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Magnetization plateaus in the antiferromagnetic Ising chain with single-ion anisotropy
and quenched disorder
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We have studied the presence of plateaus on the low-temperature magnetization of an antiferromagnetic spin-1
chain, as an external uniform magnetic field is varied. A crystal-field interaction is present in the model and
the exchange constants follow a random quenched (Bernoulli or Gaussian) distribution. Using a transfer-matrix
technique we calculate the largest Lyapunov exponent and, from it, the magnetization at low temperatures as a
function of the magnetic field, for different values of the crystal field and the width of the distributions. For the
Bernoulli distribution, the number of plateaus increases, with respect to the uniform case [Litaiff et al., Solid State
Commun. 147, 494 (2008)] and their presence can be linked to different ground states, when the magnetic field
is varied. For the Gaussian distributions, the uniform scenario is maintained, for small widths, but the plateaus
structure disappears as the width increases.
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I. INTRODUCTION

The physics of one-dimensional or quasi-one-dimensional,
spin-S (S ≥ 1), chains have attracted a considerable amount
of attention since Haldane’s prediction [1] that the one-
dimensional Heisenberg antiferromagnetic model should have
an energy gap between the singlet ground state and the first
excited triplet states in the case of an integer spin quantum
number, while the energy levels are gapless in the case of a
half-integer spin quantum number.

One fascinating characteristic of some low-dimensional
quantum systems is that they show magnetic plateaus, i.e.,
quantization of the magnetization at low temperatures near
the ground state. A general condition for the quantization
of the magnetization in low-dimensional magnetic systems
is derived from the Lieb-Schultz-Mattis [2] theorem. One
important issue on this matter is the effect of a single-ion
anisotropy term on the critical and multicritical phenomena,
which has been investigated by various theoretical meth-
ods, such as mean-field approximation [3]; transfer-matrix,
finite-size-scaling, and Monte Carlo simulation [4–7]; Bethe
lattice treatment [8,9]; and effective field theory [10,11].
The mechanisms for the appearance of these magnetization
plateaus in quasi-one-dimensional spin chains are expected
to be, among others, dimerization, frustration, single-ion
anisotropy, quantum effects, and periodic field. However,
plateau structures may also be present in classical models
at zero temperature. These structures, as we will see, are
connected to different ground-state configurations.
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Experimentally, the magnetization plateaus were ob-
served in high-fields measurements of several magnetic
materials such as the quasi-one-dimensional compounds
SrCu2O3 [12], Y2BaNiO5 [13], Ni(C2H8N2)2NO2ClO4

(abreviated NENP) [14,15], and Cu(NO3)22.5H2O [16];
triangular antiferromagnets C6Eu [17], CsCuCl3 [18],
and RbFe(MoO4)2 [19]; and in a quasi-two-dimensional
compound, with a Shastry-Sutherland lattice structure,
SrCu2(BO3)2 [20]. The magnetic susceptibility of this com-
pound shows a couple of characteristics of a spin gap system:
a Curie-Weiss behavior at high temperatures, with a round
maximum at 20K, followed by a sudden decrease and zero
spin susceptibility at T = 0 [21]. Another piece of evidence
for the extremely localized nature of triplet excitations is
obtained when one measures the magnetization curve at low
temperatures. Onizuka et al. [22] observed a predicted plateau
at 1/3 of the total magnetization around 50 T, in which
the magnetic superstructure is characterized by an unusual
stripe order of triplets. He observed that, irrespective of the
direction of magnetic field, the magnetization of SrCu2(BO3)2

is quantized at 1/8, 1/4, and 1/3 of the fully saturated Cu
moment.

Our goal in this work is to model the presence and
configuration of plateaus in a one-dimensional system with
quenched disorder. The presence of impurities is ubiquitous
in nature and the understanding of their effect is, therefore, of
great theoretical and experimental relevance. Here we focus
on random and frozen impurities, as opposed to deterministic
inhomogeneities (like aperiodic modulation, for example); the
latter will be studied in a forthcoming work.

This work is organized as follows. In Sec. II we present
the model and formalism. In Sec. III the numerical results and
discussions are given. Finally, the last section is devoted to
conclusions.
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II. MODEL AND FORMALISM

In general, most of the theoretical studies on low-
dimensional spin-S systems have been based on Heisenberg
Hamiltonians, which presents nontrivial quantum effects.
However, several studies have shown that it is possible to use
classical spin systems to obtain magnetic plateaus and study
the dependence of these on physical characteristics [23–28],
as discussed in the introduction. Consider, for example, the
Hamiltonian of a one-dimensional spin-1 classical system,
which uses the Ising-type variable instead of quantum spin
operators:

H = J
∑

i

Sz
i S

z
i+1 − H

∑
i

Sz
i + �

∑
i

(
Sz

i

)2
, (1)

where J stands for the antiferromagnetic (J > 0) exchange
coupling, � is the single-ion anisotropy (or the crystal-field
term), H is an external uniform magnetic field, and Sz

i = ±1,0.
In a previous work [26], it has been shown that this model

allows for magnetization plateaus at zero temperature. The
method used to calculate thermodynamic quantities for this
Hamiltonian [26] was the transfer-matrix technique [29,30],
which, besides being very simple, allows for exact results
when applied to one-dimensional classical systems. Within
this formalism, it can be shown [31] that the partition function
Z is given, as a function of the transfer matrix M, by

Z = Tr MN = λN
1 + λN

2 + λN
3 + · · · � λN

1 , (2)

for N → ∞, where N is the number of spins in a one-
dimensional lattice or the number of rows in a two-dimensional
one and λ1 > λ2 � λ3 � · · · are the eigenvalues of M.

Therefore, the free energy per spin reads

f (H,T ) = −kBT lim
N→∞

1

N
ln Z � −kBT ln λ1, (3)

where kB is the Boltzmann constant and T is the temperature.
For the model defined by the Hamiltonian in Eq. (1), the

transfer matrix reads

M =
⎛
⎝ xyz yz yz/x

1 1 1
y/(xz) y/z xy/z

⎞
⎠ , (4)

where x ≡ exp(−K), y ≡ exp(−d), and z ≡ exp(L), with
K = βJ , d = β�, L = βH , and β = 1/kBT .

Our goal in this work is to study the effects of disorder in the
plateaus’ structure. We introduce the disorder in the exchange
constant J , which will have its value given by a probability
distribution (see below). Therefore, the Hamiltonian now reads

H =
∑

i

JiS
z
i S

z
i+1 − H

∑
i

Sz
i + �

∑
i

(
Sz

i

)2
, (5)

such that the transfer matrix is given by

Mi =
⎛
⎝ xiyz yz yz/xi

1 1 1
y/(xiz) y/z xiy/z

⎞
⎠ (6)

with xi ≡ exp(−Ki) and Ki = βJi and all other definitions as
in Eq. (4).

We have used two different probability distributions,
namely,

P(Ji) = p δ (Ji − J (1 + σ )) + (1 − p) δ (Ji − J (1 − σ )) ,

(7)
where p = 1/2 and δ is the Dirac δ function, and

P(Ji) = 1√
2πσ 2

exp

[
− (Ji/J − 1)2

2σ 2

]
. (8)

In both cases, the width of the distribution, in unities of J , is
given by σ .

The expression shown in Eq. (3) is in fact a simplification
suitable for uniform systems. On more general grounds, the
partition function is obtained from applying the transfer matrix
to a suitable initial vector a great number of times, such that
the dominant behavior is obtained (this behavior is connected
to the greatest eigenvalue of the matrix, for uniform models).
Therefore, the correct expression for the calculation of the free
energy per site in the thermodynamic limit and for a disordered
model, within the transfer-matrix framework, reads

f (H,T )

kBT
= −�1 ≡ − lim

N→∞
ln

{∥∥∏N
i=1 Mi �v0

∥∥
‖�v0‖

}
, (9)

where now the transfer matrix Mi is a stochastic quantity and
its elements are taken from a given probability distribution
[see Eq. (6)] [32–35], N is the size of the strip, �v0 is a suitable
vector to start the iteration with, and the disordered transfer
matrix is applied N times to �v0. This starting vector was varied
and the results do not depend on it, for N 
 1. In the previous
expression, �1 is the greatest Lyapunov exponent [35]. It is
readily seen that �1 is the greatest eigenvalue of the transfer
matrix for uniform models.

Equation (9) holds for a given realization of the disorder;
since we are dealing with a quenched model, the free energy
has to be averaged for different realizations of the disorder.
This quenched average is represented by [...] and, then, we
have

f ave

kBT
= −[�1], (10)

such that the magnetization is given by

mave = −∂f ave

∂H
, (11)

where the derivative is numerically obtained.
Some technical points are worth stressing here. The first

relevant point is the size of the chain, N , which is supposed
to be big enough such that, after successive applications of the
transfer matrix, a given accuracy is obtained for the free energy.
For practical purposes, we have iterated Eq. (9) until the values
for the free energy do not differ by more than 0.1%; roughly,
this precision is achieved for N � 105. For this value of N , the
number of disorder realizations, Nd , which lead to an error of
1% or less in the magnetization is Nd ∼ 10. The error in mave

is obtained as one standard deviation among the Nd values. For
the numerical derivatives involved in Eq. (11), a value of δH (in
units of J ) of order 10−4 was used. Another important point is
that our calculation is made at low temperatures. Therefore, the
interaction constant K is big and the iterated vectors may have
big components. To avoid overflow, we normalize the vectors
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FIG. 1. Low-temperature magnetization plateaus for the disor-
dered model defined by the Hamiltonian in Eq. (5), with �/J = 1.
The exchange constant is obtained from a Bernoulli distribution
[Eq. (7)] with width σ . In the inset, we show the plateau structure for
the uniform model, for comparison.

after each iteration of the transfer matrix and use their norms to
calculate the free energy, using Eq. (9). Note also that, for finite
temperatures, the free energy is an analytic function of the field.
This analyticity precludes mathematically flat regions, with
sharp transitions. However, on the scale of measurements or on
numerical calculations, such plateau regions can and do occur.
Moreover, an extrapolation procedure to the zero-temperature
limit clearly shows that the usual plateau structure, with sharp
transitions between steps, is obtained.

III. RESULTS AND DISCUSSION

First, we show our results for the uniform case in order to
test our procedure and code. The results are presented in the
inset of Fig. 1, where the magnetization m is depicted as a
function of the reduced magnetic field, H/J , for �/J = 1:
They agree with those obtained in Refs. [23] and [26]. In fact,
since our procedure consumes less time and memory, we are
able to go to temperatures closer to zero and there is less
rounding in our plateaus than for the ones in Ref. [23].

For 0 � �/J � 1, the first plateau (see inset of Fig. 1), at
m = 0, is linked to the configuration (+−), the second one,
at m = 1/2, reflects the configuration (+0), and the last one
is connected to the configuration (++). Here, +, −, and 0
stand for the values +1, −1, and 0 for the spins, respectively.
The actual configuration of the whole chain is obtained by
repeating the two-spin structure inside parentheses. The first
step happens at H/J = 2 − �/J and the second one takes
place at H/J = 2 + �/J . On the other hand, for �/J � 1,
the first plateau, with m = 0, is connected to the configuration
(00), while the other two plateaus correspond to the same
configurations as for 0 � �/J � 1. The step at the left-hand
side now happens at H/J = �/J and the step at the right-
hand side is placed in the same position as for 0 � �/J � 1.
We have also calculated the magnetization vs magnetic field
behavior for �/J < 0: Only two plateaus are present, since
negative values of � do not favor the zero state [26].

. . .
S S S S S S1 2 3 4 5 6

. . .

FIG. 2. Possible portion of the one-dimensional lattice. Weak
interactions are represented by thin lines (like the one between spins
S2 and S3, for example) and strong interactions are represented by
thick lines (like the one between spins S3 and S4, for example).

We now present our results for the disordered model given
by the Bernoulli distribution [see Eq. (7)]. In Fig. 1, where
the plateaus structure is shown for three different values of
the width σ and for �/J = 1 (the qualitative results do
not differ for other values of �/J � 0; for �/J � 0, as
stated above, there are only two plateaus for the uniform
model but the introduction of disorder brings the same overall
structural changes as for the three-plateau configuration), for a
temperature T = 0.01 (henceforth, we refer to the temperature
in unities of J/kB , i.e., kBT /J ). We notice that the number of
plateaus increases with the disorder but we still can connect
them to different ground-state configurations.

In order to make this connection, we depict, in Fig. 2,
a portion of the chain, with weak and strong interactions
represented by thin and thick lines, respectively. Due to the
random nature of the interactions spins may be connected
to their two first neighbors by weak interactions only, by
strong ones only, or by one of each. In what follows, we show
some examples that link the steps in Fig. 1 with ground-state
configurations.

Let us imagine that the magnetic field is strong enough that
all spins are in the +1 state; this corresponds to m = 1 (see
Fig. 1). When the field is decreased, spins connected to their
two first neighbors by strong links will change first, to the 0
state. But not all spins with this neighborhood will turn, since
these changes increase the contribution of the magnetic-field
term to the energy (although decreasing the corresponding
contribution of the exchange and crystal-field terms to the
Hamiltonian). It is energetically favorable to turn every other
spin in a cluster of contiguous strong interactions. In Fig. 3(a),
spins represented by S2 and S4 (or by S3 and S5) will turn
first, when H is decreased, while in Fig. 3(b) spins S2 and S4

will go to the 0 state when the magnetic field is decreased. In
any case, the quoted spins will turn when the magnetic field is

(b)

. . .
S S S S S S1 2 3 4 5 6

. . .

S S S S S S1 2 3 4 5 6

. . .. . .

(a)

FIG. 3. Clusters of spins connected by strong interactions with
an even number of spins (a) and an odd number of spins (b). In the
former, spins S2 and S4 (or S3 and S5) will change first to the 0 state
when H is decreased. In the latter, spins S2 and S4 will turn first under
the same conditions.
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(a)
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. . .. . .
S S S S S S1 2 3 4 5 6 S

FIG. 4. Clusters of spins which interact with their nearest neigh-
bors via one strong and one weak bond with an even number of spins
(a) and with an odd number of spins (b). In the former, spins S2 and S4

(or S3 and S5) will change first to the 0 state when H is decreased. In
the latter, spins S2, S4, and S6 will turn first under the same conditions.

decreased and crosses the critical value Hc:

Hc/J ≡ 2 (1 + σ ) + �/J, (12)

which correspond to the three rightmost steps in Fig. 1 (recall
that �/J = 1). To calculate the drop in the magnetization
on these steps, one has to work out the statistics of random
islands of bonds, which is a one-dimensional percolation
problem [36]. The probability of a cluster of s strong bonds
to be generated is ps(1 − p)2, while the number of spins that
change state is ns = s/2, for even s, and ns = (s − 1)/2, for
odd s. Therefore, the fraction of spins that change state, ϕs , is

ϕs =
∞∑

s=2,s even

s

2
ps(1 − p)2 +

∞∑
s=3,s odd

(s − 1)

2
ps(1 − p)2,

(13)
where the first sum is over even values of s and the second
one is over odd values of s. For p = 1/2, we obtain ϕs =
1/6 = 0.166 . . . . Therefore, the magnetization drops to 5/6 =
0.833 . . . , independent of σ .

At H/J = 3 another step is present, now independent of
σ , and the drop in m is again 1/6. The spins that change state
are those in clusters such that the spins interact with their
nearest neighbors via one strong and one weak bond, like the
ones depicted in Fig. 4. The spins which change state are, for
example, S2 and S4 (or S3 and S5) in Fig. 4(a) and S2, S4, and
S6 in Fig. 4(b). The calculation is the same as for the preceding
case and, therefore, the drop on the magnetization is also 1/6.
However, the energy balance is a little bit different and the step
takes place at

Hc/J = 2 + �/J. (14)

The next step is connected to spins on islands of contiguous
weak bonds and the process is the same as the one described
above for islands of strong contiguous bonds. The magnetiza-
tion decreases by 1/6 and the steps are located at

Hc/J = 2(1 − σ ) + �/J. (15)

Equivalent steps are obtained when spins on the 0 state turn to
the −1 state. These steps are placed on smaller values of H/J .

Therefore, the presence of random disorder described by a
Bernoulli distribution increases the total number of steps, when
compared to the uniform model, for the same value of �/J .
However, the steps are still connected to the energy balance
between different configurations of ground states (see Fig. 1).
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 Δ/J=0.5
 Δ/J=1.0
 Δ/J=1.5
 Δ/J=2.0

σ=0.1

FIG. 5. Magnetization vs magnetic field for different anisotropy
parameters �/J , with variance σ = 0.1, and at T = 0.01, for the
Gaussian distribution, Eq. (8).

We now turn to a Gaussian distribution. We calculate the
magnetization as a function of �/J , the magnetic field H , and
the variance σ of the Gaussian probability distribution given
by Eq. (8). The numerical results are obtained as follows: In
Figs. 5 and 6, the magnetization m is plotted at T = 0.01
as a function of H/J and for four values of the anisotropy
parameter (namely, �/J = 0.5, 1.0, 1.5, and 2.0), with σ =
0.1 and σ = 0.2 respectively.

As expected (see Fig. 5), the results for low σ are
qualitatively equivalent to those for the uniform model and
three plateaus are present for �/J > 0. This equivalence
comes from the fact that, for small values of σ , the Gaussian
distribution is concentrated around the value Ji = J [see
Eq. (8)]. This mimics the uniform model, where all exchange
interactions are the same. For the Bernoulli distribution, on
the other hand, no matter the (finite) width of the distribution,
the two peaks have the same height. Therefore, two different
exchange parameters will be involved in this model. This
behavior is depicted in Fig. 1: As long as σ �= 0, there will
be more steps than for the uniform model. But we can see
that some steps will disappear when σ goes to 0, regaining

m
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 Δ/J=0.5
 Δ/J=1.0
 Δ/J=1.5
 Δ/J=2.0

σ=0.2

FIG. 6. Magnetization vs magnetic field for different anisotropy
parameters �/J , with variance σ = 0.2, and at T = 0.01, for the
Gaussian distribution, Eq. (8).
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FIG. 7. Magnetization vs magnetic field for three different values
of σ , with anisotropy parameter �/J = 1.0, and at T = 0.01, for the
Gaussian distribution, Eq. (8).

the uniform model behavior. Note, however, that the width of
the plateau diminishes when disorder is introduced, with the
corresponding rounding of the steps. This is consistent with
the interpretation that the steps are connected to transitions
between different ground states. The continuous probability
distribution leads to a variety of strengths for the exchange
interaction, such that different spins change state at different
values of H/J . Note that the steps are still centered at the
values for the corresponding steps for the uniform model (as
discussed in the first paragraph of Sec. III); the effect of the
distribution is only to smooth some of these steps. Also, the
left-hand-side steps for �/J = 1.5 and 2.0 are not rounded;
the reason is that the energy balance for the transition between
states (00) and (+0) (see again first paragraph of Sec. III) does
not involve the exchange constant.

The picture discussed in the last paragraph is supported by
the results depicted in Fig. 6, for σ = 0.2. A wider distribution
for J allows for a more pronounced rounding of some steps
(the left-hand steps for �/J = 1.5 and 2.0 remain as for the
uniform model, as discussed). Another consequence of this
picture is that, for �/J = 0.5, the intermediate plateau is not
present anymore (compare with Fig. 5, where this plateau,
for �/J = 0.5, still exists, although it is narrower than for
�/J � 1).

In Figs. 7 and 8, the magnetization m at T = 0.01 is plotted
as a function of H/J for several values of the variance σ (0.1,
0.2, and 0.3) with �/J = 1.0 and 2.0, respectively. These
figures show that the steps are rounded when the width of the
Gaussian distribution is increased.

Our results indicate that the Gaussian distribution only
rounds the steps for small values of its width. For large ones,
the continuous distribution tends to eliminate the steps and
plateaus. This is consistent with the observation that these
plateaus are a consequence of transitions between different
spin configurations at the ground state.

The presence of magnetic plateaus in the present system
confirms that this structure may be obtained in classical
models. Similar behavior has been observed in theoretical
studies [23,37] and in experimental results [15]. Note that
the ground-state phase diagrams are symmetric with respect

m
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FIG. 8. Magnetization vs magnetic field for three different values
of σ , with anisotropy parameter �/J = 2.0, and at T = 0.01, for the
Gaussian distribution, Eq. (8).

to H/J = 0 line, i.e., invariant under the transformation
H → −H and S → −S. As a final note, we mention that
the effects of disorder depend on the model and may be
completely different from the ones observed in this work.
When applied to a quantum model, for example, disorder
following a Gaussian distribution completely eliminates the
presence of plateaus [38].

IV. CONCLUSIONS

In this work, we studied the low-temperature magnetization
plateaus of a classical spin system with discrete symmetry.
By using a transfer-matrix technique, we calculate the mag-
netization behavior at low temperatures as a function of the
anisotropy parameter �/J , magnetic field H , and variance
σ of the probability distributions. It is found that positive
single-ion anisotropies have a significant effect on the low-
temperature magnetic properties in the system, as the external
field is varied. The number of plateaus for the Bernoulli
distribution increases, when compared to the uniform model,
and their presence is linked to transitions between different
ground states. For the Gaussian distribution and small width
σ , only one intermediate plateau (at m = 1/2) is found. The
steps in the magnetization-versus-magnetic field graphs are
rounded as the width of the Gaussian distribution is increased
and the overall picture is consistent with the presence of
steps due to transitions between different ground states. Note,
however, that the effects of the introduction of a Gaussian
distribution depends strongly on the underlying model (see, for
example, Ref. [38]). Our results are compatible with previous
experimental and theoretical studies. Work is under way on
spin-alternating chain models, which are expected to show
many interesting phenomena [39].
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