
PHYSICAL REVIEW E 91, 052147 (2015)

Construction of microcanonical entropy on thermodynamic pillars
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A question that is currently highly debated is whether the microcanonical entropy should be expressed as the
logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density
of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating
the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy
expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second
law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law
of ideal gases: PV = kBNT . The first pillar implies that entropy must be some function of the phase volume �.
The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads
uniquely to the expression S = kB ln �, that is, the volume entropy. As a consequence any entropy expression
other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic
pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in
a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the
thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the
Boltzmann entropy, provide compelling reasons for discarding the latter at once.
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I. INTRODUCTION

The recent paper by Dunkel and Hilbert titled “Consistent
thermostatistics forbids negative absolute temperatures” [1]
has triggered a vigorous debate on whether the Boltzmann
entropy [alias the surface entropy, Eq. (1)] or the Gibbs entropy
[alias the volume entropy, Eq. (2)] is the more appropriate ex-
pression for the thermodynamic entropy of thermally isolated
mechanical systems [2–9]. The thermodynamic consistency
of the Gibbs entropy has been a leitmotiv that sporadically
recurred in the classical statistical mechanics literature. It
started with Helmholtz [10], Boltzmann [11], and Gibbs [12],
it continued with Hertz [13] Einstein [14], and others [15,16],
until it has been reprised recently by various authors [17–21].
This line of research culminated with the work of Ref. [8],
showing that the Gibbs entropy complies with all known
thermodynamic laws and unveiling the mistakes apparently
incurred in the arguments of its opponents [3,4,6,9].

While the work of Ref. [8] is characterized by a top-down
approach (namely, one postulates an entropy expression and
then investigates compliance with the thermodynamic laws)
here we adopt instead a bottom-up approach: we begin from
the thermodynamic laws and construct the expression of
the microcanonical entropy on them. In particular we base
our construction on the following two fundamental pillars
of thermodynamics. (1) The second law of thermodynamics
as formulated by Clausius for quasistatic processes, namely,
δQ/T = dS, which says that 1/T is an integrating factor for
δQ, and identifies the entropy with the associated primitive
function S. (2) The equation of state of an ideal gas PV =
kBNT .

Our construction, based on the mathematics of differential
forms, leads uniquely to the Gibbs entropy; see Sec. III. As a
consequence the adoption of any expression of entropy other
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than the Gibbs entropy, e.g., the Boltzmann entropy, may lead
to inconsistency with the fundamental pillars. This will be
illustrated with a macroscopic collection of spins in a magnetic
field. As we will see the Boltzmann entropy severely fails
to predict the correct value of the magnetization, and even
predicts a nonexistent phase transition in the thermodynamic
limit; see Sec. IV D. This provides a compelling reason for
discarding the Boltzmann entropy at once.

The present work thus complements the work of Ref. [8]
by stating not only the compliance of the Gibbs entropy with
the thermodynamic laws, but also its necessity and uniqueness:
thermodynamic entropy has to be expressed by means of the
Gibbs formula and no other expression is admissible. Together
with Ref. [8] the present work appears to settle the debated
issue.

II. DEFINITIONS

We recall the definitions of the Boltzmann and Gibbs
entropies within the microcanonical formalism [20]:

SB(E,λ) = kB ln [ω(E,λ)ε] , (1)

SG(E,λ) = kB ln �(E,λ), (2)

where

�(E,λ) = Tr �[E − H (ξ ; λ)] (3)

denotes the volume of the region of the phase space of the
system with energy not above E. The symbol ε stand for some
arbitrary constant with units of energy. Here H (ξ ; λ) denotes
the Hamilton function of either a classical or a quantum system
with degrees of freedom ξ and λ = (λ1,λ2, . . . ,λL) denotes
external parameters, e.g., the volume of a vessel containing the
system or the value of an applied magnetic or electric field [8].
L is their number. In the case of continuous classical systems
the symbol Tr stands for an integral over the phase space
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normalized by the appropriate power of Planck’s constant
and possible symmetry factors. For classical discrete systems,
Tr denotes a sum over the discrete state space. For quantum
systems Tr is the trace over the Hilbert space. The symbol �

stands for the Heaviside step function. The symbol ω(E,λ)
stands for the density of states, namely, the derivative of
�(E,λ) with respect to E:

ω(E,λ) = Tr δ[E − H (ξ ; λ)] = ∂�(E,λ)

∂E
. (4)

Here it is assumed that the spectrum is so dense that the density
of states can be considered a smooth function of E.

III. THE CONSTRUCTION

The main objective is to link thermodynamic observables,
i.e., the forces Fi and temperature T , to the quantities
which naturally pertain to both the mechanical Hamiltonian
description and the thermodynamic description, i.e., the energy
E and the external parameters λ. As we will see the entropy
S will follow automatically and uniquely once the Fi’s and T

are linked.
We begin with the thermodynamic forces Fi , whose

expression is universally agreed upon [22]:

Fi(E,λ) = −
〈
∂H

∂λi

〉
, (5)

with 〈·〉 denoting the ensemble average. Within the micro-
canonical framework these are expressed as

Fi(E,λ) = −Tr

(
∂H (ξ ; λ)

∂λi

δ[E − H (ξ ; λ)]

ω(E,λ)

)
. (6)

With the expression of Fi(E,λ) we can construct the
differential form representing heat:

δQ = dE +
∑

i

Fi(E,λ)dλi. (7)

δQ is a differential form in the 1 + L dimensional space (E,λ).
It is easy to see that, in general δQ is not an exact differential;
see, e.g., Ref. [23].

Before we proceed it is important to explain the meaning
of Q within the microcanonical formalism. The idea behind
the microcanonical ensemble is that E and λ are controllable
parameters.1 Accordingly, if the system is on an energy surface
identified by (E,λ), the idea is that the experimentalist is able
to steer it onto a nearby energy shell (E + dE,λ + dλ). In
practice this is can be a difficult task. It can be accomplished, in
principle, in the following way: the experimentalist should first
change the parameters by dλ in a quasistatic way. This induces
a well-defined energy change δw = −∑

i Fi(E,λ)dλi , which
is the work done on the system. This brings the system to
the energy shell (E + δw,λ + dλ). To bring the system to the
target shell (E + dE,λ + dλ), the experimentalist must now
provide the energy dE − δw by other means while keeping
the λ fixed. For example she can shine targeted amounts of
light on the system, from a light source. After the energy

1Similarly β and λ are controllable parameters in the canonical
formalism.

dE − δw is absorbed by the system (or emitted, depending on
its sign), no other interaction occurs and the system continues
undisturbed to explore the target shell (E + dE,λ + dλ). In
this framework the light source acts as a reservoir of energy,
and the quantity δQ = dE − δw, identified as heat, represents
the energy it exchanges.

According to the second law of thermodynamics in the
formulation given by Clausius the inverse temperature 1/T

is an integrating factor for δQ. This fundamental statement is
often called the heat theorem [24]. We recall that an integrating
factor is a function β(E,λ) such that βδQ equals the total
differential df of some function f (E,λ) called the associated
primitive, or in brief, just the primitive. Primitives are deter-
mined up to an unimportant constant, which we will disregard
in the following. Entropy is defined in thermodynamics as
the primitive associated with Clausius’s integrating factor
1/T [25]:

dS
.= δQ/T . (8)

In searching for thermodynamically consistent expressions
of temperature within the microcanonical formalism, one
should therefore look among the integrating factors of the
microcanonically calculated heat differential in (7). It must be
remarked that it is not obvious that one integrating factor exists,
because the existence of integrating factors is not guaranteed
in spaces of dimensions higher than 2. So the existence of
a mechanical expression for the thermodynamic temperature
(hence of the entropy) is likewise not obvious.

It turns out however that an integrating factor for the
differential in (7) always exists. Finding it is straightforward
if one rewrites the forces in the following equivalent form:

Fi(E,λ) = −Tr

(
∂H (ξ ; λ)

∂λi

δ[E − H (ξ ; λ)]

ω(E,λ)

)

= 1

ω(E,λ)
Tr

(
∂�[E − H (ξ ; λ)]

∂λi

)

= 1

ω(E,λ)

∂�(E,λ)

∂λi

. (9)

This follows from the fact that Dirac’s δ is the derivative of
Heaviside’s step function. With this, Eq. (7) reads

δQ = dE + 1

ω

∑
i

∂�

∂λi

dλi. (10)

It is now evident that ω is an integrating factor:

ωδQ = ωdE +
∑

i

∂�

∂λi

dλi = ∂�

∂E
dE +

∑
i

∂�

∂λi

dλi = d�,

(11)

� being the associated primitive. This does not mean that 1/ω

should be identified with temperature and accordingly � with
entropy. In fact if an integrating factor exists, this identifies a
whole family of infinitely many integrating factors.

To find the family of integrating factors, consider any
differentiable function g(�) with non-null derivative g′. Its
total differential reads

dg = g′(�)d� = [g′(�)ω]δQ. (12)
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This means that any function β(E,λ) of the form

β = g′(�)ω = ∂

∂E
g(�) (13)

is an integrating factor for the heat differential δQ, and g(�)
is the associated primitive. In fact all integrating factors must
be of the form in Eq. (13), which is equivalent to saying that
all associated primitives must be of the form

f (E,λ) = g(�(E,λ)). (14)

To prove that all primitives must be of the form in Eq. (14) we
consider the adiabatic manifolds, namely, the L-dimensional
manifolds in the space (E,λ) identified by the condition that
� = const, i.e., d� = ωδQ = 0. Note that the density of states
is a strictly positive function ω = ∂�/∂E > 0. This is because
increasing the energy results in a strictly larger enclosed
volume in the phase space. Thus, the adiabatic manifolds are
characterized by the condition δQ = 0 (i.e., any path occurring
on them involves no heat exchanges), and each value of �

identifies one and only one adiabatic manifold. Any primitive
f (E,λ) associated with an integrating factor β stays constant
on the adiabatic manifolds: δQ = 0 ⇒ βδQ = 0 ⇒ df = 0
unless β diverges, which we exclude here. Hence the only
way by which any primitives f (E,λ) and �(E,λ) can both be
constant on all adiabatic manifolds is that f is a function of
�, as anticipated.

Note that this rules out automatically the surface entropy
SB = kB ln[ωε] because, in general, the density of states
cannot be written as a function of the phase volume �(E,λ).
This is clear for example in the case of an ideal monatomic
gas in a vessel of volume V , for which �(E,V ) = const ×
E3N/2V N and ω = (3N/2E)� [26]; see below.

Our derivation above tells us that the second law requires
that the entropy, which is one of the primitives, has to be
a function g(�) of the phase volume, but does not tell us
which function that is. For that we need to identify which
among the infinitely many integrating factors β = ∂g(�)/∂E

corresponds to Clausius’s notion of temperature. We remark
that once the function g is chosen, it has to be one and
the same for all systems. This is because by adjusting the
external parameters λ, whose number and physical meaning
is completely unspecified, one can transform any Hamiltonian
into any other. This fact reflects the very essence of Clausius’s
heat theorem, namely, that there exists a unique and universal
scale of temperature which is one and the same for all
systems [27].

We proceed then to single out the function g that is consis-
tent with the notion of temperature of an ideal monatomic
gas in a vessel of volume V , taking its equation of state
PV = kBNT as the definition. The Hamilton function of an
ideal monatomic gas reads

H (q, p; V ) =
3N∑
i=1

p2/2m + φbox(q,V ), (15)

with φbox(q,V ) representing the box potential confining the
gas within the volume V . The phase volume reads [26]

�(E,V ) = const × E3N/2V N (ideal gas). (16)

Hence, using Eq. (9), we obtain for the pressure P = −〈∂V H 〉:
P = 2E/3V . Confronting this with the ideal gas law we obtain

kBT = 2E/3N (ideal gas), (17)

consistently with what is known from thermodynamics. Since

ω = ∂�/∂E = (3N/2E)� (ideal gas) (18)

in this case, we readily recognize that 1/T = kBω/�, namely,

1

T (E,V )
= ∂

∂E
(kB ln �). (19)

That is, g(x) = kB ln x, which singles out the Gibbs entropy

S(E,λ) = kB ln �(E,λ) (20)

as the primitive associated with the integrating factor corre-
sponding to the thermodynamic absolute temperature [8].

In sum: if one accepts the microcanonical expression (5) of
the forces, the Gibbs entropy represents the only expression of
thermodynamic entropy which is consistent with the second
law of thermodynamics, Eq. (7), and the equation of state of
the ideal gas.

IV. DISCUSSION

A. Ensemble inequivalence

As mentioned above the density of states is definite positive
ω > 0; also, by definition, the volume � is non-negative.
Hence their ratio kBT = �/ω is non-negative. This means
that, within the microcanonical formalism, negative tempera-
tures are inadmissible. Often the present microcanonical sce-
nario is confused with the more common canonical scenario,
where the system stays in a canonical state at all times during
a transformation; e.g., Ref. [6]. This is unfortunate because,
as we see below, microcanonical and canonical descriptions
are not equivalent for those finite-spectrum systems usually
discussed in this context.

The same construction presented above can be repeated
for systems obeying statistics other than microcanoni-
cal [28,29]. If applied to the canonical ensemble ρ(ξ ; λ,β) =
e−βH (ξ ;λ)/Z(λ,β) [with Z(λ,β) = Tr e−βH (ξ ;λ) being the
canonical partition function] the canonical expression

Fi(E,λ) = −Tr

(
∂H

∂λi

e−βH (ξ ;λ)

Z(λ,β)

)
(21)

for the forces, along with the equation of state of the ideal gas,
uniquely identifies the canonical parameter β as the integrating
factor, and its associated primitive

S(β,λ) = −kBβ2 ∂

∂β

ln Z(λ,β)

β
(22)

as the only thermodynamically consistent expressions of
inverse temperature and entropy within the canonical formal-
ism.2 In the canonical formalism nothing formally constrains
the sign of β to be definite. A spin system in a canonical state

2Incidentally S(β,λ) = −kBTrρ(ξ ; λ,β) ln ρ(ξ ; λ,β), that is, the
canonical entropy coincides with the Gibbs–von Neumann informa-
tion of the canonical distribution ρ(ξ ; λ,β).
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at negative β will have a positive internal energy U . The same
system in the microcanonical state of energy E = U will,
however, have a positive thermodynamic temperature. This
evidences the inequivalence of canonical and microcanonical
ensembles in systems with a finite spectrum.

B. Exact vs approximate constructions

In an attempt to justify the correctness of the Boltzmann
entropy, Frenkel and Warren [4], provided a construction
which leads to the Boltzmann entropy. It must be stressed
that the construction presented by Frenkel and Warren [4] is
approximate, and valid only under the assumption that the
saddle point approximation holds. This approximation holds
only when the density of states increases exponentially with
the energy. Under this assumption, however, the density of
states ω and phase volume � coincide. So the construction of
Frenkel and Warren [4] cannot shed light onto which entropy
expression is appropriate in the case when they do not coincide,
which is indeed the very case of practical interest.

In contrast, the present construction is exact, i.e., it holds
regardless of the functional dependence of the density of states
on energy. Accordingly it says that in any case, independent
of whether equivalence of the two entropies holds, the volume
entropy is the consistent choice.

C. Thermodynamic temperature equals
equipartition temperature

For continuous classical Hamiltonian systems, thanks to the
equipartition theorem [26], the thermodynamic temperature T

is identical with the equipartition temperature Teq:

kBTeq
.=

〈
ξk

∂H

∂ξk

〉
= �

ω
= kB(∂ESG)−1 = kBT , (23)

where the average is the microcanonical average on the
shell (E,λ). This provides further evidence that the choice
g(x) = kB ln x conforms to the common notion of temperature
of any classical system, not just the ideal monatomic gas. We
further remark that the equipartition theorem also identifies
the temperature T (E,λ) in Eq. (19) as an intensive quantity,
namely, a property that is equally shared by all subsystems [8].

We emphasize that at variance with previous approaches
to the foundations of the Gibbs entropy [13,20,23,30], which
postulated that the thermodynamic temperature is the equipar-
tition temperature, here we have instead postulated only that
temperature is the integrating factor that is consistent with
the ideal gas law and have obtained the coincidence with the
equipartition temperature as an aftermath. The advantage of the
present approach is evident: it applies to any microcanonical
system, even those for which there is no equipartition theorem
(e.g., quantum systems).

D. Boltzmann entropy fails to predict
the value of thermodynamic forces

At variance with other approaches, we chose as starting
point the expression for the microcanonical forces (6) which is
universally agreed upon and built our construction on that firm
ground. The salient point of our argument is the identity (9)
expressing the microcanonical forces in terms of the partial

derivatives of �. The identity (9) alone has as a consequence
that the entropy must be of the form Sg = g(�) with some g

with non-null derivative g′. In fact, for any Sg one finds the
forces F

g

i = ∂iSg/∂ESg to be identical to the microcanonical
forces Fi , Eq. (6),

F
g

i = ∂iSg

∂ESg

= g′∂i�

g′∂E�
= ∂i�

∂E�
= Fi. (24)

Here ∂i is a shorthand notation for ∂/∂λi . If one employs
an entropy expression that is not of the form g(�), e.g., the
Boltzmann entropy, one can well end up wrongly evaluating
the forces.

This happens, for example, in the case of a large collection
of N � 1 noninteracting 1/2 spins in a magnetic field B, at
energy E [1], that is the prototypical example of the emergence
of negative Boltzmann temperature [31,32]. The Hamiltonian
reads [33]

H = −Bμ

N∑
i=1

σ i. (25)

Here B plays the role of the external parameter λ, σ i is
±1 depending on whether the spin points parallel (up) or
antiparallel (down) to the field, and μ is the magnetic moment
of each spin. At energy E, the magnetization is given by (6):

M(E,B) = −〈∂BH 〉 = −〈H 〉/B = −E/B. (26)

The number of states with n spins up is

Wω(n) = N !

n!(N − n)!
. (27)

The number of states with no more than n spins up is

W�(n) =
n∑

k=0

N !

k!(N − k)!
. (28)

Using the relation E = −(2n − N )μB and treating E as a
continuous variable under the assumption that N is very large,
according to standard procedures, we observe that Wω(N/2 −
E/2μB) denotes the number of states with energy between
E − μB and E + μB. The density of states is therefore

ω(E,B) = Wω(N/2 − E/2μB)

2μ|B| , (29)

and the number of states with energy below E is

�(E,B) = W�(N/2 − E/2μB). (30)

Figure 1 shows the Gibbs and Boltzmann temperatures and
magnetizations as functions of E calculated with

kBTB = kB

∂ESB

= ω

∂Eω
, MB = ∂BSB

∂ESB

= ∂Bω

∂Eω
, (31)

kBTG = kB

∂ESG

= �

∂E�
, MG = ∂BSG

∂ESG

= ∂B�

∂E�
. (32)

For larger values of N qualitatively similar plots are obtained.
A very unphysical property of TB is that with the flip of a
single spin it jumps discontinuously from +∞ to −∞ in
the thermodynamic limit. The usual reply to such a criticism
would be, following [32], to say that one should look instead
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k
B

T

E

kBTB

kBTG

−Nµ

0

Nµ

−NµB 0 NµB

M

E

MB

MG

FIG. 1. Temperature T and magnetization M of a system of N

noninteracting 1/2 spins, as predicted by the Boltzmann entropy SB

and Gibbs entropy SG Here N = 100. Only the Gibbs magnetization
conforms with the physical magnetization M = −E/B.

at the quantity −1/TB , which displays no divergence. No way
out is however possible if one considers the magnetization.
As can be seen from the figure, only SG reproduces the
exact result Eq. (26), whereas the magnetization given by
SB is drastically off, and even predicts a nonexistent and
unphysical phase transition, in the thermodynamic limit, where
the magnetization abruptly jumps from −∞ to +∞ as a
single spin flips from +1 to −1. The results in the figure are
also corroborated by analytical calculations. Using Eqs. (31)
and (32) with Eqs. (29) and (30) we obtain

MB = −(E + kBTB)/B, (33)

MG = −E/B = M. (34)

Thus the discrepancy � between the Boltzmann magnetization
and the physical magnetization is given by the negative
Boltzmann thermal energy rescaled by the applied magnetic
field:

�
.= MB − M = −kBTB/B. (35)

Since TB diverges around the zero energy in the thermo-
dynamic limit, so does the discrepancy �. Note that the
discrepancy also diverges as the intensity of the applied
magnetic field decreases. It is interesting to notice that, while
in the thermodynamic limit TG approaches TB for E < 0,

the same is not true for MB , which distinctly deviates from
M = MG for both E > 0 and E < 0. This unveils the fact,
apparently previously unnoticed, that the Boltzmann and
Gibbs entropy are not equivalent even in the lower part of
the spectrum of large spin systems.

Equation (33) is a special case of a general relation linking
the Boltzmann forces (F i

B = ∂iSB/∂ESB) and the Gibbs forces
F i

B (i.e., the thermodynamic forces F i), reading

F i
B − F i = kBTB

∂F i

∂E
. (36)

This equation accompanies a similar relation linking the
Boltzmann and Gibbs temperatures

TB = TG

1 − kBC−1
G

(37)

with CG = (∂ETG)−1 being the heat capacity. Equations (36)
and (37) follow by taking the derivative with respect to E of
Fi and TG, respectively.

The reason for the thermodynamic inconsistency of SB

(consistency of SG) can also be understood in the fol-
lowing way. Consider the heat differential δQ = dE +
MdB = dE − (E/B)dB. Clearly 1/E is an integrating factor:
δQ/E = dE/E − dB/B = d ln(E/B). Hence f (E,B) =
ln(E/B) is a primitive. Accordingly the adiabats are deter-
mined by the equation

E/B = const (adiabats equation), (38)

and the entropy must be some monotonic function of ln E/B,
that is, of E/B. By inspecting Eqs. (29) and (30) we see
that the phase volume � is a monotonic function of E/B

while the density of states ω is not a function of E/B; hence
SB is thermodynamically inconsistent.

The inequivalence of SG and SB is most clearly seen by
plotting the iso-SB lines in the thermodynamic space E,B;
see Fig. 2. Note that the adiabats Eq. (38) are straight lines
passing through the origin. The iso-SB lines instead predict

FIG. 2. (Color online) Iso-SB lines do not coincide with the
adiabats E/B = const.
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a completely different structure of the adiabats. Note in
particular that the iso-SB lines are closed. This evidences their
thermodynamical inconsistency.

Summing up: the Boltzmann entropy severely fails to
accomplish one of its basic tasks, namely, reproducing the
correct value of the thermodynamic forces and of heat.

V. CONCLUDING REMARKS

We have shown that, within the microcanonical formalism
there is only one possible choice of entropy that is consistent
with the second law and the equation of state of an ideal
gas, namely, the Gibbs entropy. Discarding the Gibbs entropy
in favor of the Boltzmann entropy may accordingly result in
inconsistency with either of those two pillars. For the great
majority of large thermodynamic systems, the Gibbs and
Boltzmann entropies practically coincide; hence there is no
problem regarding which we choose. However, there are cases
when the two do not coincide: examples are spin systems [1]
and point vortex gases [34], where the Boltzmann temperature,
in disagreement with the Gibbs temperature, has no definite
sign, and the Boltzmann entropy can largely fail to predict
correct values of thermodynamic forces.

It must be stressed that the demonstrated failure of the
Boltzmann entropy to reproduce the thermodynamic forces is
not restricted to small systems, where the failure was already
known to occur [1], but survives, and even becomes more
prominent, in the thermodynamic limit, where the Boltzmann
entropy predicts an unphysical and nonexistent phase transi-
tion in the magnetization of a system of noninteracting spins
in a magnetic field.

In the light of the present results, together with the
established fact that the Gibbs entropy conforms with all
thermodynamic laws [8], the issue of which entropy ex-
pression is correct is apparently now fully and ultimately
settled.

ACKNOWLEDGMENTS

The author is indebted to Jörn Dunkel, Stefan Hilbert, Peter
Talkner, and especially Peter Hänggi, for the many discussions
we had on this topic for years. This research was supported
by a Marie Curie Intra European Fellowship within the 7th
European Community Framework Programme through the
project NeQuFlux Grant No. 623085 and by the COST Action
No. MP1209 “Thermodynamics in the quantum regime.”

[1] J. Dunkel and S. Hilbert, Nat. Phys. 10, 67 (2014).
[2] I. M. Sokolov, Nat. Phys. 10, 7 (2014).
[3] J. M. G. Vilar and J. M. Rubi, J. Chem. Phys. 140, 201101

(2014).
[4] D. Frenkel and P. B. Warren, Am. J. Phys. 83, 163 (2015).
[5] J. Dunkel and S. Hilbert, arXiv:1403.6058.
[6] U. Schneider, S. Mandt, A. Rapp, S. Braun, H. Weimer, I. Bloch,

and A. Rosch, arXiv:1407.4127.
[7] J. Dunkel and S. Hilbert, arXiv:1408.5392.
[8] S. Hilbert, P. Hänggi, and J. Dunkel, Phys. Rev. E 90, 062116

(2014).
[9] R. H. Swendsen and J.-S. Wang, arXiv:1410.4619.

[10] H. Helmholtz, in Wissenschaftliche Abhandlungen, edited by G.
Wiedemann (Johann Ambrosius Barth, Leipzig, 1895), Vol. 3,
pp. 142–162, 163–178, 179–202.

[11] L. Boltzmann, Crelles J. 98, 68 (1884) [Reprinted in Wis-
senschaftliche Abhandlungen von L. Boltzmann, edited by F.
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