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Two-dimensional description of surface-bounded exospheres with application to the migration
of water molecules on the Moon
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On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories.
Here, this migration process is described in terms of a two-dimensional partial differential equation for the
surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a
corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded
exosphere is described purely in terms of quantities on the surface, which can provide computational and
conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution
of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an
equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.
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I. INTRODUCTION

Recently, there has been considerable interest in volatiles
on the Moon and Mercury. The Moon, Mercury, the largest
asteroids, and the big satellites of the giant planets have enough
gravity to hold on to most molecular species, including H2O,
at thermal speeds. Surface-bounded exospheres are thought
to consist of molecules that hop in ballistic trajectories until
either lost to space or captured in permanent cold traps [1–4].
The kinetic behavior of these molecules is determined by
their interaction with the surface rather than with each other
(exospheres are by definition collisionless). Hence, it is natural
to describe them in terms of surface quantities alone.

Highly volatile atoms, such as helium on the Moon [5,6],
can hop on the day and the night side, while less volatiles
species, such as H2O, will freeze to the surface at night and
only migrate on the day side. The presence of a transient or
dilute water exosphere is surmised based on the presence of ice
deposits in permanently shadowed craters near the rotational
poles. Potential time variability in a lunar water exosphere has
been suggested by tantalizing observations (see, e.g., [7]).

Up to now, computer model calculations have been based on
individual particles that are launched with a Maxwellian speed
distribution in a random direction [3,8–11]. Figure 1 shows
the result of one such model calculation. Water molecules
undergo ballistic flights on the day side and rest on the surface
on the night side. Also noticeable is a pileup in the surface
concentration near the morning terminator, due to a snow plow
effect. As the sun rises, many molecules hop back to the night
side.

The goal here is to describe the lateral mass flux of the
hopping molecules in a continuum approximation, which takes
the form of a partial differential equation on a sphere for the
surface density σ of H2O molecules. A continuum description
of lateral fluxes in the terrestrial exosphere, which is bounded
by an exobase instead of a rigid surface, has been considered
previously (see, e.g., [12,13]). The behavior with height is also
of interest [14], but the goal here is to eliminate the vertical
dimension from the governing equations. Such a formulation
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can have computational advantages, e.g., when the surface
density varies by many orders of magnitude over the globe. But
this paper will be restricted to the derivation of the equation and
an analytic solution to a reduced and simplified version of these
equations. A broader goal is to call attention to this random-
walk problem, which has gained significant importance in its
field, for a community beyond planetary science.

II. THERMAL BALLISTIC HOPS

A. Problem setup

A molecule thermalizes when in contact with the surface
and leaves in a random direction. Hence its migration can
be described as a memoryless stochastic process (a Markov
process) of discrete movements.

A molecule of mass m acquires thermal energy on the
surface with temperature T , leaves with a Maxwellian velocity
distribution, and hops under the influence of gravitational
acceleration g on a surface with horizontal coordinates x and
y, or alternatively geographic latitude and longitude.

The hop length is assumed to be small compared to the
radius of the body, such that curvature effects can be neglected.
Ballistic flight can also be calculated for nonuniform gravity,
but this is merely more technical [15]. We also assume that the
time of flight is short compared to the rotation period of the
body, which is an excellent approximation when the typical
time of flight is a few minutes.

B. Probability distribution of thermal ballistic hops

Elementary mechanics provides the distance r of a ballistic
hop with initial velocity (vx,vy,vz),

r = 2

g
vz

√
v2

x + v2
y (1)

and the time of flight,

τ = 2vz

g
. (2)
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FIG. 1. (Color) Results of a Monte Carlo model calculation of
water molecules hopping on the lunar surface. Black molecules
reside on the surface and blue molecules are in flight. Color contours
represent surface temperature. The globe spins counterclockwise.
The concentration of water molecules is enhanced near the poles and
near the morning terminator. Water molecules are generated in the
subsolar region, destroyed by photodissociation during flight, and
some are trapped near the poles. The model is described in Ref. [11].

The Maxwell probability distribution for one component of
the velocity is

f (v) =
√

m

2πkT
e− mv2

2kT (3)

with the simple exception that vertical velocities can only be
upward, such that the probability distribution of vz is not f (vz)
but 2f (vz). Combining (1) and (3), the average flight distance
is

r =
∫ ∫ ∫

rf (vx)f (vy)2f (vz) dvxdvydvz = 2kT

mg
(4)

and the average flight time is

τ =
∫ ∫ ∫

τf (vx)f (vy)2f (vz) dvxdvydvz

= 2

g

√
2kT

πm
= 2

√
r

πg
. (5)

The combination kT /mg may be interpreted as the scale height
H of the exosphere. For example, r = 2H .

The probability density p(x,y) that molecules leave from
coordinate (0,0) and end up at location (x,y) after one hop is

p(x,y) =
∫ ∫ ∫

f (vx)f (vy)2f (vz)

×δ

(
x − 2

g
vzvx

)
δ

(
y − 2

g
vzvy

)
dvxdvydvz, (6)

where δ is the Dirac delta function. The result of the integrals
is

p(x,y) = 1

4πH
√

x2 + y2
e− 1

2H

√
x2+y2

. (7)

It can be verified that this probability distribution is normalized
and reproduces the mean flight distance (4),∫∫

p(x,y) dx dy = 1, (8)

r =
∫∫

p(x,y)
√

x2 + y2 dx dy = 2kT

mg
= 2H. (9)

The probability distribution of hop lengths follows from (7)
and is exponential,

p(r) = 1

2H
e−r/(2H ). (10)

The hop duration τ also has a probability distribution, not
derived here, and r and τ are correlated.

C. Random-walk model and diffusion coefficient

As a digression to the main line of thought, we consider
a sequence of hops as a random walk and the analogous
description in terms of a diffusion process. The variance of
the hop length can be calculated from (10) and is r2 = 2r2,
and it is obviously finite. It is possible to define a diffusion
coefficient

D = r2

2τ
= r2

τ
. (11)

(Such an association has already been made by Hodges [12]
for an exosphere with an exobase instead of a rigid surface.
His result was D = H |v|.)

On cold surfaces, the surface residence time is no longer
negligible compared to the duration of flight, and the time
τ should be the in-flight time plus the residence time. For
example, at 120 K, a temperature found on the nightside
of the Moon, the (extrapolated) sublimation rate of ice is
1 × 1013 mol/m2/s and τ = 1 × 106 s or about 2/5 of the
lunar day. The surface residence time depends very strongly
on temperature, and if the migration is dominated by residence
time, the temperature (spatial) dependence of D must not be
neglected.

Values for D and other relevant parameters are shown in
Table I. Mercury and the Moon have about the same diffusion
constant at the subsolar point, because the difference in gravity
is nearly compensated by the difference in surface temperature.

A random walk of discrete hops is described by a diffusion
process with the same diffusion coefficient D. For example,
for the distance d traveled,

d2 = 2Dt. (12)

Figure 2 shows that this is an excellent approximation. This
is not necessarily the case for other moments, such as d.
Nevertheless, (12) can be used to estimate that it takes about
9 h on the dayside of the Moon to travel a distance πR/2, from
the subsolar point to the night terminator.
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TABLE I. Parameters relevant for thermal ballistic hops of H2O
molecules: Surface acceleration g, mean hop length r (4), mean flight
duration τ (5), diffusion coefficient D (11), and ratio of hop length to
the radius R of the body. Unless noted otherwise, surface temperature
T is calculated for the subsolar point at the semimajor axis and for an
albedo of 0.1, which represents a maximum surface temperature for
this distance from the Sun. The surface residence time τ res is a rough
estimate based on the equilibrium vapor pressure of ice [16].

g T r τ τ res D r/R

(m2/s) (K) (km) (s) (s) (km2/s)

Mercury 3.7 617 154 230 2 × 10−11 103 0.06
Moon 1.62

subsolar 384 219 415 3 × 10−9 115 0.13
dayside 340 194 390 3 × 10−8 96 0.11
nightside 120 68 231 1 × 106 0.005 0.04

Ceres 0.27 231 788 1930 4 × 10−5 322 1.6
Ganymede 1.43 168 109 311 0.6 38 0.04

Definition of a diffusion coefficient also allows for the
association with a diffusion equation

∂σ

∂t
= ∇ · (D∇σ ) . (13)

The description (and abstraction) in terms of a diffusion co-
efficient represents a significant generalization of the problem.
The vertical dimension is eliminated, individual hops do not
need to be distinguished from a series of hops, and in-flight
time does not need to be distinguished from surface residence
time. It is (at least to low order) applicable to all of this.
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FIG. 2. Root-mean-square distance traveled after a time t , based
on (a) probabilistic time steps, Eqs. (1)–(3), (b) time steps of fixed size
(4) and duration (5) but random direction, and (c) the simple square-
root law (12) with diffusion coefficient (11). For the calculation of
(a) and (b), 2000 random walks each were averaged, which retains
small wiggles in the behavior. For case (a), times were rebinned for
this plot.

III. CONTINUUM FORMULATION

A continuum approximation provides a coarse-grained
description for spatial scales larger than the hop length. For
H2O on the Moon, these are spatial scales longer than a few
hundred km.

A. Derivation of a continuum equation for thermal
ballistic hops

The influx to location (0,0) from all surrounding areas is

I (0,0) =
∫∫

E(x,y)p(x,y) dx dy, (14)

where E is the number of water molecules that leave the
surface per area and per time (a sublimation rate). This integral
can be converted into a differential expression using a Taylor
expansion of E,

E(x,y) = E(0,0) + ∂E

∂x
x + ∂E

∂y
y

+∂2E

∂x2

x2

2
+ ∂2E

∂x∂y
xy + ∂2E

∂x2

y2

2
, (15)

where all derivatives are evaluated at (0,0). All odd terms
vanish upon integration in (14), and thus

I (0,0) = E(0,0) + 1

2

∫∫ (
∂2E

∂x2
x2+ ∂2E

∂y2
y2

)
p(x,y) dx dy

= E(0,0) + 1

2

∂2E

∂x2

∫∫
x2p(x,y) dx dy

+ 1

2

∂2E

∂y2

∫∫
y2p(x,y) dx dy. (16)

Using (7), it can be shown that∫ ∫
x2p(x,y) dx dy = (2H )2 = r2. (17)

By symmetry, the same result is obtained when integrating
over y2. Thus (16) becomes

I (0,0) − E(0,0) = r2

2

(
∂2E

∂x2
+ ∂2E

∂y2

)
= r2

2
∇2E. (18)

Equation (18) states that the incoming flux is the outgoing
flux plus a Laplacian term. In other words, the change in H2O
concentration, ∂σ/∂t = I − E, is

∂σ

∂t
= r2

2
∇2E(σ,T ) = 2H 2∇2E(σ,T ). (19)

Here E is expressed not in terms of x and y but in terms of σ

and T .
Since the derivation did not include time of flight, this

equation is not suitable for studying the spread of an episodic
source, as is (13). Instead, the equation is appropriate for
the steady-state distribution of σ . It does not (yet) include
any sources, such that there is no steady-state solution with
cold traps. It describes the geographic pattern of surface
concentration, as ever migrating water molecules react to a
changing temperature environment caused by the rotation of
the body.
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We expect a steady-state solution for σ that is constant
relative to solar illumination, not relative to the physical
surface. Hence, the time change has an advective component,
and the PDE for the steady state is

w · ∇σ = r2

2
∇2E(σ,T ), (20)

where w is the constant advection velocity due to the rotation
of the Moon relative to solar illumination, essentially in the
longitude direction.

B. Quantification of E

The sublimation rate E is a function of both temperature
T and the surface density of water molecules, σ . For physical
reasons, E(0,T ) = 0 and E(∞,T ) ≡ E∞(T ), where E∞ is the
sublimation rate of pure ice [17,18],

E∞(T ) = pe(T )

√
m

2πkT
, (21)

and pe is the equilibrium vapor pressure of ice [19]. Given
the scarcity of laboratory data, a separation of variables is a
reasonable approximation,

E(σ,T ) = E∞(T )f (σ ). (22)

A simple conceptual parametrization is

f = min(σ/σ0,1), (23)

where σ0 is the density of a monolayer; for small σ , E becomes
proportional to σ . Measurements of adsorption isotherms of
lunar grains have been used to approximate f (σ ) [20], but here
we will use (23).

In (19), the accumulation rate is given by the two-
dimensional Laplacian of the emission rate E. Where E has a
local minimum, more water will accumulate. As σ increases,
E will saturate at E∞(T ), and if the temperature is low,
it can remain a local minimum, and water will continue to
accumulate indefinitely. This corresponds to a cold trap.

C. Application: One-dimensional steady-state distribution

The one-dimensional version of (20) is

w
dσ

dx̃
= r2

2

d2E(σ,T )

dx̃2
(24)

defined on an equatorial circle. We can measure distance in
degree longitude rather than meters, such that x̃ becomes an
angle, w an angular velocity, and so on.

Without advection, w = 0, the left-hand side of (24) is zero.
Given the periodic domain, this implies that E is constant. In
this case, σ and T are directly related, σ = σ (T ); large T

corresponds to small σ .
With advection, w �= 0, the solution is qualitatively differ-

ent. Integrating (24) once,

wσ = r2

2

dE(σ,T )

dx̃
+ C. (25)

Integrating over the whole periodic domain,

2πC = w

∫ 2π

0
σ dx = wM, (26)

where we define the total mass as M . Hence,

σ (x̃) = r2

2w

dE(σ,T )

dx̃
+ M

2π
. (27)

Using separation of variables for E (22) and the simple
form (23), E = E∞(T )σ/σ0. We seek a solution where σ < σ0

everywhere, such that (25) becomes

0 = 1

β
E∞σ ′ +

(
1

β
E′

∞ − 1

)
σ + M

2π
, (28)

where β = 2wσ0/r
2.

Suppose E∞ (and hence temperature) is piecewise constant,
with one temperature on the dayside and another on the
nightside. Then, on each of the two pieces,

0 = λσ ′ − σ + M

2π
, (29)

where λ is a length scale,

λ = r2

2w

E∞
σ0

. (30)

The solution to (29) is

σ = M

2π
(1 + Cex̃/λ). (31)

Equation (31) is valid on the nightside, with coefficients Cn

and λn, and on the dayside, with coefficients Cd and λd .
Across the night-day boundary, σE∞ = const (and there-

fore σ will be discontinuous where the temperature has a
discontinuity). Choosing the location of the evening terminator
at x̃ = 0 and that of the morning terminator at x̃ = π ,

σn(0)En = σd (2π )Ed, (32a)

σn(π )En = σd (π )Ed. (32b)

Using (31), this leads to

(Cn + 1)En = (Cde
2π/λd + 1)Ed, (33a)

(Cne
π/λn + 1)En = (Cde

π/λd + 1)Ed, (33b)

and the cumbersome coefficients

Cn =
(

Ed

En

− 1

)
eπ/λd − 1

e
π( 1

λn
+ 1

λd
) − 1

, (34a)

Cd =
(

En

Ed

− 1

)
eπ/λn − 1[

e
π( 1

λn
+ 1

λd
) − 1

]
eπ/λd

. (34b)

Within our approximations, Ed/En = λd/λn. In the limits
π � λd and π 	 λn,

Cn ≈ π

λn

e−π/λn , (35a)

Cd ≈ −1 + 2π

λd

. (35b)

Using (31), the final approximate solutions are

σn = M

2π

(
1 + π

λn

e(x̃−π)/λn

)
, 0 > x̃ > π, (36a)

σd = M

2π

2π − x̃

λd

≈ 0, π > x̃ > 2π. (36b)
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FIG. 3. Analytic solution to the simplified one-dimensional prob-
lem as a function of local time (or geographic longitude). The surface
density of H2O, σ , is normalized to the average density.

Figure 3 shows the solution for λn = 3◦ (91 km). It reveals
a nearly constant σ = M/2π over most of the nightside
(0, . . . ,π ), an exponential increase before sunrise (π ), and
σ ≈ 0 on the dayside (π, . . . ,2π ). Even this simple model
reproduces the dusk-dawn asymmetry [11], with a high
concentration near the morning terminator, but not at the
evening terminator (Fig. 1). (In reality, this pileup continues
slightly into the dayside as the surface needs time to heat up
[11]).

The normalization of (36a) is
∫ π

0 σndx̃ = M . Almost no
mass resides on the dayside, half is spread out uniformly along
the nightside, and half is concentrated within a few λn of the
morning terminator. Essentially all of the dayside’s worth of
water is piled up behind the morning terminator.

We learn two things about the pileup part of the solution.
First, the pileup contains about half of the entire mass. Second,
the length scale for the pileup is

λn = r2

2w

En

σ0
. (37)

This length scale convolves several physical effects: r is the
average hop distance of molecules, w is the rotation speed
of the Moon (or, more accurately, that of its terminator), and
En is the sublimation rate of ice on the nightside. This last
quantity appears, because it steadily smooths the concentration
distribution on the nightside. (If the nightside becomes so cold
that migration is slow relative to the length of the night, the
assumptions of this derivation break down and the width will
simply be r . This may be marginally the case for the Moon).

D. Generalizations of the PDE

Sinks or sources can be added to (19),

∂σ

∂t
= (sources) − (sinks) + r2

2
∇2E. (38)

Examples of sources are water-bearing dust particles or icy
bodies that fall onto the surface or water molecules produced

chemically by interaction with the solar wind. Examples of
sinks are in-flight photodissociation (on the dayside) and
gravitational escape, the former being substantial and the latter
being negligible for the Moon. A cold trap is not a sink; it is
represented by an area where ice accumulates and E becomes
independent of σ .

An in-flight destruction probability β can be implemented
by replacing p in (14) with p exp(−β). By the same approxi-
mation, the normalization (8) is no longer unity but exp(−β).
With that, Eq. (18) becomes

I = e−βE + r2

2
e−β∇2E. (39)

To first order in β, Eq. (19) becomes

∂σ

∂t
= (1 − β)

r2

2
∇2E − βE. (40)

The equation for the steady-state distribution is

w · ∇σ = (sources) + (1 − β)
r2

2
∇2E − βE. (41)

IV. CONCLUSIONS AND PROSPECTS

Ensembles of thermal ballistic hops are described as
random walks and, separately, as a continuum process on
the surface of a sphere. Evidently, ballistic hops represent
a random walk on a sphere (equivalent to an event-driven
computational method). This random walk can be described
in terms of thermally driven hops of stochastic length and
duration, Eqs. (1) and (2), but is also well described by hops
of average length (4), average duration (5), and random launch
direction. Computationally, a two-dimensional random walk
is much simpler than three-dimensional ballistic hops. Three
random variables (3) are used to calculate the new geographic
coordinates, and if residence time τres is non-negligible a fourth
random number is involved.

Furthermore, Eq. (11) associates the random walk with a
diffusion coefficient and thus with a two-dimensional diffusion
equation, which provides (at the minimum) a low-order
continuum description of the migration process.

Equation (20) is the continuum formulation for the steady-
state solution on a rotating sphere, generalized in (41) to
include loss during migration. Figure 3 shows an approximate
analytic solution for an equatorial ring, which reproduces the
pileup of water molecules at the morning terminator, which
contains half the mass and has a width determined by a
combination of physical parameters (37). Solutions to the
two-dimensional steady-state equations (20) or (41) would be
even more insightful.

Solving the following open problems would be most useful
to the study of surface-bounded exospheres:

(i) Does a two-dimensional diffusion equation, as in (13),
exactly describe random walks of thermal ballistic hops? (Note
that hop length and hop duration are correlated). And how does
the first moment of d, d , depend on time?

(ii) What is the steady-state solution for the surface
concentration and exosphere density? Even without any loss
process, this solution is nontrivial. Note that any longitudinal
dependence implies diurnal variation.
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(iii) What fraction of water molecules is captured in
polar cold traps as a function of cold trapping area and
photodestruction rate? This is a first-passage problem. And is

there a significant tail in the distribution of molecular lifetimes,
due to molecules that hide on the nightside over consecutive
months?
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