t − t ′|− 5

2 , and

〈Rw(t)Rc1(t ′)〉= 〈Rw(t)Rc2(t ′)〉= 〈Rc1(t)Rc2(t ′)〉= 0. This
composite GLE essentially captures the relaxations
corresponding to U0(x,t) for all time scales and U ′

⊥(x,t) for
long times; we also note that in the limit of A2 → 0 and β → 1
for a particle far from a wall, we recover Eq. (2). We note
that this approximation of time-dependent bridging functions
makes one use a nonstationary mathematical equation to
predict a stationary physical process. Consequently, as will
be shown in Sec. III, when calculating all the time correlation
functions associated with Eq. (3) we shall not invoke time
shifting and reversibility but carefully ensemble-average the
trajectories to produce the expected physical results.

As shown in Fig. 1(d), when adhesion is mediated directly
via receptor–ligand interactions without tethers such as the
case where nanocarriers functionalized with antibodies are
bound to the antigens on the surface of biological cells
[37], the Brownian particle is extremely close (10–40 nm)
to the wall (“lubrication regime”) such that (h − a)/a � 1
with strong viscous resistance to particle motion. Moreover,
as τν ∼ τw, the fluid momentum diffusion is curtailed by
confinement, which would result in a faster (exponential)
decay in Cv than the algebraic correlation for the near-wall
case, making the fluid memory effect negligible over a wide
span of t . While theoretical investigations of the VACF in the
lubrication regime have not been reported, it has been shown
that Cv decays exponentially when a particle is placed between
parallel plates where the strong confinement influences the
fluid momentum diffusion [38,39]. Therefore, we assume
quasisteady state and apply classical lubrication theory, which
yields Fdrag = −[6πηa2/(h − a)]dh/dt [40], and arrive at the
following approximate equation of motion for the particle:

M
dU⊥
dt

= −
[

6πηa2

h(t) − a

]
U⊥(x,t) − kx(t) + R(t), (4)

where M = 3m/2 accounts for the added mass and
〈R(t)R(t ′)〉 = 12πηa2kBT

h(t)−a
δ(t − t ′).

III. NUMERICAL METHOD

The numerical schemes for integrating Eqs. (2)–(4) and
random force generation are delineated in the Appendix. In
all three cases, we follow the Ito calculus for integrating
stochastic differential equations without including the “drift”
term due to the spatially dependent ζ . We have confirmed
that including the drift term does not lead to a difference in
the results. We consider a Brownian particle of a = 250 nm
initially at x(0) = 0 with an initial velocity U (0) released
into a quiescent fluid (η = 10−3 kg/ms, ρ = 1 kg/m3, and
τν = 6.25 × 10−8 s) at T = 310 K, and numerically integrate
Eqs. (2)–(4) by writing U = dx/dt and expressing time
derivatives by a finite difference method. The white noise term
of the random force R(t) is obtained by choosing the Gaussian
random variable, while the colored noise term is calculated
by introducing the desired power-law correlation from the
frequency domain [41,42]. The stochastic simulations require
a large number of realizations to reach satisfactory statistics
of the dynamical properties. Since ζ (t) is hydrodynamic in
origin, the scaled relaxation of U (t) can be obtained in the
presence or absence of the random force R(t). Therefore, we
also perform deterministic simulations in which the particle is
driven initially by a weak impulse giving U (0) in the absence
of the random force. Based on Onsager’s regression hypothesis
[43], the correlation between a macroscopically driven U (0)
and the subsequent U (t) would be equivalent to the calculated
Cv(t) obtained from the stochastic simulations.

For Eqs. (2) and (4), since the mathematical equations are
stationary, the resulting time correlation function 〈A(t1)A(t2)〉
equals 〈A(t)A(0)〉 as long as t = t1 − t2. In such a case, we
follow the standard ensemble averaging procedure outlined
in Ref. [44] with time shifting and reversibility to obtain all
the time correlation functions. In our stochastic simulations,
100 to 200 realizations with time steps N = 105 or 217 and
step size �t = 10−10 s can yield satisfactory averaging up to
t ∼ 5τν compared with deterministic simulations. However,
for Eq. (3), the bridging functions e− t

τw and 1 − e− t
τw make

the mathematical equation nonstationary. Therefore, when
calculating the autocorrelation functions in this case, for
a given initial configuration (separation from the wall and
position within the harmonic potential) of the particle, we need
to take the ensemble average over enough realizations. In each
simulation, we allow the initial Ninit steps for equilibration
before analyzing the statistics of particle trajectories. In the
results for a particle initially placed at the minimum of the
harmonic potential in the near-wall regime, at least 2000
realizations with N = 214, �t = 10−9 s, and Ninit = 10 are
required to reach satisfactory averaging up to t ∼ τν . The
corresponding Cx(t) therefore yields an average trajectory of
the particle initially placed at the minimum of the harmonic
potential. Consequently, as will be seen in our results, Cx(t)
shows an initial increase and then decreases as the particle
velocity changes sign.
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FIG. 2. Equilibrium probability density of the translational velocity, ln P (U ), of the neutrally buoyant nanoparticle (radius a = 250 nm)
trapped in different harmonic potentials for (a) bulk, (b) near-wall (h/a = 2), and (c) lubrication (h/a = 1.14) regimes. The solid curves denote
the Maxwell-Boltzmann distribution and the dashed curves show 10% error about the Maxwell-Boltzmann distribution.

IV. RESULTS AND DISCUSSION

A. Equilibrium statistics

In our stochastic simulations, the particle temperature
agrees satisfactorily with the preset temperature [i.e., within
7% error for Eq. (3) and 0.1% for Eq. (4)]. Figures 2
and 3 present the equilibrium distribution of particle
velocity and potential of mean force obtained from the
distribution of particle center-of-mass position for various
conditions considered in this work. Clearly, the stochastic
GLE simulations yield satisfactory equilibrium statistics and
reproduce the correct particle configuration. Moreover, the
distributions of particle velocity and center of mass are within
10% of the Boltzmann distribution.

Figure 4 shows the nanoparticle mean squared displacement
(MSD) for different hydrodynamic and adhesion regimes.

For all cases, MSD exhibits a quadratic trend denoting the
ballistic motion of a nanoparticle at very short times. For
k = 0 N/m and k = 10−6 N/m, MSD transitions to a purely
diffusive behavior within our simulation time, with the slope
of MSD being equivalent to the diffusivity, D = kBT

6πηaβ
. As

the harmonic potential is more substantial, MSD gradually
plateaus, suggesting the particle is trapped by the potential.

B. Autocorrelation functions

As shown in Fig. 5, for an unbound, neutrally buoyant
Brownian particle in a bulk fluid [Eq. (2)], both the normalized
Cv(t) from stochastic GLE (100 realizations, �t = 10−10

s) and U (t)/U (0) from deterministic GLE (�t = 10−10 s)
agree remarkably well with the analytical solution of the
normalized Cv(t) for particle in a linearized Navier-Stokes

FIG. 3. Equilibrium potential of mean force (PMF), − ln P (x), of the neutrally buoyant nanoparticle (a = 250 nm) trapped in different
harmonic potentials for (a, b) bulk, (c, d) near-wall (h/a = 2), and (e, f) lubrication (h/a = 1.14) regimes. P (x) is the equilibrium probability
of the nanoparticle center-of-mass position. The dots are GLE results and the solid curves denote − kx2

2kBT
.

052303-4



COMPOSITE GENERALIZED LANGEVIN EQUATION FOR . . . PHYSICAL REVIEW E 91, 052303 (2015)

FIG. 4. (Color online) Mean squared displacement with error bars of the neutrally buoyant nanoparticle (a = 250 nm) in different
hydrodynamic regimes subject to the harmonic potential of (a) k = 0 N/m, (b) k = 10−6 N/m, (c) k = 10−3 N/m, (d) k = 10−2 N/m,
(e) k = 0.1 N/m, and (f) k = 1 N/m as will be shown in Fig. 7.

fluid [23]. Specifically, Cv(t) shows an initial exponential
decay at short times (t � τν) due to the instantaneous fluid
resistance (6πηa). This is followed by a t−3/2 algebraic
decay at times longer than the viscous relaxation time; that
is, for t � τν , Cv(t) merges with a t−3/2 algebraic decay
characterizing the long-time tail resulted from the fluid vortex
diffusion.

In Fig. 6, we validate our composite GLE [Eq. (3)] by
comparing Cv(t) [or U (t)/U (0)] from the deterministic GLE
(�t = 10−9 s) with the normalized Cv(t) from Ref. [24] which
includes the full velocity correlation spectrum for a slightly
denser particle at different distances from the wall. Following
the initial exponential decay, Cv first shows a t−3/2 scaling over

FIG. 5. (Color online) Normalized VACF of a neutrally buoyant
Brownian particle in an incompressible, quiescent, unbounded fluid
medium obtained from the stochastic and deterministic GLE [Eq. (2)].
The short-time exponential correlation, the long-time algebraic decay,
and the full analytical solution of linearized Navier-Stokes equations
[23] are shown for comparison.

t ∼ τν and dictates a faster decay (approximately t−7/2) that
deviates from t−3/2 scaling as t ∼ τw. This faster intermediate
decay denotes the appearance of wall reflection for the
vortex diffusion, which eventually yields the anticorrelation
(oscillation) followed by a final long-time t−5/2 scaling as
t 
 τw. Remarkably, the result predicted by the composite
GLE for h/a = 2 agrees closely with the literature result.
Consistent with Ref. [24], the anticorrelation in Cv occurs at
an earlier time for smaller h/a, and the long-time t−5/2 decay
is nearly independent of h/a, as the coefficient A2 in Eq. (3)
also suggests.

In Fig. 7, the normalized Cv(t) and Cx(t) from both
stochastic and deterministic simulations are compared in the

FIG. 6. (Color online) Normalized VACF of a non-neutrally
buoyant Brownian particle near an infinite plane wall in an incom-
pressible, quiescent fluid medium for different separations from the
wall. The symbols are the corresponding results from Ref. [24].
ρp/ρ = 2.25 with ρp being the density of the particle.
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FIG. 7. (Color online) Normalized VACF and PACF of a neutrally buoyant Brownian particle at different locations subject to harmonic
potentials of different strengths: (a) VACF in an unbounded (bulk) fluid, (b) PACF in an unbounded fluid, (c) VACF for h/a = 2, (d) PACF for
h/a = 2, (e) VACF for h/a = 1.14, and (f) PACF for h/a = 1.14. For the VACF, both stochastic and deterministic solutions are shown for
comparison.

presence of a harmonic spring for different particle positions
relative to the wall. For a particle in the bulk [Figs. 7(a) and
7(b); 100 stochastic simulations with �t = 10−10 s] and near
the wall with h/a = 2 [Figs. 7(c) and 7(d); 2000 stochastic
simulations with �t = 10−9 s], the chosen spring constant is
consistent with an optical trap or adhesion with polymer tethers
[Figs. 1(b) and 1(c)]; for a particle in the lubrication layer
[Figs. 7(e) and 7(f); 200 realizations with �t = 10−10 s] the
spring constant is chosen for an optical trap or ligand-receptor
binding [Figs. 1(b) and 1(d)]. Similar to Fig. 5, our stochastic
and deterministic solutions in Cv(t) agree for different h/a

and k, justifying the self-consistency of our method. When the
particle is bound by a spring, a second time scale, τk = 2π

√
m
k

,
characterizing the spring vibration frequency comes into play.
As is noticeable in Fig. 7, oscillations in Cv(t) occur due to the
spring mechanical force, with the minimum of the oscillation
being observed at t ∼ τk. It is expected that at much longer
times when the spring force −kx balances the drag force
6πηaU , Cv(t) would exhibit the t−7/2 scaling for a particle in
the bulk and t−9/2 scaling for a particle near a wall at t � 6πηa

k

[24]. We note that the cases of k = 10−2 N/m in Figs. 7(a)
and 7(c) already exhibit the expected final t−7/2 and t−9/2

correlations at t/τν > 102. In order to resolve this correlation
for weaker springs, longer simulations are necessary. The
comparison of τk to τν for different k values is summarized in
Table I. The corresponding correlation of particle displacement
Cx(t) decays at the time scale where the particle velocity starts
to decorrelate with its initial value. Therefore, in the presence
of the spring, the decrease of Cx(t) is prominent at t ∼ τk. As
indicated in Sec. III, due to the mathematical nonstationarity
of the composite GLE for h/a = 2, in Fig. 7(d) the ensemble
average of 〈δx(t)δx(0)〉 is essentially equivalent to 〈δx(t)〉.
Consequently, for a particle initially placed at the harmonic

potential minimum, Cx first increases and then decreases as
U⊥(t) changes sign.

In order to further validate our GLE results for a bound
nanoparticle in the lubrication regime, which is pertinent to
nanocarrier adhesion encountered in targeted drug delivery,
we compare the GLE results with the DNS results [18,45]
for h/a = 1.14 and k = 1 N/m in Fig. 8(a). The stochastic
solutions for DNS (25 realizations, �t = 10−10 s) are obtained
using the fluctuating hydrodynamics approach [15,18] with
the finite element method where the particle is immersed in a
fluctuating Navier-Stokes fluid within a cylindrical channel of
radius R = 10a. Meanwhile, we calculate the nonfluctuating
counterpart of the particle motion using DNS and obtain the
deterministic solutions for a particle initially driven by a weak
force. Strikingly, our GLE results for k = 1 N/m in Figs. 7(e)
and 8(a) agree well with the corresponding DNS results, which
validates the general applicability of our quasisteady-state
lubrication assumption in Eq. (4) when a strong adhesion is
present. The slightly earlier spring oscillation and the absence
of a second oscillation due to the wall for the GLE results are
caused by the absence of wall curvature and the neglect of

TABLE I. Comparison of the spring time scale to the viscous
relaxation time.

k (N/m) τk (s) τk/τν

1 5.08 × 10−8 0.813
0.1 1.61 × 10−7 2.572
10−2 5.08 × 10−7 8.133
10−3 1.61 × 10−6 25.719
10−6 5.08 × 10−5 813.306
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FIG. 8. (Color online) Normalized VACF of a neutrally buoyant
Brownian particle in the lubrication regime with h/a = 1.14 in the
presence of (a) a strong adhesion with k = 1 N/m and (b) a weak
trapping force obtained from GLE and DNS.

fluid transient diffusion in Eq. (4). In the absence of adhesion
or when the particle is only trapped by a weak force [Fig. 8(b);
k = 0 or 10−6 N/m], the deviation between GLE and DNS
becomes more apparent due to the lack of an appropriate
memory kernel. In such a case, one may invoke a composite
GLE that incorporates the suitable power-law correlations
obtained from DNS.

C. Milestoning rate from the reactive flux formalism

Invoking the reactive flux formalism [25], the effect of
hydrodynamics on the kinetics of a particle originating
from x < xm crossing a predefined milestone xm can be
characterized through the correlation for characteristic state
functions: kcorr(t) ≡ 〈hA[x(0)]ḣB[x(t)]〉

〈hA[x(0)]〉 = d
dt

〈hA[x(0)]hB[x(t)]〉
〈hA[x(0)]〉 , where

hA = 1 if |x| � xm and hA = 0 if |x| > xm; hB = 0 if |x| � xm

and hB = 1 if |x| > xm. A typical milestoning correlation
function shows an initial value of k followed by a relaxation
process characterized by a time scale of τm (Fig. 9). Here
km(s−1) = kcorr(t = 0) is the rate of a particle passing the
milestone, and τm(s) is the time scale when the net flux of
a particle passing the milestone goes to zero. We choose τm

to be the time at which kcorr(t) decays to less than 5% of
km. Figure 10(a) compares the milestoning rate for various
particle positions, spring constants, and milestones of the
harmonic potential. If the milestoning process is dominated by
particle diffusion (black histograms), km ∝ D. Distinct from

FIG. 9. Milestoning correlation function kcorr(t) for h/a = 1.14,
k = 1 N/m, and xm = 2Å (corresponding to the energy of 4.68 kBT

within the harmonic potential). The dashed lines indicate dropping
of km from 100% to 5%, and the arrow indicates the determination
of τm.

the expected trend for the scaled diffusivity for a particle at
different positions from the wall (inset), the result indicates
that the lubrication force enhances km as the upward force
pushes the particle away from the equilibrium position and fa-
cilitates the rate of milestone crossing. The reconstructed graph
for the scaled km with different spring constants [Fig. 10(b)]
shows that km roughly scales as k1/2, the intuitive result
determined by the vibration rate of a particle within a harmonic
potential (dashed line). The spreading of the data (i.e., the
deviations from the dashed line) across different milestones
and hydrodynamic regimes emphasizes the effect of fluid
viscous dissipation. Because the hydrodynamic time scale for
the lubrication force is smaller than that in the bulk, the more
distinct separation of hydrodynamic and spring time scales
makes the spring effect decoupled from the hydrodynamics.
It is, therefore, not surprising that when the particle is in the
lubrication regime, km conforms more with the k1/2 scaling.
The similar scaling for the equilibration frequency τ−1

m shown
in Fig. 10(c) suggests that km ∝ τ−1

m , and our determination of
these two characteristic parameters for milestoning without a
reaction coordinate is self-consistent.

V. CONCLUSION

In conclusion, we introduced a composite GLE as a feasible
unified framework for predicting the particle dynamics in the
presence of thermal fluctuations across different hydrody-
namic and adhesion regimes. Analyzing particle trajectories
generated from the stochastic simulations of the composite
GLE allows us to extract the particle autocorrelation functions
of velocity and position, which dictate how the particle
responds to instantaneous hydrodynamic resistance, Brownian
force, and the thermodynamic driving force originated from
the adhesive energy landscape. In the spirit of the reactive
flux formalism, we characterize the milestoning correlation
function and find that both wall-hydrodynamics and adhesive
forces have significant impact on the kinetics of a particle
crossing a specific milestone. Specifically, weaker hydrody-
namic resistance or softer binding potential yield a smaller
milestoning rate. This effect is critical when simultaneous
binding and rolling of nanoparticles and cells occur such
as in targeted drug delivery or during the mounting of an
immune response. Generalizing the methodology, we envision
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FIG. 10. (Color online) (a) Milestoning rate km(1/s) for different particle separations from the wall, spring constants, and milestones.
h/a = 100 corresponds to a particle in an unbounded fluid. Black (control): purely diffusive expectation where the histogram for the bulk
is obtained by averaging all the km values for the bulk, and the histogram for h/a = 1.14 is obtained by multiplying the bulk result by
β−1 = (h − a)/a. Other histograms from left to right: Fm = 4.68kBT and k = 1 N/m (red), k = 0.1 N/m (light green), k = 0.01 N/m
(yellow); Fm = 3.79kBT and k = 1 N/m (dark blue), k = 0.1 N/m (pink), and k = 0.01 N/m (cyan); Fm = 2.68kBT and k = 1 N/m (grey),
k = 0.1 N/m (dark red), k = 0.01 N/m (dark green). The inset shows the scaled diffusivity β−1 for a purely diffusive Brownian particle at
different h/a. (b) The scaled milestoning rate km/km(k = 1 N/m) as a function of spring constant for different configurations. The dashed
line corresponds to the scaling for purely mechanical motion of a particle without any viscous damping. (c) Scaled equilibration frequency
τm(k = 1 N/m)/τm as a function of spring constant for different configurations. The symbol and line descriptions are the same as (b).

that when the particle is subject to a complex energy landscape
with the milestone being chosen to be a true transition
state, the proposed formalism can characterize the effect of
hydrodynamic interactions on attachment-detachment kinetics
involved in mono- and multivalent binding.
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APPENDIX A: NUMERICAL INTEGRATION OF GENERALIZED LANGEVIN EQUATIONS

Equations (2)–(4) can be cast in the form of

d2x

dt2
= −�1(t)

dx

dt
− �2(t)

∫ t

0
|t − t ′|−λ dx

dt ′
dt ′ − �3(t)x + �4(t) (A1)

with the initial conditions x(0) = 0, dx
dt

|t=0 = U (0) =
√

kBT
M

, and d2x
dt2 |t=0 = U ′(0) = 0. If we express the derivatives using finite

differences, the corresponding explicit discretized equation reads

xi+1 − 2xi + xi−1

(�t)2
= −�1,i

xi+1 − xi−1

2�t
− �2,i

i−1∑
j=1

[
|(i − j )�t |−λ

(
xj+1 − xj−1

2�t

)
�t

]
− �3,ixi + �4,i , (A2)

where �t is the time step size and we have changed the lower limit of integration from −∞ to 0 as the numerical integration
would be counted from time zero. The initial conditions are x1 = 0 and x0 = −U (0)�t , x−1 = −2U (0)�t · · · for times earlier
than the initial time of numerical integration. This explicit scheme with a fixed �t allows us to directly make use of xj and Uj

for j � i efficiently. In the following subsections, we delineate the numerical schemes for Eqs. (2)–(3) with a memory kernel
and Eq. (4) separately.

In all three cases, we follow the Ito calculus for integrating stochastic differential equations and neglect the “drift” due to the
spatially dependent drag ζ (x) (or the corresponding spatially dependent particle diffusivity D(x) = kBT

ζ (x) ). We have also modified

the equation of motion for the lubrication case by including an additional drift [= ζ (x) dD(x)
dx

= − kBT
ζ (x)

dζ

dx
] [46], the results are

nearly identical to those without the drift considered.

1. Brownian Particle in an Unbounded Fluid Domain: Eq. (2)

Comparing terms on the right-hand side of Eq. (A1), clearly the scheme may be unstable when λ > 1 and �t � 1 as � and
(dx/dt) are finite. To avoid this issue in integrating Eq. (2) with λ = 3/2, the memory kernel term in Eq. (A1) is integrated by
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parts to yield

d2x

dt2
= −�1(t)

dx

dt
− �2(t)

1 − λ
t1−λ dx

dt ′

∣∣∣∣
t ′=0

− �2(t)

1 − λ

∫ t

0
|t − t ′|1−λ d2x

dt ′2
dt ′ − �3(t)x + �4(t) (A3)

with |t − t ′|1−λ
(
dx/dt ′

)∣∣
t ′=t

→ 0. In its discretized form, we have[
1 + �1,i

2
�t

]
xi+1 = [2 − �3,i(�t)2]xi −

[
1 − �1,i

2
�t

]
xi−1 − �2,i

1 − λ
|i�t |1−λU (0)(�t)2

− �2,i

1 − λ

i−1∑
j=1

[|(i − j )�t |1−λ(xj+1 − 2xj + xj−1)�t] + �4,i(�t)2. (A4)

2. Brownian Particle Near a Planar Bounding Wall: Eq. (3)

When 2 < λ < 3 as seen in Eq. (3), a second integration by parts for the memory kernel is required. Thus we obtain the
form of

d2x

dt2
= −�1(t)

dx

dt
− �2(t)

1 − λ
t1−λ dx

dt ′

∣∣∣∣
t ′=0

− �2(t)

(1 − λ)(2 − λ)
t2−λ d2x

dt ′2

∣∣∣∣
t ′=0

− �2(t)

(1 − λ)(2 − λ)

∫ t

0
|t − t ′|2−λ d3x

dt ′3
dt ′ − �3(t)x + �4(t), (A5)

where both |t − t ′|1−λ(dx/dt ′)|t ′=t and |t − t ′|2−λ(d2x/dt ′2)|t ′=t go to zero. To further ensure the numerical stability for Eq. (3)
as the integral-differential equation has a more complex structure, in the spirit of Crank-Nicholson method we break the memory
kernel integration into ti+1 and ti terms along with finite difference discretization, and arrive at

xi+1 − 2xi + xi−1

(�t)2
= −�1,i

xi+1 − xi−1

2�t
− �2,i

1 − λ
|i�t |1−λU (0) − �2,i

(1 − λ)(2 − λ)
|i�t |2−λU ′(0)

− �2,i

(1 − λ)(2 − λ)

⎧⎨
⎩

i∑
j=1

|(i + 1 − j )�t |2−λ

[
xj+1 − 3xj + 3xj−1 − xj−2

�t2

]

+
i−1∑
j=0

|(i − j )�t |2−λ

[
xj+1 − 3xj + 3xj−1 − xj−2

�t2

]⎫⎬
⎭ − �3,ixi + �4,i (A6)

or

xi+1 =
[

1 + �1,i�t

2
+ �2,i(�t)2−λ

2(1 − λ)(2 − λ)

]−1
⎧⎨
⎩

[
2 + 3�2,i(�t)2−λ

2(1 − λ)(2 − λ)
− �3,i(�t)2

]
xi −

[
1 − �1,i

2
�t + 3�2,i(�t)2−λ

2(1 − λ)(2 − λ)

]
xi−1

+ �2,i(�t)2−λ

2(1−λ)(2−λ)
xi−2− �2,i

1 − λ
|i�t |1−λU (0)(�t)2− �2,i

(1 − λ)(2 − λ)

i−1∑
j=1

[|(i + 1 − j )�t |2−λ(xj+1−3xj + 3xj−1−xj−2)]

− �2,i

(1 − λ)(2 − λ)

i−1∑
j=0

[|(i − j )�t |2−λ(xj+1 − 3xj + 3xj−1 − xj−2)] + �4,i(�t)2

⎫⎬
⎭ (A7)

as U ′(0) = 0.

3. Brownian Particle Extremely Close to a Planar Bounding Wall: Eq. (4)

In the absence of the memory kernel, �2 = 0, and Eq. (A1) can be numerically integrated using finite difference alone:[
1 + �1,i

2
�t

]
xi+1 = [2 − �3,i(�t)2]xi −

[
1 − �1,i

2
�t

]
xi−1 + �4,i(�t)2. (A8)

APPENDIX B: NOISE GENERATION FOR R(t)

The fluctuations in Eqs. (2)–(4) are determined through
random number generation. For fluctuations with a δ-function

correlation, we first generate Gaussian white noise ξi that
has zero mean and unit variance. Ri is then obtained by
Ri = ξi

√
ζ0/�t to preserve 〈R2

i 〉 = ζ0/�t and 〈Ri〉 = 0 for
a desired prefactor ζ0. For fluctuations with a power-law
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correlation of index λ, we apply an approximate method
delineated in Refs. [41,42] to generate series of colored
random numbers. Briefly, the prescribed noise spectrum is
introduced in the frequency f (inverse-time) domain by taking
the following procedures:

(1) Generate Gaussian white noise ξi for i = 1 ∼ N if the
total number of time steps is N .

(2) Fourier transform ξi to obtain ξ̂i = F {ξi}.
(3) Introduce the colored correlation by multiplying ξ̂i by

f
(λ−1)/2
i .

(4) Inverse Fourier transform to obtain ξλ,i =
F−1{ξ̂if

(λ−1)/2
i } with 〈ξλ,iξλ,j 〉 ∝ |i − j |λ.

(5) First normalize ξλ,i and rescale it to obtain 〈RiRj 〉 =
ζ0|(i − j )�t |−λ and 〈Ri〉 = 0.

As seen from Fig. 11, the normalized noise autocorrelation
function CR, 〈R1Ri〉 / 〈R1R1〉, for 20 realizations satisfies the
prescribed scaling, |i�t |−λ.

FIG. 11. Noise autocorrelation function for λ = 1.5 and 2.5.
Symbols are simulated results, and lines are the prescribed scalings.
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Séraphin, Nat. Biotechnol. 17, 1030 (1999).

[8] M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature
(London) 426, 421 (2003).

[9] M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang,
N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J.
Marchand, and W. F. Butler, Nat. Biotechnol. 23, 83 (2005).

[10] A.-E. Saliba, L. Saias, E. Psychari, N. Minc, D. Simon, F.-C.
Bidard, C. Mathiot, J.-Y. Pierga, V. Fraisier, J. Salamero, V.
Saada, F. Farace, P. Vielh, L. Malaquin, and J.-L. Viovy, Proc.
Natl. Acad. Sci. U. S. A. 107, 14524 (2010).

[11] H. A. Nieuwstadt, R. Seda, D. S. Li, J. B. Fowlkes, and J. L.
Bull, Biomed. Microdevices 13, 97 (2011).

[12] D. T. Chen, E. R. Weeks, J. C. Crocker, M. F. Islam, R. Verma,
J. Gruber, A. J. Levine, T. C. Lubensky, and A. G. Yodh, Phys.
Rev. Lett. 90, 108301 (2003).

[13] R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam,
P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M.
J. Lang, J. Opt. A: Pure Appl. Opt. 9, S103 (2007).

[14] D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
[15] B. Uma, T. N. Swaminathan, R. Radhakrishnan, D. M. Eckmann,

and P. S. Ayyaswamy, Phys. Fluids 23, 073602 (2011).
[16] B. Uma, T. N. Swaminathan, P. S. Ayyaswamy, D. M. Eckmann,

and R. Radhakrishnan, J. Chem. Phys. 135, 114104 (2011).
[17] B. Uma, D. M. Eckmann, P. S. Ayyaswamy, and R.

Radhakrishnan, Mol. Phys. 110, 1057 (2012).

[18] R. Radhakrishnan, B. Uma, J. Liu, P. S. Ayyaswamy, and D. M.
Eckmann, J. Comp. Phys. 244, 252 (2013).

[19] D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352
(1978).

[20] J. F. Brady, Ann. Rev. Fluid Mech. 20, 111 (1988).
[21] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd

ed. (Academic Press, London, 2006).
[22] B. U. Felderhof, J. Phys. Chem. B 109, 21406 (2005).
[23] J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402

(2006).
[24] T. Franosch and S. Jeney, Phys. Rev. E 79, 031402

(2009).
[25] D. Chandler, J. Chem. Phys. 68, 2959 (1978).
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