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Smoluchowski diffusion equation for active Brownian swimmers
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2Department of Physics, Universidad Autonoma Metropolitana-Iztapalapa, Distrito Federal 09340, Mexico
(Received 29 January 2015; published 29 May 2015)

We study the free diffusion in two dimensions of active Brownian swimmers subject to passive fluctuations on
the translational motion and to active fluctuations on the rotational one. The Smoluchowski equation is derived
from a Langevin-like model of active swimmers and analytically solved in the long-time regime for arbitrary
values of the Péclet number; this allows us to analyze the out-of-equilibrium evolution of the positions distribution
of active particles at all time regimes. Explicit expressions for the mean-square displacement and for the kurtosis
of the probability distribution function are presented and the effects of persistence discussed. We show through
Brownian dynamics simulations that our prescription for the mean-square displacement gives the exact time
dependence at all times. The departure of the probability distribution from a Gaussian, measured by the kurtosis,
is also analyzed both analytically and computationally. We find that for the inverse of Péclet numbers �0.1, the
distance from Gaussian increases as ∼t−2 at short times, while it diminishes as ∼t−1 in the asymptotic limit.
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I. INTRODUCTION

The study of self-propelled (active) particles moving at
small scales has received much attention [1–9]. This is because
phenomena in nature, like the motion of plankton, viruses,
and bacteria, have an important role in many biological
processes as well as in industrial applications and, more
generally, because active particles are suitable elements of
analysis in the context on nonequilibrium statistical physics.
Moreover, matter made by self-propelled particles has been
observed to behave in very different ways compared to
matter conformed by passive ones [10,11], mainly due to the
out-of-equilibrium nature of active systems characterized by
persistent motion. Hence, the search for analytical solutions
of systems conformed of active particles, even in the simplest
situations, as in the absence of boundaries or chirality, is of
current interest.

From a technological point of view, the study of active
particles is also very relevant. For example, the bioengineer-
ing community is constructing self-propelled micromachines
[12,13] inspired by natural swimmers for the purpose of
making devices able to deliver specialized drugs in precise
regions inside the human body [14] or to serve as microma-
chines able to detect and diagnose diseases [15–17]. These
microrobots, in the same way as the smallest microorganisms,
are subject to thermal fluctuations or Brownian motion, which
is an important effect to take into account, since thermal
fluctuations make the particles lose their orientation, thus af-
fecting the particles’ net displacement. Most classical literature
considering the effect of loss of persistence orientation, due
to Brownian motion, on the diffusion of active particles has
used a Langevin approach, since it can be considered a direct
way of finding the particles effective diffusion. Within this
approach, isotropic self-propelled bodies subject to thermal
forces [5,18,19] and anisotropic swimmers [18] have been
treated in the absence and presence of external fields [20–23].
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A Smoluchowski approach to study the effective diffusion of
active particles in slightly complex environments has also been
undertaken. For example, Pedley [24] introduced a continuum
model to calculate the probability density function for a diluted
suspension of gyrotactic bacteria. Bearon and Pedley [25]
studied chemotactic bacteria under shear flow and derived
an advection-diffusion equation for cell density. Enculescu
and Stark [26] studied, theoretically, the sedimentation of
active particles due to gravity and subject to translational
and rotational diffusion [27]. Similarly, Pototsky and Stark
[28] followed a Smoluchowski approach and analyzed active
Brownian particles in two-dimensional traps. Saintillan and
Shelley [29] used a kinetic theory to study pattern formation
of suspensions of self-propelled particles.

Self-propelled particles in nature move, in general, with a
time-dependent swimming speed, like microorganisms that
tend to relax (rest) for a moment and then to continue
swimming [30]. In this work, we assume that particles move
freely with a constant swimming speed, which is a simplified
model that has been supported by experimental work [20,31]
and has also been adopted when studying collective behavior
[32]. Other more complex scenarios where, for example, active
Brownian particles are subject to external flows, have been
reported and solved following the Langevin approach [23].

In this paper we follow the approach of Smoluchowski
and focus on the coarse-grained probability density of finding
an active Brownian particle—that diffuses translationally and
rotationally in a two-dimensional, unbounded space, and
immersed in a steady fluid—at position x at time t without
making reference to its direction of motion û. We derive, from
Langevin’s equations, the Smoluchowski’s equation for such
probability density and we solve it analytically.

Briefly, the Smoluchowski’s equation is obtained by the
use of Fourier analysis to translate the Fokker-Planck equation
for active particles [see Eq. (3)] into a hierarchical infinite
set of coupled ordinary differential equations for the Fourier
coefficients (that simply correspond to the projections of
the complete probability distribution, the one that depends
explicitly on x,û, and t , onto the Fourier basis on the same
support of the direction of motion, i.e., [−π,π ]), where the
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quantity of interest coincides with the Fourier coefficient
corresponding to the lowest Fourier mode. The hierarchy is
similar to that of Bogoliubov-Born-Green-Kirkwood-Yvon
that appears in kinetic theories that use the Boltzmann
equation. Clearly, any attempt to resolve the complete system
is impractical, thus we analyze the consequences of a closure
of the hierarchy at the second and third levels, at which
we are able to provide explicit solutions for the probability
density function (p.d.f.) that is of our interest. Subsequently,
we transform back to the coordinate space, and we are able
to explicitly find the p.d.f. of an active Brownian particle in
the short- and long-time regimes. The exact time dependence
of mean-square displacement (msd) for a swimmer is found,
and classical results for the enhanced diffusion of an active
particle are recovered. We also find theoretical results for
the kurtosis of the swimmer, hence a discussion concerning
the non-Gaussian behavior at intermediate times of an active
swimmer p.d.f. is also offered. Finally, and for comparison
purposes, simulations based on Brownian dynamics were also
performed, and we obtained an excellent agreement among
our theoretical and computational results.

II. THE MODEL

Consider a spherical particle of radius a, immersed in a fluid
at fixed temperature T , that self-propels in a two-dimensional
domain. The particle is subject to thermal fluctuations,
ξT (t), which affects the translational part of motion, and
to active fluctuations, ξR(t), which affects the rotational
one. Both kinds of fluctuations are modeled as white noise,
i.e., 〈ξT 〉 = 〈ξR〉 = 0, 〈ξi,T (t)ξj,T (s)〉 = 2DBδ(t − s)δi,j and
〈ξR(t)ξR(s)〉 = 2D�δ(t − s), where the subscripts i,j denote
the Cartesian components x, y, of a two-dimensional vector.
Here DB = kBT /6πηa and D� are, respectively, the trans-
lational and rotational diffusivity constants, with η being the
viscosity of the fluid.

The particle swimming velocity, Us(t), is written explicitly
as Us(t)û(t), where we denote by û(t) = [cos ϕ(t), sin ϕ(t)]
(ϕ(t) being the angle between the direction of motion and the
horizontal axis) the instantaneous unit vector in the direction
of swimming and Us(t) the instantaneous magnitude of the
swimming velocity along û(t). Each of these quantities may
be determined from its own dynamics [33], and Langevin
equations for each may be written. Here we consider the
case of a faster dynamics for the swimming speed such
that Us(t) = U0 = const. In this way, the dynamics of this
active Brownian particle, subject to passive-translational and
active-rotational noises, is determined by its position x(t) and
its direction of motion û(t), computed from ϕ(t), that obey the
following Langevin equations:

d

dt
x(t) = U0 û(t) + ξT (t), (1a)

d

dt
ϕ(t) = ξR(t). (1b)

In this way, the temporal evolution of the particle’s position
[Eq. (1a)] is thus determined by two independent stochastic
effects, one that corresponds to translational fluctuations due
to the environmental noise and the other to the swimmer’s
velocity whose orientation is subject to active fluctuations

0
0

D~B = 0.001
D~B = 0.00316
D~B = 0.01
D~B = 0.0316
D~B = 0.1
D~B = 0.316
D~B = 1.0

FIG. 1. (Color online) Single-particle trajectories for different
values of D̃B , specifically 0.001, 0.00316, 0.01, 0.0316, 0.1, 0.316,
and 1.0. Data are generated by solving Eq. (1) during 104 time steps;
the initial position is chosen at the origin while the initial orientation
is drawn from a uniform distribution in [0,2π ).

[Eq. (1b)]. These same equations have been considered widely,
particularly in Ref. [34], to model the motion of spherical
platinum-silica Janus particles in a solution of water and H2O2.

From now onward, we use D−1
� and U0D

−1
� as time and

length scales, respectively, such that D̃B ≡ DBD�/U 2
0 is the

only free, dimensionless parameter of our analysis which
coincides with the inverse of the so-called Péclet number,
which in this case corresponds to the ratio of the advective
transport coefficient, U 2

0 /D�, to the translational diffusion
transport coefficient, DB . For the Janus particles studied by
Pallaci et al. in Ref. [27], we have that D−1

� ≈ 0.9 s−1, DB ≈
0.34 μm2/s with swimming speeds between 0.3 and 3.3 μm/s.
These values give D̃B between 0.035 and 4.2. Numerical
results, on the other hand, are obtained by integrating Eqs. (1)
by use of the semi-implicit Euler or Euler-Cromer scheme,
which improves on the standard Euler method. A time step of
0.005 was used in simulations. In Fig. 1 seven single-particle
trajectories are presented to show the effect of varying D̃B ; it
can be noticed that the effects of persistence are conspicuous
for small values of D̃B (less-wiggly trajectories in Fig. 1,
shown in thick lines).

An equation for the one-particle probability density
P (x,ϕ,t) ≡ 〈δ(x − x(t))δ(ϕ − ϕ(t))〉 can be derived by dif-
ferentiating this P (x,ϕ,t) with respect to time, namely

∂

∂t
P (x,ϕ,t) + U0û · ∇P (x,ϕ,t)

= − ∂

∂ϕ
〈ξR(t)δ[x − x(t)]δ[ϕ − ϕ(t)]〉

−∇ · 〈ξT (t)δ[x − x(t)]δ[ϕ − ϕ(t)]〉, (2)

where 〈·〉 denotes the average over-translational and rotational
noise realizations, ∇ = (∂/∂x,∂/∂y) and û = (cos ϕ, sin ϕ).

The last two terms of Eq. (2) can be calculated by
the use of Novikov’s theorem [35,36], which states that
for a functional F [β(t)] of the stochastic Gaussian process
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β(t) with vanishing average, 〈β(t)〉 = 0, and autocorrelation
function, 〈β(t)β(s)〉 = 2γ δ(t − s), γ being the noise intensity,
the quantity 〈β(t)F [β(t)]〉 equals γ

〈̃
δF [β(t)] /̃δβ(t)

〉
, where

δ̃F /̃δβ denotes the variational derivative of F with respect
to β. In the particular case of Eq. (2), F [ξR(t)] and F [ξT (t)]
correspond respectively to δ[x − x(t)] and δ[ϕ − ϕ(t)], whose
explicit dependence on the processes ξR(t) and ξT (t) is
revealed through integration of Eqs. (1). By the use of
this theorem and after some algebraic steps, we obtain the
following Fokker-Planck equation for an active Brownian
particle:

∂

∂t
P (x,ϕ,t) + U0 û · ∇P (x,ϕ,t)

= DB∇2P (x,ϕ,t) + D�

∂2

∂ϕ2
P (x,ϕ,t). (3)

We now start to analytically solve Eq. (3) with the initial
condition P (x,ϕ,0) = δ(2)(x)/2π , which corresponds to the
case when the particle departs from the origin in a random
direction of motion drawn from a uniform distribution in
[−π,π ], with δ(2)(x) being the two-dimensional Dirac’s δ

function. To do so, we apply the Fourier transform to Eq. (3),
and we obtain

∂

∂t
P̃ (k,ϕ,t) + iU0 û · k P̃ (k,ϕ,t)

= −DB k2P̃ (k,ϕ,t) + D�

∂2

∂ϕ2
P̃ (k,ϕ,t), (4)

where

P̃ (k,ϕ,t) = (2π )−1
∫

d2x e−ik·x P (x,ϕ,t), (5)

and k = (kx,ky) denotes the Fourier wave vector. For
U0 = 0, Eq. (4) has as solution the set of eigenfunctions
{e−(DBk2+D�n2)t einϕ} with n an integer. Thus we expand
P̃ (k,ϕ,t) on this set, expressly

P̃ (k,ϕ,t) = 1

2π

∞∑
n=−∞

p̃n(k,t)e−(DBk2+D�n2)t einϕ, (6)

with k = |k|. This expansion features two advantages: On the
one hand, it allows us to separate the effects of translational
diffusion contained in the prefactor e−DBk2t from the effects
of rotational diffusion due to active fluctuations, as has been
experimentally shown to occur for Janus particles driven
by the local demixing of a binary chemical mixture due to
local heating with light [37]. On the other, it enables the
identification of the time scales associated to each Fourier
mode n, whereby the higher the mode the faster it decays
with time. In fact, one should expect in the asymptotic
limit, when high modes have been damped out, a rotationally
symmetric distribution. Additionally, notice that expansion (6)
corresponds to the power series in û of P̃ (k,ϕ,t) [38,39] if the
coefficients p̃0,p̃±1,p̃±2, . . . , are identified with the entries of
the respective rank 0, 1, 2, . . . , tensors of such series (see the
Appendix).

The coefficients of the expansion (6) are obtained by the
use of the standard orthogonality relation among the Fourier

basis functions {einϕ}, explicitly

p̃n(k,t) = e(DBk2+D�n2)t
∫ π

−π

dϕ P̃ (k,ϕ,t)e−inϕ. (7)

After substitution of Eq. (6) into Eq. (4) and use of the
orthogonality of the Fourier basis functions we get the
following set of coupled ordinary differential equations for
the n-th coefficient of the expansion p̃n(k,t), namely

d

dt
p̃n = −U0

2
ik e−D�t [e2nD�t e−iθ p̃n−1 + e−2nD�teiθ p̃n+1].

(8)

Note that we have introduced the quantities kx ± iky = ke±iθ .
Our main interest lies on the coarse-grained p.d.f. P0(x,t) =∫ 2π

0 dϕ P (x,ϕ,t), which gives the probability density of
finding a particle at position x at time t independently of
its direction of motion. This is given by the inverse Fourier
transform of

P̃0(k,t) = e−DBk2t p̃0(k,t), (9)

as can be checked from Eq. (7), e−DBk2t being the translational
diffusion propagator. Thereby, P0(x,t) is given by the con-
volution of the translational propagator with the probability
distribution that retains the effects of the active rotational
diffusion, p0(x,t), i.e.,

P0(x,t) =
∫

d2x′G(x − x′,t)p0(x′,t), (10)

with p0(x,t) the inverse Fourier transform of p̃0(k,t) and
where

G (x,t) = e−x2/4DBt

4πDBt
(11)

is the Gaussian propagator of translational diffusion in two
dimensions.

In principle p̃0(k,t) can be found by solving the infinite
set of coupled ordinary differential equations (8), with the
initial conditions p̃n(k,0) = δn,0/2π , a task that is practically
unattainable. Notwithstanding this, we use the explicit appear-
ance of the time scales in the factor e−D�n2t associated to each
mode n in the expansion (6) to approach the solution from
the diffusive limit. Thus, if we consider up to modes n ± 2,
Eqs. (8) reduce to

d

dt
p̃0 = −U0

2
ik e−D�t [e−iθ p̃−1 + eiθ p̃1], (12a)

d

dt
p̃±1 = −U0

2
ik [eD�te∓iθ p̃0 + e−3D�te±iθ p̃±2], (12b)

d

dt
p̃±2 = −U0

2
ik [e3D�te∓iθ p̃±1], (12c)

whereby, after some algebra, Eqs. (12a) and (12b) are
combined into a single equation for p̃0, that is,

d2

dt2
p̃0 + D�

d

dt
p̃0

= −U 2
0

2
k2p̃0 − U 2

0

4
k2e−4D�t (e2iθ p̃2 + e−2iθ p̃−2). (13)
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As is shown in the Appendix, Eq. (13) corresponds to
the diffusion-drift approximation used in the hydrodynamic
treatment in Refs. [38,39].

A. The diffusive limit

At this stage we argue that in the diffusive limit we may
neglect the second term in the right-hand side of Eq. (13)
(the contribution of high harmonics modes decay so fast that
only the first modes n = 0, ± 1 would be enough for an
approximated description of rotationally symmetric solution)
this approximation leads to the telegrapher’s equation [40,41]

d2

dt2
p̃0 + D�

d

dt
p̃0 = −U 2

0

2
k2p̃0, (14)

FIG. 2. (Color online) Left: Snapshots of the positions of 105

particles taken at different times, namely, from top to bottom, D�t =
0.01, 0.1, 1.0, 10, and 100, for an inverse Péclet number D̃B = 0.001.
Notice the formation of a rotationally symmetric ringlike structure
(second panel from top) that develops from a Gaussian distribution
due to the effects of persistence in the motion of the particles. The
structure fades out as time passes (third and fourth images from top)
to reach a Gaussian distribution at long times (bottom image). Right:
Dimensionless p.d.f. P̃0(k,t) are shown as function of kU0/D�. The
black-dashed lines correspond to the solutions obtained from (16), the
solid red ones correspond to the solutions obtained from inversion of
the Laplace transform of (23), and the blue circles give the exact p.d.f.
obtained from the numerical Fourier transform of the data shown in
the left column.

which is rotationally symmetric in the k space and, therefore,
gives rise to rotationally symmetric solutions in spatial
coordinates if initial conditions with the same symmetry are
chosen. One may check that Eq. (14) has the solution

p̃0(k,t) = p̃0(k,0) e−D�t/2

[
D�

2ωk

sin ωkt + cos ωkt

]
, (15)

with ω2
k ≡ U 2

0 k2/2 − D2
�/4. From this expression P̃0(k,t)

follows straightforwardly

P̃0(k,t) = 1

2π
e−(DBk2+D�/2)t

[
D�

2ωk

sin ωkt + cos ωkt

]
. (16)

This solution is shown as a function of kU0/D� at different
times in Fig. 2 (black dashed line).

In the asymptotic limit (t → ∞), at which the coherent
wavelike behavior related to the second-order time derivative
in Eq. (14) can be neglected (mainly due to the random
dispersion of the particles direction of motion), p0(x,t) tends
to a Gaussian distribution with diffusion constant U 2

0 /2D�,
namely

p0(x,t) −−−→
t→∞

e−x2/4(U 2
0 /2D�)t

4π
(
U 2

0 /2D�

)
t
. (17)

Substitution of this last expression into Eq. (10) and perform-
ing the integral, one gets in the long-time regime

P0(x,t) = e−x2/4(DB+U 2
0 /2D�)t

4π
(
DB + U 2

0

/
2D�

)
t
, (18)

from which the classical effective diffusion constant D =
DB + U 2

0 /2D� is deduced [27].
In the short-time regime D�t � 1, we approximate

p̃0(k,t) ≈ p̃0(k,0) = (2π )−1 and the p.d.f. in spatial coordi-
nates corresponds to the Gaussian

P0(x,t) ≈ 1

2π

e−x2/4DBt

4πDBt
. (19)

Though it is a difficult task to obtain from Eq. (10) the explicit
dependence on x and t of P0, a formula in terms of a series
expansion of the operator ∇2 applied to G(x,t) can be derived
to say

P0(x,t) = 1

2π
e−D�t/2

∞∑
s=0

1

(2s)!

(
1 + D�t

2

1

2s + 1

)

×
(

D�t

2

)2s (
1 − 2U 2

0

D2
�

∇2

)s

G(x,t). (20)

Note that the last formula can be rewritten in terms of ∂t instead
of ∇2 by using that ∇2G = D−1

B ∂tG.

B. A shorter time description: Memory effects

If Eq. (13) is considered along (12c), we obtain after some
algebra that

d2

dt2
p̃0 + D�

d

dt
p̃0 = − U 2

0 k2
∫ t

0
ds η(t − s)p̃0(k,s)

− U 2
0

4
e−4D�t q̃(k), (21)
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where η(t) = (3/4) δ(t) − D�e−4D�t is a memory function
that takes into account the Fourier modes p̃±2 and q̃(k) is a
term that depends only on the initial conditions (to be specific)
q̃(k) = k2[ei2θ p̃2(k,0) + e−i2θ p̃−2(k,0) − p̃0(k,t)]. This last
term reduces to −k2/2π for the initial conditions considered
in our analysis.

The solution to Eq. (21) can be found by use of the Laplace
transform, and explicitly we get

p̃0(k,ε) = (ε + 4D�)(ε + D�) + U 2
0 k2/4

(ε + 4D�)
[
ε2 + D�ε + (3/4)U 2

0 k2
] − U 2

0 D�k2
.

(22)

From this last expression, P̃0(k,ε) can be found by use of the
frequency shifting property of the Laplace transform, thus

P̃0(k,ε) = p̃0(k,ε + DBk2). (23)

Inversion of the Laplace transform of (23) evaluated at times
D�t = 0.01 0.1, 1.0 10.0, and 100.0 is shown as function of
kU0/D� in Fig. 2 (red solid line).

In Fig. 2, snapshots of the positions of 105 particles
(left column) obtained from numerical simulations with an
inverse Péclet number D̃B = 0.001, taken at the times D�t =
0.01, 0.1, 1.0, 10, and 100, are shown. The plots in the
right column show P0(k,t) as a function of kU0/D� at the
corresponding time values to those in the left column. The
black dashed and red solid lines correspond to (16) and (23),
respectively, while the blue circles represent the exact p.d.f.
obtained from the Fourier transform of the data obtained from
the simulation shown in the left column. The first pair of images
from the top (D�t = 0.01), correspond to a p.d.f. that has
departed from the Gaussian given by Eq. (19); notice the good
agreement of the solution obtained from (23) with the exact
result. At D�t = 0.1 (second pair of images from top), the
formation of a rotationally symmetric ringlike structure, due
to the persistence effects on the particles’ motion, is observed.
It is at this regime where both solutions built from (15) and (22)
depart from the exact result; this indicates that a framework
that goes beyond the “drift diffusion” approximation that takes
into account higher Fourier modes is necessary. Subsequently,
the structure starts to fade out (third pair of images from top)
and while the solution (16) is not valid at this time, the solution
obtained from (23) becomes a much better approximation. For
longer times (fourth and fifth pair of images from the top) the
solutions start turning into the Gaussian distribution [Eq. (18)],
where both solutions are in good agreement with the exact
solution.

It is clear that the deviation of the solutions (16) and
(23) from the exact result, in the time regime D�t � 1,
originates in the prominent persistence effects of motion
which are not accurately captured by the approximations made
to obtain Eqs. (14) and (21), respectively. In such a time
regime, our approximations inherently contain a wake effect
that is characteristic of the solution of the two-dimensional
wave equation [9]. Notwithstanding this and as is shown
later, the mean-square displacement computed from our first
approximation and the kurtosis computed from the second
one coincide with the exact ones computed from numerical
simulations at all time regimes.

III. MEAN-SQUARE DISPLACEMENT

What the effects of self-propulsion are on the diffusive
behavior of the system is a question that has been addressed
in several experimental and theoretical studies, and the msd,
being a measure of the covered space as a function of time
by the random particle, has been of physical relevance in both
contexts. Indeed, the msd is obtained in many experimental
situations that consider active particles [18,34,42]; hence it
is a way of validating existing theoretical approaches. On
the other hand, it is known that the diffusion coefficient of
active particles depends on the particle density, due mainly to
excluded volume effects of the particles. Here we assume a
system that is diluted enough to neglect those effects.

In what follows, an exact analytical expression for the msd
is obtained. First notice that after the application of the operator
−∇2

k to P̃0(k,t) = e−DBk2t p̃0(k,t), evaluation at k = 0 results
in 〈x2(t)〉 = 4DBt + 〈x2(t)〉0, which leads straightforwardly
to the pair of relations

d

dt
〈x2(t)〉 = 4DB + d

dt
〈x2(t)〉0, (24a)

d2

dt2
〈x2(t)〉 = d2

dt2
〈x2(t)〉0, (24b)

where 〈·〉, 〈·〉0 denote the average of (·) taken with P0(x,t) and
p0(x,t) as the probability measure, respectively. The quantity
d2

dt2 〈x2(t)〉0 can be computed directly after applying −∇2
k to

Eq. (13) and evaluating at k = 0, i.e.,

d2

dt2
〈x2(t)〉0 + D�

d

dt
〈x2(t)〉0

= U 2
0

2

[∇2
k

(
k2
x + k2

y

)
p̃0

]
k=0

+ U 2
0

4
e−4D�t

× {∇2
k[(kx − iky)2p̃−2 + (kx + iky)2p̃2]

}
k=0 . (25)

It is easy to show that the first term of the right-hand side of
the last equation is 2U 2

0 while the next term, which involves
the modes p̃±2, vanishes identically, and thus we get

d2

dt2
〈x2(t)〉0 + D�

d

dt
〈x2(t)〉0 = 2U 2

0 . (26)

Notice that the same result could be obtained from the
telegrapher Eq. (14) after multiplying it by x2 and integrating
over the whole space. With the use of Eqs. (24) we finally have
that

d2

dt2
〈x2(t)〉 + D�

d

dt
〈x2(t)〉 = 2U 2

0 + 4DBD�, (27)

whose solution can be easily found, namely

〈x2(t)〉 = 4
U 2

0

D2
�

[(
D̃B + 1

2

)
D�t − 1

2
(1 − e−D�t )

]
,

(28)

where we have used that (d/dt) 〈x2(t)〉∣∣
t=0 = 4DB in this

case.
The linear dependence on time of the msd, expected in the

Gaussian regime, is checked straightforwardly from Eq. (28).
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FIG. 3. (Color online) Mean-square displacement in units of
U 2

0 /D2
� as function of the dimensionless time D�t for different

values of the inverse Péclet number D̃B , namely 0.001, 0.0031,
0.01, 0.0316, 0.1, 0.3162, and 1.0. Solid lines correspond to the
analytical expression given by Eq. (28), while the thin, dash-dotted
lines correspond to the results obtained from numerical simulations
(see text) solving Eqs. (1a) and (1b).

In the long-time regime we get

〈x2(t)〉 −−−−→
D�t→∞

4

(
DB + U 2

0

2D�

)
t, (29)

which is a classical result indicating that the effective diffusion
of a self-propelled particle is enhanced by its activity [3]. In
the opposite limit, we find

〈x2(t)〉 −−−−→
D�t→0

4DBt + (
2DBD� + U 2

0

)
t2, (30)

which shows the quadratic correction due to persistence to the
standard linear behavior with diffusion constant DB . Notice
that the coefficient of t2 can be interpreted as the effective
swimming speed Ue =

√
2DBD� + U 2

0 , which has been
extracted from the msd data fit in experiments of active Janus
particles in hydrogen peroxide [5] and self-thermophoretic
Janus particles in laser beams [43].

In order to validate our theoretical findings, we have also
performed Brownian dynamics simulations implemented to
solve Eqs. (1a) and (1b). Figure 3 shows a comparison among
our theoretical prediction for any time given by Eq. (28)
(solid lines) and our Brownian dynamics simulations (dashed
lines) that take into account averages over an ensemble of
105 trajectories. We observe an excellent agreement among
theory and Brownian simulations for each value chosen of
D̃B (each plotted line corresponds to a different value of
D̃B). Additionally, Fig. 3 also indicates that the crossover

from a linear behavior to a quadratic one tends to disappear
for values of D̃B around 1, for which translational diffusion
dominates over the effects of the rotational one. The absence
of a transition from a linear to a quadratic behavior has also
been reported by ten Hagen et al. [18]. They suggest that the
interplay between different choices of initial orientations and
of persistence times, is the key ingredient for the appearance
of the crossover in the msd.

IV. KURTOSIS

Once we have obtained approximately P0(x,t) from Eq. (3),
we wish to characterize its departure from a Gaussian p.d.f.
as a function of time. Indeed, non-Gaussianity has been a
relevant topic in the study of transport properties in different
systems, and hence its analysis in systems of active particle
is relevant from the point of view of statistical mechanics. To
this purpose, we calculate the kurtosis κ of P0(x,t), which for
our convenience is given explicitly by [44]

κ = 〈[(x − 〈x〉)T �−1(x − 〈x〉)]2〉, (31)

where xT denotes the transpose of the vector x and � is the
2 × 2 matrix defined by the average of the dyadic product
(x − 〈x〉)T · (x − 〈x〉). In addition, it can be shown that for
circularly symmetric distributions, as the ones considered in
the present study, Eq. (31) reduces to

κ = 4
〈x4(t)〉r
〈x2(t)〉2

r

, (32)

where 〈·〉r denotes the radial average over the radial probability
density distribution, namely 〈·〉rad = ∫ ∞

0 dr rP (r)(·).
As we can see, Eq. (32) requires the calculation of the

fourth moment 〈x4(t)〉r that can be obtained, in the Laplacian
domain, from Eq. (23) through the prescription

˜〈x4(ε)〉r =
(

1

k

∂

∂k
k

∂

∂k

)2

P̃0(k,ε)
∣∣
k=0 . (33)

One can verify from Eq. (13) that the modes p̃±2 do contribute
to the fourth-moment of p̃0(k,t) and therefore the Telegrapher
equation (14) only gives a crude approximation for the fourth-
moment.

After straightforward algebraic steps, we explicitly find that
the fourth-moment is given by

˜〈x4(ε)〉r = 8D2
B

ε3

[
1 + 4U 2

0

DB

(3ε + 2D�)

(ε + D�)2

+ U 4
0

D2
B

(3ε + 8D�)

(ε + D�)2(ε + 4D�)

]
, (34)

and after the application of the inverse Laplace transform we
get the explicit time dependence

〈x4(t)〉r = 25 U 4
0

D4
�

[
(D�t)2

(
D̃B + 1

2

)2

−D̃B D�t(1−e−D�t )

]
+ U 4

0

D4
�

[
87

2
− 30D�t

(
1+4

9
e−D�t

)
−49

9
e−D�t + 1

144
e−4D�t

]
.

(35)
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FIG. 4. (Color online) Kurtosis of the particles distribution as
function of the dimensionless time D�t for different values of D̃B ,
namely 0.001, 0.0031, 0.01, 0.0316, 0.1, 0.3162, and 1.0. Solid lines
correspond to the exact analytical expression given by the quotient
of Eq. (35) and the square of Eq. (28), while the symbols mark the
values of the kurtosis obtained from numerically solving Eqs. (1a)
and (1b). Thin-dotted lines mark the values 8 and 4 that correspond,
respectively, in two dimensions, to a Gaussian distribution and a
ringlike distribution [9].

The latter analytical expression is used in Fig. 4 to plot the
kurtosis, specifically, the ratio of Eq. (35) to the square of
Eq. (28). In that figure, kurtosis is plotted as a function
of the dimensionless time D�t for different values of D̃B

(solid lines), while the corresponding exact results from
Brownian dynamics that solve Eqs. (1a) and (1b) are shown in
symbols. Notice that our theoretical calculations for different
values of D̃B capture qualitatively the results obtained from
experimental data of self-propelled Janus particles in different
concentrations of hydrogen peroxide solutions [34].

We observe that the kurtosis shows a clear nonmonotonic
behavior for D̃B � 1, namely it starts to diminish from κ = 8
as

κ � 8

[
1 −

(
D�t

2D̃B

)2]
(36)

until it reaches a minimum that depends on the inverse of the
Péclet number D̃B at a time around D−1

� . This behavior has
been observed in experiments with Janus particles in three
dimensions [34] and theoretically predicted in one quasi-one-
dimensional channels [45] and becomes less and less evident
as the translational diffusion coefficient surpasses the effective
diffusion coefficient that originates in the rotational diffusion,
U 2

0 /D�. In the limit of vanishing translational diffusion, the
kurtosis is a monotonic increasing function of time, with κ = 4
as its minimum value [9].

On the other hand, the persistence effects induced by
orientational correlations are revealed in the diminishing
regime of the kurtosis, as is shown in Fig. 4 for the cases in
which D̃B � 1 (see Table I for the values of κ corresponding
to the snapshots shown on the left column of Fig. 2). In
this regime the orientational correlations surpass the effects
of translational noise hence allowing the particles to move

TABLE I. Kurtosis values at the times D�t that are close to those
values chosen to generate the data shown in the left column of Fig. 2
(D̃B = 0.001).

D�t 0.01 0.1 1.01 10.245 100.08
κ 5.9598 4.3111 4.2729 6.7621 7.8713

persistently outwardly from the origin and giving rise to
circularly symmetric, ringlike distributions as the one shown at
left in Fig. 2 (second from top) at D�t = 0.1 for D̃B = 0.001.
Afterwards, this ringlike distribution turns into a Gaussian
distribution as the orientational correlations die out.

At later times the kurtosis starts to increase as

κ � 8

[
1 − D̃B + 15

16(
D̃B + 1

2

)2 (D�t)−1

]
, (37)

reaching the value 8 in the asymptotic limit. Once again,
Eq. (37) shows that kurtosis has a Gaussian behavior for long
times. This result has also been validated using Brownian
dynamics and is shown in Fig. 4, where for long values of
the dimensionless time, κ tends again to a value of 8.

V. FINAL COMMENTS AND CONCLUSIONS

We have presented an analysis for the coarse-grained
probability density distribution of finding a self-propelled
particle at position x at time t regardless of its direction
of motion. This distribution is directly connected with the
marginal distribution in one dimension, which is acquired
from experimental measurements, in systems of Janus particles
in H2O-H2O2 solutions [34]. To be precise, the inverse of
the Péclet number D̃B in our study can be translated into
the hydrogen peroxide concentration through the particle
swimming speed, whose dependence on H2O2 concentration is
measured. For moderately small values of D̃B, i.e., D̃B ∼ 0.1,

the effects of persistence of active motion are not important and
the situation corresponds to the case of low hydrogen peroxide
concentrations (∼5%) experiments in Ref. [34]. For 10–15%
concentrations, which correspond to smaller values of D̃B, the
distribution of particles in one directions shows a characteristic
double peak (see Fig. 7 of Ref. [34]), which corresponds to the
projection of the ringlike distribution shown in Fig. 2, in one
direction.

In addition, the first moments of our calculated p.d.f.,
namely the mean-square displacement and the kurtosis, were
obtained in an analytical and exact manner [Eqs. (28) and
(35)]. The classical result of enhanced diffusion due to activity
was recovered, Eq. (29). We want to point out that despite
what Fig. 3 suggests, that is to say, that the long-time linear
dependence of the msd, characteristic of normal diffusion, is
reached at finite times D�t ∼ 1, expression (37) shows that it
slowly approaches such behavior as (D�t)−1. This conclusion
is reenforced by the fact that the msd (28) divided by the
asymptotic limit (29) differs from 1 as [2(D̃B + 1/2)D�t]−1.

In contrast, in the short-time regime, the distribution departs
with time from a Gaussian distribution as 8(D�t/2D̃B)−2.

In summary, we have found a method and obtained with
it an analytical solution to the Smoluchowski equation of an
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active Brownian particle self-propelling with constant velocity
U0. We used a Fourier approach and exploited the circular
symmetry of the probability distribution function to obtain
an infinite system of coupled ordinary differential equations
for the coefficients of the Fourier series of the complete
probability density. Our formalism showed that in order to
have a whole description for the particles diffusion, given by
the mean-squared displacement, only the lowest three Fourier
coefficients of the expansion (5) suffice; however, the next
two Fourier coefficients are needed to have the exact time
dependence of the kurtosis. We also validated these findings
by performing Brownian dynamics simulations that showed
an excellent agreement among theory and simulations.

Future directions for this research would include developing
a systematic method to analytically approach the solution of
a Smoluchowski equation for confined active particles and/or
particles interacting among them.
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APPENDIX: CONNECTION WITH THE
HYDRODYNAMIC DESCRIPTION

If the powers of cos ϕ and sin ϕ are gathered from the
Fourier expansion given by Eq. (6), one can rewrite it as [38,39]

P̃ (k,ϕ,t) = e−DBk2t [̃�(k,t) + e−D�t Ṽ (k,t) · û

+ e−2D�t û · W̃(k,t) · û + · · · ], (A1)

with û = (cos ϕ, sin ϕ). This power series in û lets the Fourier
transform of the hydrodynamic fields to be recognized in terms
of the modes p̃n, namely the scalar (zero rank tensor) density
field

�̃(k,t) = 1

2π
p̃0(k,t), (A2)

the vectorial (first rank tensor) field Ṽ (k,t) with components

Ṽx(k,t) = 1

2π
[p̃−1(k,t) + p̃1(k,t)] , (A3a)

Ṽy(k,t) = i

2π
[p̃1(k,t) − p̃−1(k,t)] , (A3b)

the symmetric, traceless, second-rank tensorial field W̃(k,t)
with entries

W̃xx(k,t) = −W̃yy(k,t) = 1

2π
[p̃2(k,t) + p̃−2(k,t)] , (A4a)

W̃xy(k,t) = W̃yx(k,t) = i

2π
[p̃2(k,t) − p̃−2(k,t)] , (A4b)

and so on. These quantities satisfy the equations

∂

∂t
�̃ + U0

2
e−D�t iki Ṽi = 0, (A5a)

∂

∂t
Ṽi + U0e

D�t iki �̃ + U0

2
e−D�t ikjW̃ij = 0, (A5b)

∂

∂t
W̃xx + U0

2
eD�t i(kxVx − kyVy) + 2D�W̃xx = 0, (A5c)

∂

∂t
W̃xy + U0

2
eD�t i(kxVy + kyVx) + 2D�W̃xy = 0, (A5d)

obtained by substitution of the series (A1) into Eq. (4),
followed by integration over ϕ when multiplying the resulting
equation by the scalar 1, the vector û, and the tensor ûû,
respectively. Einstein’s convention must be understood when
repeated indexes appear. Equations (A5) provide equivalent
information as Eqs. (12), for example, Eq. (12a) corresponds
to the continuity equation (A5a) for the probability distribution
that carries out the information about the rotational part
of motion, in spatial coordinates ∂t�(x,t) + ∇ · J(x,t) =
0, with J(x,t) the inverse Fourier transform of J̃(k,t) =
(U0/2)e−D�t Ṽ (k,t). Similarly, Eqs. (12b) and (12c) can be
rewritten in the form (A5b) and (A5c)–(A5d), respectively.

The dynamics for Ṽ depends explicitly on the dynamics of
�̃ and of the components of W̃; these last ones relax due to
rotational diffusion at the time scale (2D�)−1 and are driven by
fluxlike terms of Ṽ . After substitution of the explicit solution
of Eqs. (A5c) and (A5d) in Eq. (A5b) we get

∂

∂t
Ṽi(k,t) + U0e

D�t iki �̃(k,t)

+ U 2
0

4
k2

∫ t

0
ds e−3D�(t−s) Ṽi(k,s) = 0, (A6)

where the initial condition W̃ij (k,0) = 0, derived from the
initial conditions P̃ (k,ϕ,0) = (2π )−2, has been used.

Solutions to (A5a) and (A6) can be obtained in a direct
manner by the use of the Laplace transform, and such
procedure leads, after some rearrangements, to

�̃(k,ε) = �̃(k,0)

ε + U 2
0 k2/2

ε+D�+ U2
0 k2/4

ε+4D�
,

(A7)

which can be shown to coincide with expression (22) and to

Ṽi(k,ε) = −ikiU0

ε + U 2
0 k2/4

ε+3D�
,
�̃(k,ε − D�), (A8)

where Ṽi(k,0) = 0 has been used and �̃(k,0) = (2π )−1, with
ε being the Laplace variable.

The flux in the Laplace domain J̃ (k,ε) can be directly found
from (A8) if one notices that J̃(k,ε) = (U0/2)Ṽ (k,ε + D�),
thus

J̃(k,ε) = −U 2
0

2
ik

1

ε + D� + U 2
0 k2/4

ε+4D�

�̃(k,ε). (A9)

The last equation corresponds to a non-Fickian constitutive
relation that considers nonlocal effects, in space and time,
as can be directly seen when transformed back to x and t

variables, expressly,

J(x,t) = −U 2
0

2
∇

∫
d2 y

∫ t

0
ds ψ(x − y,t − s)�( y,s),

(A10)
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where the memory ψ(x,t) is given by the inverse Fourier
transform of

ψ̃(k,t) = e−5D�t/2

[
4D�

�k
sin �k + cos �kt

]
, (A11)

which is reminiscent of (15), the solution of the telegrapher
equation, with � 2

k = U 2
0 k2/2 − 9D2

�/4. Relation (A10) to-
gether with the continuity equation give rise to a nonlocal (in
space and time) diffusion-like equation [39,46,47].
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