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Regime shifts in bistable water-stressed ecosystems due to amplification of stochastic
rainfall patterns
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We develop a framework that casts the point water-vegetation dynamics under stochastic rainfall forcing as
a continuous-time random walk (CTRW), which yields an evolution equation for the joint probability density
function (PDF) of soil-moisture and biomass. We find regime shifts in the steady-state PDF as a consequence
of changes in the rainfall structure, which flips the relative strengths of the system attractors, even for the same
mean precipitation. Through an effective potential, we quantify the impact of rainfall variability on ecosystem
resilience and conclude that amplified rainfall regimes reduce the resilience of water-stressed ecosystems, even

if the mean annual precipitation remains constant.
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I. INTRODUCTION

The amplification of the hydrologic cycle, characterized
by more extreme precipitation regimes, is one of the ma-
jor concerns associated with global warming [1,2]. Models
and datasets suggest that global warming is affecting land-
atmosphere feedbacks, altering the hydrologic cycle [3], and
leading to more extreme rainfall regimes [4-7], with intense
individual events and longer dry periods between them.
Understanding the response of terrestrial ecosystems to these
changes is a challenging, open problem [8]. The frequency and
intensity of precipitation events, not just aggregate measures
such as mean precipitation rate, are important determinants of
the structure and function of terrestrial ecosystems, as revealed
by the analysis of fractional woody cover in Africa [9] and by
the patterns of tropical tree cover [10]. These observations of
the impact of rainfall patterns on the relative distribution and
dominance of competing plant life forms are consistent with
simulations predicting a higher risk of drought and runoff
under intensified rainfall regimes [2] and point to complex
interactions between stochastic climate and environmental and
biological factors.

Characterizing resilience is essential in the assessment of
ecological services in a changing environment [11,12]. Natural
systems exhibit properties of strongly coupled systems; abrupt
changes in the climate system [13] and global terrestrial
biomes [11,14-18] are often interpreted as shifts between
alternative stable equilibria of nonlinear dynamical systems.
The idea of multiple equilibrium states has a long tradition
in the analysis of vegetation dynamics, rationalizing coexis-
tence, competition and optimality in the observed patterns of
vegetation cover [19,20]. The striking merit of this idea is that
complex interactions are captured by a minimal-ingredients
conceptual model describing the feedbacks between climate
and biogeochemical factors. Understanding the structure of
transitions between stable states, and identifying potential
early-warning signals, has recently emerged as a central
scientific problem in a scenario of increased anthropogenic
forcing [17,18,21].
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Water-stressed environments are susceptible to structural
shifts in response to changes in rainfall and temperature, and
to environmental disturbances, natural and/or anthropogenic
[16,17,22-24]; multistability explains the patterns of tree cover
distribution along precipitation gradients, suggesting that tree-
less areas, savannas, and tropical forests may represent alter-
native stable states separated by critical transitions [19,25,26].
In the presence of multiple equilibria, disturbances or slow
changes in environmental forcing may trigger catastrophic
shifts to a degraded state of the ecosystem. The role of random
perturbations on bistable dynamical systems has been studied
theoretically in the context of population dynamics [27,28],
climate modeling [29,30], and soil moisture-vegetation dy-
namics with simple rainfall forcing [31,32]. Rainfall variability
has been shown to alter the statistical properties of the coupled
water-vegetation system. In particular, interannual fluctuations
of precipitation may led to the emergence of an intermediate
statistically stable condition between the two stable states of
the deterministic dynamics of vegetation [31]. This type of
noise-induced stabilization has also been identified in models
of population dynamics [33]. Seasonality in rainfall leads to
regime switching between the two alternative states of the
system [32], while rainfall intermittency may increase the
resilience of the system [34]. Soil-atmosphere feebacks (soil
moisture-rainfall feedbacks) may also lead to multimodality
of the soil moisture probability density functions [35-38].

There are strong indications that global climate change is
amplifying rainfall patterns and leading to stronger and less
frequent precipitation events, even if the mean annual precip-
itation remains unchanged. This naturally poses the question
of whether this amplified rainfall regime may affect, perhaps
catastrophically, ecosystems that already exhibit alternative
stable states.

Here we present a probabilistic framework that clearly
identifies and systematically quantifies the role of stochastic
rainfall patterns on the resilience of bistable water-stressed
ecosystems. The stochastic system dynamics are described
by the evolution equation for the joint probability density
function (PDF) of soil moisture and vegetation biomass,
which quantifies the likelihood of observing the system at
a particular state, given the environmental conditions and
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rainfall forcing. Soil moisture is the key variable to understand
the spatiotemporal link between hydrologic and ecological
patterns and processes [22,39,40]. The proposed model takes
as a starting point a probabilistic framework [41-44], which
has led to fundamental advances in the understanding of the
dynamics of soil moisture [42,43] and the water-vegetation
coupling [45,46] under stochastic rainfall.

The proposed stochastic approach is based on a determin-
istic dynamic system, which describes the coupling between
soil water and vegetation dynamics. Stochastic rainfall
forcing is modeled as a renewal process characterized by an
arbitray interstorm waiting time distribution. This stochastic
model can be cast in the form of a continuous-time random
walk (CTRW) [47,48] that is characterized by a nonlinear
propagation of the saturation and biomass states between the
turning points, which are defined by the storm events. The
CTRW approach provides a general and powerful framework
for the modeling of dynamic systems in the presence of broad
distributions of characteristic time scales [49,50]. Thus, the
stochastic model presented here is valid for a wide range of
point-process descriptions of rainfall such as fractional Poisson
processes [51].

While the impact of rainfall statistics on the PDF of soil
moisture has been extensively characterized in the literature
[43], the structure of the joint PDF of soil water and vegetation
has not. The presented analysis demonstrates that the rainfall
statistics, not just the mean annual precipitation, control the
structural properties of the joint PDF, including the connection
between bistability of the underlying deterministic dynamics
and bimodality of the joint PDF. This observation is the key to
understanding the impact of an intensified hydrologic cycle on
the resilience and stability of water-stressed ecosystems. We
define an effective potential function [29,35,36] to quantify
the impact of rainfall variability on ecosystem stability.
This analysis shows that resilience decreases with increasing
intensification of the hydrologic cycle. Our results point to
the need to view global datasets of climate, soil moisture, and
vegetation in terms of both aggregate precipitation measures
and the patterns of inter- and intraannual rainfall variability.

II. DETERMINISTIC DYNAMIC SYSTEM

The deterministic dynamics of the coupled evolution of soil-
water saturation, S[m°], and plant biomass density, B[kg m~2],
at the daily time scale, are described by the coupled nonlinear
equations

d—S=—U(S,B)+I, (1a)
dt
dB
i B(S,B). (1b)

In this minimal model of water-vegetation coupling, the
dynamics of soil moisture and biomass are driven by deter-
ministic drift terms. We make here the following choice for o
and B:
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FIG. 1. (Color online) Behavior of the deterministic system
[Egs. (1a) and (1b)]. The dynamical system is deterministic when
the infiltration rate is constant, and the Gaussian noise terms are
neglected. For parameter values that are typical of arid and semiarid
environments, the system exhibits two alternative stable states.
(a) Sample trajectories for £ = 0.004, I = 0.004. Furthermore, we
set B =0.004, y =0.02, § =0.004, u = 0.008, k = 0.2, by = 0.4,
and K; = 0.002. The system is bistable, and we may arrive at either of
the attractors depending on the initial condition. The region of initial
values in phase space that converges to a given attractor is called
the basin of attraction of that stable point. (b) Bifurcation diagrams
using the recharge rate, /, as the bifurcation parameter. The two
curves represent the biomass at equilibrium that corresponds to two
evaporation rates, £ = 0.004 and E = 0.016. For small infiltration
rates, the system has two alternative stable states: a vegetated and a
nonvegetated state (red dots).

Thus, the water balance Eq. (1a) includes losses from evap-
oration, first term in Eq. (2a), plant transpiration (second
term), and drainage to deeper soil layers (third term), as
well as a constant recharge from infiltration I [39,43,52].
Runoff is implicitly included through the constraint S < 1.
Runoff losses for § < 1 are not considered explicitly. The
biomass dynamics Eq. (2b) account for plant growth through
the first term in Eq. (2b) and death (third term), as well as
herbivore grazing (second term) [15,23,24,28,45,46]. Note that
this choice of the grazing terms leads to bistability of the joint
saturation-biomass system as discussed in the following and
illustrated in Fig. 1.

The deterministic model Eq. (1) defines aggregate variables
at the daily scale, in accordance with upscaled data obtained
with detailed simulations at the hourly level [46]. The model
parameters for the soil-water dynamics Eq. (2a) are the effec-
tive root depth, Z,[m], the soil porosity, ¢[m°], the maximum
evaporation rate, E[m day '], the potential transpiration rate,
Blmday~'kg~'], and the saturated hydraulic conductivity
of the soil, K;[m day_l]. Effective rainfall, or infiltration is
modeled by the constant rate I[day~!] in Eq. (1a), which
corresponds to the fraction of rainfall that is neither intercepted
by the vegetation canopy, nor lost due to runoff. In the biomass
dynamics Eq. (2b), y[day~!] is the specific growth rate,
ulkgm~2day~'] is the grazing rate, and §[kg~'m2day~'] is
the death rate.

For a given set of parameters, soil moisture S and biomass
B evolve from their initial states toward equilibrium values
or attractors that can be obtained from a linear stability
analysis [14,53]. For parameters that are typical of arid and
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semiarid conditions [46], the model Eq. (1) exhibits alternative
stable states: a vegetated state (Sy,By) and a nonvegetated
one (Suy,By), as illustrated in Fig. 1(a). The sets of initial
states converging toward the respective attractor, the basins of
attraction, are separated by a line, the separatrix.

Basins of attraction emerge as fundamental concepts to
characterize resilience in the classical analysis of climate
and vegetation systems as deterministic coupled processes.
Multiple equilibria are observed frequently in vegetation dy-
namics due to feedbacks between plant biomass and herbivore
population [14,15], or as an expression of competition [19]
or optimality [20]. Their ecological significance is clear:
environmental disturbances may drive the system toward the
basin of attraction of the alternative equilibrium, triggering
an abrupt shift to that state. Bistability in nonlinear systems
is also linked to the existence of tipping points in the system
dynamics [17,18,21].

Using the infiltration rate as a bifurcation parameter, the
vegetation biomass at equilibrium decreases with infiltration
rate, until the system collapses to a nonvegetated state as
shown in Fig. 1(b). For a range of infiltration rates both stable
equilibria coexist, and shifts between them are possible due to
environmental disturbances. Bistability in coupled climate-
ecological systems has been proposed as an explanation
for catastrophic shifts in natural systems [15,17,18,25]. A
large body of literature has been devoted to characterizing
these critical transitions and identifying early-warning signals
[17,18,21]. The impact of environmental perturbations, and
stochasticity in the driving forces and subsequent shifts
between the stable states, cannot be captured, however, by
the deterministic model Eq. (1).

For completeness, we give here the evolution equation of the
joint distribution p(s,b,t) for the deterministic system Eq. (1).
The PDF p(s,b,t) is governed by the Liouville equation,

ap 0 0

o ~ 3, @~ Dp+ o -Bp=0. 3)
For a given initial distribution po(s,b) = p(s,b,t = 0), the
joint PDF p(s,b,t) evolves toward the steady-state PDF,

Poo(8,0) = xv8(s — §v)8(b — By) + xuv0(s — Spy)8(b — Byy).
4

The weights x, and y,y are the probabilities to find the initial
system state in the basin of attraction of the vegetated (S, By)
and the nonvegetated fixed points (Syy, Byny), respectively.

III. STOCHASTIC DYNAMIC SYSTEM

We propose a point model for the coupled evolution of soil
water saturation, S[m°], and plant biomass density, B[kg m~2],
based on the deterministic model Eq. (1). The sequence of
storm events is modeled as a renewal process that is charac-
terized by a distribution of identical independently distributed
interstorm waiting times T denoted by 1, () and a distribution
of recharge depth £(s) denoted by pg(£;s), which depends
on the current saturation state. In this sense, the evolution
of the system state can be considered a CTRW characterized
by nonlinear propagation between turning points, which here
are defined by storm events. Storms are modeled as point
events, because their duration is typically much shorter than
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the interstorm waiting time. We first pose the stochastic
equations of motion of the saturation and biomass states.
In the second part of this section, we derive the set of
integro-partial-differential equations that govern the joint PDF
of saturation and biomass.

A. A Nonlinear continuous-time random walk of saturation
and biomass

Between the nth and (n + 1)th storm events, the interstorm
soil-water saturation Sj; and biomass B are propagated by the
set of coupled stochastic differential equations

dds;g = _U(SiSaB)’ (Sa)
dB
o= B(Sis, B) + +/2uc5(B) np(2), (5b)

where the initial saturation Sis(#,) is equal to the saturation
S,s after the storm event, Sis(¢,) = S,s(2,); biomass is contin-
uous. The random environmental perturbation in the biomass
evolution is modeled as Gaussian white noise 7,. The noise
strength is measured by the variance «,(B), which in general
depends on the biomass B, i.e., the Langevin Eq. (5b) is
characterized by a multiplicative noise. We use here the Ito
interpretation of the stochastic integral [54]. A discussion on
the modeling of the noise term as purely additive (k; constant),
demographic (k, ~ B), or environmental (k;, ~ B?) is given
in Ref. [55]. Despite the Gaussianity of 7, the biomass cannot
become negative because we impose the constraint B > 0
by a reflecting boundary condition at B = 0 for the process
Eq. (5b). Notice that the reflecting boundary condition does not
preclude the system from evolving toward a system state that
is located on the boundary. The saturation S,5 and clock time
t,+1 after the (n + 1)th recharge event are updated according
to the recurrence relations

Sas(thrl) = SiS(thrl) + %_n(Sis)’

with the constraint that Sis(,11) + &,(Sis) < 1. Thus, the
distribution p;(&;s) of the recharge depth takes the form [39]

pelEss) = H(l — s — EYe(®)
Fo(l—s—¢) /S dEE),  (6)

iyl =1y + T, (SC)

where H(x) is the Heaviside step function, and (&) is the
distribution of precipitation depth. The system of Eqgs. (5)
represents a CTRW, Eq. (5c¢), characterized by a nonlinear
propagation of the state variables, Egs. (5a) and (5b), between
turning points. Note that Eq. (5a) together with Eq. (5¢) can
be written in the more compact form

ds n(t)
— =—0(S,B)+ Y _&8(t —1;), n(t)=max(nlt, <1),

dt P
(7N

where the renewal process n(¢) counts the number of storm
events that occur until time #. For an exponential distribution of
interstorm waiting times t,, [39,44] in Eq. (5¢), n(¢) is a Poisson
process, for a power-law distribution of interstorm waiting
times, n(t) denotes a fractional Poisson process [51]. In the
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following, we develop the stochastic framework for arbitrary
distributions of interstorm waiting times and recharge depth.

The two sources of stochasticity in model Eq. (5) syn-
thesize, within a simple theoretical framework, the multiple
sources of variability and randomness present in water-limited
ecosystems. Stochastic rainfall, the main forcing in the system,
is modeled as a point process. Recharge events due to rainfall
are interpreted at the daily time scale, ignoring the temporal
structure of individual storms [39,43]; that is, their duration is
assumed to be small compared to the lag-time between events.
The distributions of interstorm waiting times ¥, (t) and pre-
cipitation depths v (§) incorporate the interannual variability
of precipitation patterns. For simplicity, we assume that these
distributions model rain through fall, thus incorporating the
effect of canopy interception. In addition to random point
events due to stochastic rainfall, we have included the effect
of small random perturbations in plant biomass. These noise
terms model the various sources of variability and randomness
in natural ecosystems, from fire to the stochastic nature of
vegetation dynamics and fauna populations, as well as damage
due to wind, landslides, or runoff water [11].

B. Interstorm waiting time

The behavior of the stochastic dynamic system Eq. (5)
depends on the distribution of interstorm waiting times. Recall
that this system of equations represents a nonlinear (in the
system state) CTRW, whose behaviors can be categorized
according to the distribution of waiting times ¥, (7).

We first consider a pure power-law distribution of inter-
storm waiting times such that

Ye(T) ~ (/T) ®)

for 0 < a < 1, i.e., the mean interstorm waiting time does
not exist; 7. is a characteristic time. Note that such a pure
power-law behavior needs to be understood in an asymptotic
sense. We do not assume that the power-law behavior persists
forever, but describes the storm time series in a certain
time regime, or observation window. This type of interstorm
waiting time distribution implies that the storm frequency
decreases with time. In more detail, the number of storm
events up to a certain time ¢ describes the renewal process
n(t) = min(n|t, < ) with 7, given by Eq. (5¢). The average
number (n(¢)) of storm events up to a time ¢ is then given by
the renewal theorem [56] as (n(¢)) ~ t“. Thus, the frequency
fs of storm events decreases as f;(t) = (n(t))/t ~ %=1 or, in
other words, the typical interstorm waiting time increases with
time as ¢'~¢. This implies that the periods without recharge
increase, or in other words, the system has ever more time to
dry out and evolve toward the nonvegetated state. Specifically,
for a finite average recharge depth (£), the mean precipitation
rate is then given by I(z) = (&) f,(t) ~ ¢!, It decreases
with time. Thus, in the long run /() — 0 and most systems
evolve irrevocably towards a nonvegetated state. Figure 2
shows an ecosystem trajectory for the power-law distribution
Y(r)=at (1 +x/1.)"'7% with a = 0.6 and 7. = 10 and
the precipitation depth distribution (&) = o~ ! exp(—£& /)
with ¢ = 0.016. The system starts in the vegetated basin and
evolves asymptotically toward a succession of nonvegetated
states.
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FIG. 2. (Color online) Stochastic ecosystem trajectory for a
power-law interstorm waiting time with exponenta = 0.6 and charac-
teristic time scale t, = 10 and average recharge depth « = 0.04 such
that a/7. = 0.004 is equal to the recharge rate for the deterministic
model illustrated in Fig. 1. The remaining model parameters are
the same as described in the caption of Fig. 1 with E = 0.004.
The trajectory starts in the vegetated basin and ends asymptotically
in the nonvegetated basin.

For interstorm waiting-time distributions .(r), which
possess a finite mean (r) < oo this is very different. In this
case, the average number of storm events increases linearly
with time (n(¢)) = ¢/(t). Thus, storms occur with constant
frequency f; = 1/(t). Accordingly, the mean precipitation
rate is constant and given by / = (£)/(t). We argue in the next
section that the long-time behavior can be fully characterized
by the mean interstorm waiting time (), or equivalently by
the storm frequency A = 1/(t), and does not depend on the
shape of ¥ (7).

Figure 3 shows two sample trajectories of the stochastic
system Eq. (5) that start in the basin of attraction of the
vegetated fixed point. Storm events are represented by a
Poisson process characterized by the interstorm lag time
PDF . (t) = A exp(—At) the precipitation depth distribution
is exponential. Figures 3(a) and 3(b) are characterized by
the same mean precipitation but different precipitation rates.
Figure 3(a) illustrates a system trajectory for a relatively
high precipitation rate. The system starts in the nonvegetated
basin of the deterministic nonvegetated fixed point. A strong
recharge event eventually pushes it over the boarder that
separates the vegetated and nonvegetated basins of attraction,
where it remains asymptotically. Thus, stochastic fluctuations
of the recharge conditions can be beneficial for the ecosystem
evolution, or in other words, intermittent strong storm events
may push the ecosystem into the basin of the vegetated
fixed point. For less frequent recharge events, as illustrated
in Fig. 3(b), the opposite is true. Here, the system first evolves
toward the vegetated fixed point but then makes a transition
into the basin of attraction of the nonvegetated fixed point due
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FIG. 3. (Color online) Stochastic ecosystem trajectories for (a)
frequent rain events with low amplitude, and (b) rare storm events
with large amplitude. The model parameters are the same as in Fig. 1
with £ = 0.004 and a mean daily preciptation of / = 0.004. The
mean daily precipitation is the same for both cases, but the mean
lag time between storms and mean precipitation depths are different:
a=0.016, L =1/4(a),and @ = 0.04, » = 1/10 (b).

to relatively long interstorm periods. Temporal variability in
the environmental forcing can lead to dynamic steady states
that do not coincide with either of the deterministic stable
configurations.

C. Evolution equations for the joint PDF of saturation
and biomass

The dynamic system Egs. (1) and (5) describe the ecosystem
evolution starting from a given initial saturation and vegetation
state as illustrated in Figs. 1 and 3. While for the deterministic
model, any system evolves toward one of the two stable
configurations, for the stochastic system the behavior is
more complex: dynamic steady states may exist that do not
coincide with either of the two fixed points. This behavior
cannot be analyzed by evaluating single-system trajectories
because the information on the stochastic structure of the
dynamic steady states and the system response to changes
in the environmental forcing is encoded in the joint PDF of
saturation and biomass. In this section, we derive the governing
equations for the joint PDF of saturation and biomass that are
equivalent to the stochastic dynamic system Eq. (5). This set
of equations forms the basis for the systematic analysis of the
ecosystem evolution subject to stochastic forcing.

To derive the evolution equation for the joint PDF, we first
consider the evolution of the ecosystem in an interstorm period
given by Eqgs. (5a) and (5b). Between two storm events at time
t, and time t,, the PDF g of possible ecosystems states that
start at [Sas(2,), Bas(t,)] = (s',b") is propagated according to
the Fokker-Planck equation

g d 9 92

5 _ 2 — Bg — — =0, 9

or 0508 T gpP8 T g8 ©)
where ty <t <tyyg and g(s,b,t =1t,|s',b',t,) =

8(s —s")8(b — b’). The density g is the Green function
of the Fokker-Planck Eq. (9), or in other words, the transition
probability from state (s’,b’) to (s,b) during the time interval
(t — t'). Notice that g is a function of (z — ¢’) because Eq. (9)
is homogeneous in time.
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Note that Eq. (9) describes the (deterministic) evolution
of the distribution of ecosystems between two stochastic
ecosystem states at random times and random initial states.
To obtain the PDF p(s,b,t) we average over the stochastic
series of precipitation events that drive the ecosystem to the
state under consideration, which can be expressed by

p(s.b,1) = (g[5.5.11Sus(tn, ) Bas(tn, ) 1, ])- (10)

The renewal process n, = max(n|t, < t) counts the number of
steps to arrive at time ¢ following the continuous-time process
Eq. (5¢). Thus, the right side of Eq. (10) gives the probability
to find the system in state (s,b) at time ¢ given that there was
a recharge event at any random time #,, before. Equation (10)
can be developed into

t 1 (o)
p(s,b,t) =/ dt’f ds’/ db'g(s,b,t|s’,b' ,t")R(s',b',1")
0 0 0

X foo dtyr (1), an
where R(s,b,t) is defined by
R(b,s,t) = 2(8[8 — Sas(t)18[b — Bas(t)18(t — 1)) (12)
n=0

It denotes the probability per time that the system has just
arrived at system state (s’,b’) after the last recharge event at
time ¢’. Thus, Eq. (11) can be read as follows. The probability
p(s,b,t) to find the system in the saturation biomass state (s, b)
at time ¢ is given by the probability per time R(s’,#’) that the
system has just arrived at system state (s',b’) after the last
recharge event at time ¢’ times the probability g(s,b,t|s’,b’,t")
that the system evolves toward (s,b) times the probability
U —1t)= fto_ot dty.(7) that the time until the next storm
event is larger than ¢ — ¢’. Equation (12) can be expanded to

R(s,b,1) = po(s,b)8(t) + /S ds'pe(s — s'|s"P(s",b,t), (13)
0

where pg(s,b) is the initial saturation and biomass PDF, and
P(s,b,t) is the probability per time that the system is in the
state (s,b) right before a recharge event at time ¢,

P(S,b,t) = Z(g[svb’t|Sas(tn)vBas(tn)atn]5(t - tn - Tn)>~
n=0
(14

Thus, Eq. (13) can be read as follows. The probability per time
that the system is in state (s,b) right after a recharge event
at time ¢ is given by the probability P(s’,b,t) that the system is
in the state (s',b) right before the recharge event at time ¢ times
the probability ps(s — s’|s’) of a recharge depth s — s’, which
brings the system from s’ to s. Similar as above, Eq. (14) can
be further developed to

t 1 [ee)
P(s,b,t) =/ dt’/ ds'/ db'g(s,b,t|s’,b' .t )R(s',b',1")
0 0 0

X Yot — 1), 15)

i.e., the probability per time time P(s,b,t) to arrive at (s,b)
right before a storm event at time ¢ is given by the probability
R(s’,b’,t) that the system is in state (s’,b") at time ¢’ right after
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the last storm event times the probability g(s,b,t|s’,b’,t’) that
it makes a transition to state (s, b) at time ¢ times the probability
that the inter-storm waiting time is given by t — ¢'.

Derivation of Eq. (11) with respect to time and us-
ing Eqgs. (13) and (15) gives the following integro-partial-
differential equation for p(s,b,t):

b D LD 92
— = —0 —Bp — —«
ot 9s P T 9pPP T g2t hP
= R(s,b,t) — P(s,b,1), (16)

which is valid for arbitrary distributions v, (7) of interstorm
waiting times and precipitation depth ¢ (). It is similar to
the Liouville Eq. (3) except for the last term on the right due
to biomass fluctuations, and the source and sink terms on the
right side, which account for system changes due to stochastic
precipitation. Note that the process Eq. (5) is in general non-
Markovian if the interstorm waiting time 7, in Eq. (5c) is
not Poissonian. In the following, we will analyze the joint
saturation and biomass dynamics for the simplified system
of Poissonian interstorm waiting times and an exponential
distribution of recharge depth.

1. Poissonian interstorm waiting time

As discussed in Sec. III B, for waiting time distributions
with an infinite mean, the mean precipitation rate I is not
constant, but decreases with time, which leads to an evolution
of the ecosystem states toward the nonvegetated basin. In the
following, we want to discuss the ecosystem behavior under
amplification of the hydrologic cycle, which means variability
of the storm frequency and depth under a constant mean
precipitation rate. Therefore, we focus on V. (t), which are
characterized by a finite mean waiting time, and specifically
on an exponential distribution.

As indicated in Sec. III B, we argue that the long-time
system behavior can be characterized in terms of the mean
interstorm waiting time (7). To show this, we consider a
sharply peaked y(t) characterized by finite mean (r) and
variance 03 = ((t — (1))?). Thus, we may approximate

/ dtH(t =y ()= H({zt) =) +---, (A7)
0

where the dots denote subleading contributions for ¢ > (7).
This relation is exact for ¥(tr) = 4(t — (r)). Using this
approximation in Eq. (11) gives for r > (1)
1 o0
p(s,b,t) = (r)/ ds’/ db'g(s,b,t|s’,b',t — (1))
0 0

x R(s",b',t — (1)). (18)
Similarly, we obtain for Eq. (15)

1 oo
P(s,b,t):/ ds’/ db'g(s,b,t|s' b\t — (1))
0 0

x R(s",b’,t — (1)). (19)
Comparing Egs. (18) and (19), we obtain the relation
P(s,b,t) = Ap(s,b,t), (20)

with A = (z)~! the constant storm frequency. This relation is
exact if the stochastic rainfall is a Poisson process, i.e., for
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exponentially distributed interstorm waiting times [43],

V() = Aexp(=At), 2L

with A the constant frequency of storm events. Inserting the
latter into Eqs. (11) and (13), we immediately obtain the
identity Eq. (20). Using Eq. (20) in Eq. (13), we obtain directly

R(s,b,t) = 8(s — So)8(b — By)é(t)
+)»/S ds'pe(s — s'|s"p(s',b,1).  (22)
0

Inserting Egs. (20) and (22) into Eq. (16) gives the following
Master equation for p(s,b,t):
ap(s,b,t) 9 2

0
or a5 P T apPP T gt

s
= k/ ds'ps(s — s'|s")p(s',b,t) — Ap. (23)
0

Using now the explicit Eq. (6) for the conditional recharge
depth, we obtain

ap(s,b,t) 9 3 92

o as°P T PP T gt

Y / ds'es — s b —p, (24)
0

for 0 <s < 1 and 0 < b < oo. The boundary conditions are
given by

p(0,b,t) =0,

A 1 0
pbn = [ a5 [ deveops b, @9
o(b) Jo ST
and zero probability flux at the boundaries at b = 0 and oo.

2. Exponentially distributed recharge depth

Furthermore, we assume that the nondimensional recharge
depth is exponentially distributed [39]:

Ve(§) = exp(=§/a)/a. (26)

Thus, the mean precipitation rate then is given by I = «oA.
With these choices, Eq. (24) becomes

ap ad 2

d
5 3:°P + ﬁﬂp ~ el

AT, s—s ,
= —/ ds' exp <——) p(s',b,t) —Ap. (27)
a Jo o

Furthermore, for < 1, the boundary condition Eq. (25) at
s = 1 can be simplified to the Robin boundary condition:

ap(1,b,t
[o/(1.6) — ar]p(Lb.1) + azx%) _
S

0. (28)
The joint PDF of saturation and biomass at steady state,
Poo(s,b) = lim;_, o p(b,s,t), provides a map of possible
ecosystem states and their control by the stochastic driving
forces.

We solve these equations numerically, using high-order
finite differences for the spatial derivatives, Simpson’s rule
to approximate the integral, and a third-order Runge-Kutta
scheme for the time integration.
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FIG. 4. (Color online) (a), (c) Sample realizations of the model Egs. (5a) and (5b), coupling rainfall, soil moisture, and vegetation biomass
with stochastic rainfall and Gaussian perturbations. The model parameters are the same as described in the caption of Fig. 1, with £ = 0.004
and the mean daily precipitation / = 0.004. In these two scenarios, the mean annual precipitation is the same, but the mean lag time between
storms and mean precipitation depths are different: « = 0.012, A = 1/3 (cases a and b), and o = 0.032, L = 1/8 (cases c and d). (b), (d)
Steady-state joint probability density functions of soil moisture and biomass, calculated with our stochastic model, Eq. (27). In the case of
frequent, small storm events, the PDF has a clear maximum around the vegetated stable state (b). In contrast, for infrequent, larger precipitation
events, the probability of the nonvegetated system states increases (d). The cumulative probability to be in the vegetated basin is 0.92 for

scenario 1 (b) and 0.6 in scenario 2 (d).

IV. STOCHASTIC ANALYSIS OF THE
WATER-VEGETATION SYSTEM

The key questions we address in this section are: how
the stochastic forcing impacts the distribution of possible
ecosystem states; and how changes in the temporal variability
of the stochastic drivers of the ecosystem due to intensification
of the hydrologic cycle induce transitions between system
states. To this end, we first establish an evolution equation
for the joint PDF of saturation and biomass, then discuss
the noise-induced system organization, before we analyze the
resilience of the stochastic system due to external fluctuations.

A. Bistability and bimodality

The dynamics of the deterministic system Eq. (1) drive
the ecosystem toward either of the two stable states. The
PDF evolves from a given distribution of initial system states
p(s,b,t = 0) = po(s,b) toward the steady PDF Eq. (4). The
system is bistable and exhibits memory of the distribution of

initial system states through the weights x, and x,. This
bistability in the underlying deterministic dynamics translates
into bimodality for the PDF of the stochastic system Eq. (5).
The stochastic system reaches asymptotically a steady state,
which is independent of the distribution of initial system states;
it has no memory. The system self-organizes into a dynamic
steady state that is fully determined by the stochastic forcings.

Figure 4 illustrates the bimodal system PDF for two
different stochastic forcings, which are characterized by the
same mean precipitation rate / = o;A;, where i = 1, 2 for
systems 1 and 2. Figure 5 shows the same PDFs obtained from
Monte Carlo simulations. System 1 has a higher precipitation
frequency A; and lower mean amplitude «; than system 2.
The difference between the two different stochastic forcings
is illustrated in Figs. 4(a) and 4(c), which show individual
realizations of the respective stochastic precipitation series,
and the resulting evolutions of saturation and biomass. The
fluctuations in saturation and biomass are significantly smaller
in system 1 than in system 2. System 2 eventually evolves
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FIG. 5. (Color online) Empirical joint probability density functions from Monte Carlo simulation of the model Egs. (5a) and (5b) for the
same scenarios as described in the caption of Fig. 4. (b), (d) Steady-state joint probability density functions of soil moisture and biomass as
in Fig. 4. (a), (c) Scatter plot of system states during the time evolution of soil moisture and biomass. Right panels, normalized histograms of

system states.

to a nonvegetated state, unlike system 1, which fluctuates
around a vegetated state. The PDF Eq. (4) of the corresponding
determinisitic model is identical for the two models, and, as
outlined above, depends solely on the distribution of initial
system states. The PDFs of the stochastic systems 1 and 2
do not depend on the initial system distribution. They depend
solely on the stochastic forcing, the intensity of the hydrologic
cycle as expressed by the precipitation frequency and average
precipitation depth. System 1 develops a bimodal PDF whose
weight is concentrated about the vegetated state. The cumula-
tive probability for a system to be in the vegetated basin here
is 0.92. In this scenario, intermittent precipitation turns out to
be better for the ecosystem to evolve toward a vegetated state.
The mechanism is illustrated in the single ecosystem trajectory
shown in Fig. 3(a). A strong recharge event may push the
ecosystem over the separatrix between the nonvegetated and
the vegetated basins. This is changed in scenario 2, which
is characterized by less frequent precipitation events with
higher precipitation depth. Here an ecosystem has a higher
probability to develop toward a nonvegetated state. In fact,

the probability to be in the vegetated basin here is reduced to
0.6. Note that the main driver here is the frequency of storm
events or mean interstorm waiting time. As the interstorm
waiting time increases, the system has more time to “dry out,”
i.e., to evolve toward the nonvegetated basin. This cannot be
compensated for by the increased precipitation depth due to
the finite carrying capacity of the soil. These dynamics are
illustrated for a single ecosystem trajectory in Fig. 3(b).

It is interesting to further consider the system fluctuations
observed in Fig. 4 for the different stochastic driving forces.
Figures 6(a) and 6(b) show biomass time series for systems 1
and 2. As the hydrologic cycle intensifies, which means less
frequent storm events with a higher amplitude, the trajectory of
the ecosystem shows intermittent behavior. Large fluctuations
in saturation and biomass precede system transitions from
mostly vegetated to nonvegetated states. Reference [57]
observed that the occurrence of increased system fluctuations
may serve as an indicator for critical ecosystem transitions.
Here it turns out that the evolution is in fact intermittent.
Large system fluctuations are followed by quiet periods
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FIG. 6. Long-time biomass time series for the systems described
in the caption of Fig. 4. The shift from the vegetated to the
nonvegetated state leads to larger system fluctuations and intermittent
behavior. The model parameters are the same as in Fig. 4. In these two
scenarios, the mean annual precipitation is the same, but the mean
lag time between storms and mean precipitation depths are different:
o =0.012, A = 1/3 (case a), and o« = 0.032, A = 1/8 (case b).

around the nonvegetated state before the system recovers and
starts fluctuating again. The shift from the vegetated to the
nonvegetated ecosystem is concurrent with an increase of
the length of interstorm periods, which drive the system toward
the nonvegetated state, and an increase in recharge depth,
which has the opposite affect. This interaction leads to the
increased system fluctuations and the intermittent behavior
observed in Fig. 6.

B. Stochastic resilience

As discussed above, the structural properties of the joint
PDF of saturation and biomass vary drastically with the
stochastic structure of rainfall forcing, even if the mean annual
precipitation does not change, as shown in Fig. 4. For relatively
frequent small precipitation events, the system will be most
likely observed in the vicinity of the vegetated attractor; see
Figs. 4(a) and 4(b). With increasing mean interstorm periods
and precipitation depth, one observes a transition towards a
preferentially nonvegetated state; see Figs. 4(c) and 4(d).
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We characterize the resilience of the water-vegetation sys-
tem through an effective potential function [29,36]. Potential
analysis has been successfully used in climate modeling and
ecology, from detecting climate states from time series analysis
[29] and identifying multiple stable states of woody cover
[25], to elucidating the impact of soil-atmosphere feedbacks on
the dynamics of soil moisture [36]. Resilience describes how
stable the stochastic dynamic system (defined by its intrinsic
fluctuations in terms of storm frequency and depth, and
biomass) is in response to an external perturbation. To this end,
we define the effective potential [54] U(s,b) = — In pso(s,b)
in terms of the steady-state PDF of saturation and biomass. The
gradient of this potential can be seen as a phenomenological
force that describes the way the stochastic system responds
to an external fluctuation. Notice that the effective potential
quantifies the effective dynamics of the system. It does not
reproduce the exact system transients but defines an effective
stochastic dynamic system that evolves toward the same steady
state. Figure 7 shows the effective potential functions for
systems 1 and 2 along with sample trajectories determined
from Eq. (5). The sample trajectories are consistent with the
topography of the potential functions.

The effective potentials are bimodal, reflecting the steady-
state PDF. The depth of the vegetated potential well is a
measure for the resilience of the system-to-system changes
toward the nonvegetated state. The topography of the effective
potential is related to a critical slowing down due to flattening
of the potential around the wells, which strengthens or weakens
depending on the rainfall forcing and ecosystem parame-
ters. For frequent precipitation events of small amplitude,
the steady-state PDF has an essentially unimodal structure
[Fig. 4(b)]. Accordingly, the effective potential corresponding
to frequent, small rainfall events [Fig. 7(a)] exhibits a steep
well around the vegetated state, which indicates a fast recovery
from extrinsic perturbations when in the vegetated state. There
is only a flat well around the nonvegetated state. For infrequent
events of larger amplitude [Fig. 4(d)], the PDF shifts toward a
dominant unimodal distribution around the nonvegetated state.
The corresponding effective potential for infrequent, large
events [Fig. 7(b)] has a broad and shallow well around the

8
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2
0
-2
1

Water saturation

(b)

S

Biomass

FIG. 7. (Color online) Quantifying resilience using effective potential analysis. The effective potentials reflect the effective system dynamics
for mean daily precipitation & x A = 0.004 and (left) frequency of storms A = 1/2 and (right) A = 1/10. Superposed are sample trajectories
determined from Eq. (5) for the same model parameters as described in the caption of Fig. 4.
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FIG. 8. Depths of the vegetated well for @ x A =0.004 as a
function of the mean interstorm waiting time 1/A. The model
parameters are the same as described in the caption of Fig. 4. The
depth of the well can be interpreted as the attracting strength of the
vegetated state and is a measure of its resilience against random
perturbations. In the case of shallow wells, which are characteristic
of the larger events separated by larger intervening periods [large A,
Fig. 7(b)] the system can easily fall into the basin of attraction of the
nonvegetated state. These systems are also characterized by higher
variability and intermittency [Fig. 6(b)].

vegetated state, and a deep, steep well around the nonvegetated
state, which, however, covers a relatively small area in phase
space. This structure suggests on one hand a slow recovery
from perturbations in the vegetated areas, and on the other
hand the possibility of large fluctuations when perturbed from

PHYSICAL REVIEW E 91, 052148 (2015)

the nonvegetated state due to the small area covered by the
nonvegetated mode. This is also reflected in the intermittent
behavior of the biomass trajectories illustrated in Fig. 6.

Figure 8 shows the well strength measured by its depth,
depending on the mean interstorm waiting time 1/A. The
strength of the vegetated well decreases as the hydrologic
cycle intensifies, i.e., as 1/A increases. We conclude that an
increased variability in rainfall patterns, even with constant
mean annual precipitation, leads to a higher probability of
observing the system in a nonvegetated state and to a loss in
resilience of vegetated states.

V. CONCLUSIONS

Through stochastic modeling of the coupled dynamics
of soil moisture and vegetation dynamics, we find that the
structure of rainfall, not just the mean precipitation rate, is the
key determinant of the state of the system. Our results suggest
transitions in the steady-state joint PDF of soil moisture and
vegetation biomass when the structure of rainfall changes, even
if the mean precipitation rate does not change. The relationship
between bistability and bimodality of the joint PDF depends
on the underlying water-biomass coupling and on the rainfall
statistics. We quantify the impact of rainfall variability on
ecosystem resilience and find that resilience of vegetated
ecosystem states decreases with increasing intensification
of the hydrologic cycle. Our results point to the need to
contextualize global datasets of climate, soil moisture, and
vegetation in terms of both aggregate precipitation measures
and the patterns of inter- and intraannual rainfall variability.
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