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Stochastic approach to the generalized Schrödinger equation: A method of eigenfunction expansion
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Using a method of eigenfunction expansion, a stochastic equation is developed for the generalized Schrödinger
equation with random fluctuations. The wave field ψ is expanded in terms of eigenfunctions: ψ = ∑

n an(t)φn(x),
with φn being the eigenfunction that satisfies the eigenvalue equation H0φn = λnφn, where H0 is the reference
“Hamiltonian” conventionally called the “unperturbed” Hamiltonian. The Langevin equation is derived for the
expansion coefficient an(t), and it is converted to the Fokker-Planck (FP) equation for a set {an} under the
assumption of Gaussian white noise for the fluctuation. This procedure is carried out by a functional integral, in
which the functional Jacobian plays a crucial role in determining the form of the FP equation. The analyses are
given for the FP equation by adopting several approximate schemes.
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I. INTRODUCTION

The phenomenon of random fluctuations has been one of
the central subjects in statistical physics, with topics covering
a wide class of physical systems ranging from molecular level
to cosmological phenomena [1–4]. Brownian motion, which
is one such system, is formulated by the Langevin equation,
which is an equation of motion that is modified by adding ran-
dom force. The Fokker-Planck (FP) equation, which is written
for the statistical distribution function for random variables, is
an alternative form to describe random systems [1–4].

The purpose of this article is to study the stochastic analyses
of the generalized Schrödinger equation in the presence of
random fluctuations. The work was inspired by previous
studies of the Landau-Ginzburg (LG) equation, including the
effect of thermal agitation occurring in the superconductivity
near the transition temperature (see, for example, [5,6]). We
consider this specific problem in the framework of the wider
discipline in such a way that it can be extended to the general
class of the Schrödinger-type wave equation. Indeed, among
general wave equations, we mention wave propagation in the
media in the presence of various sorts of fluctuations caused
by external agents (see, e.g., [7,8]). Our starting equation is
a Schrödinger-type equation with additional random force,
which is regarded as a Langevin-type equation. Apart from
the random fluctuation driven by the external agents, the
generalized Schrödinger-type equation has been studied in the
framework of the random potential [9,10]. The study presented
in Refs. [9,10] deals with the randomness that is intrinsic to
the media itself, and it belongs to a different category from the
one that will be treated in what follows.

Although it is easy to write the Langevin equation formally
for the wave field ψ(x,t) itself, the concrete calculation
is rather cumbersome when one considers applications to
actual problems. Thus, it is desirable to find a tractable
way to apply the calculation. We propose here a method
of eigenfunction expansion that is based on the use of an
orthonormal set of functions that are the eigenfunctions of a
reference Hamiltonian, H0, which is taken as an unperturbed
part of the Hamiltonian appearing in the Schrödinger-type
equation. The method was previously developed in connection
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with the semiclassical analyses of a path integral [11,12], so
its application to our stochastic problem is very natural. There-
fore, the wave field is expanded by this set of eigenfunctions,
and the Langevin-type equation for the original wave field
yields the Langevin-type equation for the expansion coef-
ficients (see the next section). This Langevin equation is
converted to the FP equation by using the functional integral
formalism on the basis of Gaussian white noise for the
fluctuation. The essential point is that a functional Jacobian
appearing in the functional integral plays a key role in deriving
the FP equation.

Here, we remark on previous studies of the stochastic
approach to the Schrödinger equation. In Refs. [13,14], the
stochastic differential equation is employed to describe the
various sorts of random fluctuations inherent in quantum
waves. In particular, in Ref. [13] this equation was used to
derive the FP equation. The method developed therein may not
always provide relevant tools for the wide class of problems
described by the generalized Schrödinger equation. However,
the present approach, in which the eigenfunction expansion
is used, is expected to provide a very simple and general
technique for studying the stochastic characteristics of the
generalized Schrödinger equation.

The paper is organized as follows: In the next section, the
Langevin equation is derived for the generalized Schrödinger
equation. In Sec. III, the Langevin equation is converted to
the functional integral on the basis of Gaussian white noise.
In Sec. IV, the FP equation is derived from the functional
integral by adopting the trick of imaginary time. This is based
on the well-known procedure for deriving the Schrödinger
equation from a path integral. In Sec. V, the analyses of the
FP equation are presented for the case in which the expansion
coefficients are treated as independent of each other. In
Sec. V A, we adopt the strong-coupling approximation to
derive the expression for the “first-excited” state by using
the variational method. In Sec. V B, we present the transition
amplitude for the small diffusion limit, which corresponds to
the semiclassical approximation.

II. LANGEVIN EQUATION FOR THE
SCHRÖDINGER-TYPE EQUATION

Our starting point is the Langevin-type general-
ized Schrödinger equation for the wave field ψ(x,t)
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[5,6]:

γ
∂ψ(x,t)

∂t
= Hψ(x,t) + η(x,t), (1)

where H is an operator corresponding to “Hamiltonian.” The
coefficient γ denotes the complex diffusion constant, and
η(x,t) represents fluctuation coming from thermal and other
effects, which obeys the law of white noise,

〈η∗(x,t)η(x ′,t ′)〉 = hδ(x − x ′)δ(t − t ′), (2)

where h is a diffusion constant for the random process.
In the following discussion, H is assumed to be given by

the sum H = H0 + V = (∇2 + U ) + V . H0 is conventionally
called an unperturbative term described by the potential U ,
whereas V represents a perturbation, which allows time
dependence in general. H0 and V are assumed to be Hermitian.

Now let us consider the eigenfunction expansions for
ψ and η,

ψ(x,t) =
∑

n

an(t)φn(x), η(x,t) =
∑

n

ηn(t)φn(x), (3)

where an(t) and ηn(t) are complex functions of t , and φn(x) is
defined as an eigenfunction H0φn(x) = λnφn(x), where we
assume the eigenvalue λn is positive for the convenience
of later arguments. By using the orthogonality relation∫

φn(x)φ∗
m(x)dx = δnm, we can get a Langevin equation for

an(t),

γ
∂an(t)

∂t
= ∂E

∂a∗
n

+ ηn(t), (4)

together with the complex conjugate. Here we introduce the
energy function E, which consists of the unperturbed and the

perturbation terms E = E0 + Ev , with

E0 =
∑

n

λna
∗
nan,

(5)
Ev =

∑
n,m

〈n|V̂ |m〉a∗
nam ≡

∑
n,m

Vnma∗
nam,

where Vnm = V ∗
mn (that is, V denotes the Hermitian), and |n〉

and |m〉 are the eigenstates for mode n and m, respectively.
The complex variable an can be expressed in terms of real
and imaginary parts as an = Xn + iYn, which is used for the
concrete description of the FP equation.

Here we remark on the complex coefficient γ in Eq. (4):
For this purpose, we rewrite Eq. (4) in terms of real variables
(X,Y ):

α
dXn

dt
+ κ

dYn

dt
= −1

2

∂E

∂Xn

+ Re(η),
(6)

α
dYn

dt
− κ

dXn

dt
= −1

2

∂E

∂Yn

+ Im(η).

Here α and κ are defined by γ = −α + iκ . If we set κ = 0, this
equation describes the dissipation, hence α should be positive.
On the other hand, for the opposite case in which α = 0, one
can see that the equation of motion leads to nondissipative
motion, since the energy function E is conserved.

III. FUNCTIONAL INTEGRAL

According to the assumption of white noise, η(x,t) obeys
the Gaussian distribution,

P [η(x,t)] = N exp

[
− 1

2h

∫
η∗(x,t)η(x,t)dx dt

]
, (7)

where h is the diffusion constant corresponding to the Planck
constant. By considering the Langevin equation and taking
account of the boundary condition ψ(x,0) ≡ ψ(x), ψ(x,T ) ≡
ψ ′(x), the transition probability from ψ(x) to ψ ′(x) is written
by the path integral,

K(ψ ′(x),T |ψ(x),0) ∼
∫ ψ ′(x)

ψ(x)
exp

[
− 1

2h

∫ T

0
η∗(x,t)η(x,t)dx dt

]∏
x,t

Dη(x,t)∗Dη(x,t), (8)

which turns out to be represented in terms of the amplitude {an},

K({a′
n},T |{an},0) =

∫ {a′
n}

{an}
exp

[
− 1

2h

∫ T

0

∑
n

η∗
n(t)ηn(t)dt

]∏
n,t

Dηn(t)∗Dηn(t), (9)

where we use the eigenfunction expansion defined by Eq. (3). The functional integral (9) is rewritten in the following steps: First,
by inserting the expression for the identity of the δ-functional integral [15,16]:∫ ∏

n

∏
t

δ [Fn(t) − ηn(t)]DFn(t) = 1

(
Fn(t) = γ

dan

dt
− ∂E

∂a∗
n

)
(10)

together with use of the well-known relation for the δ function, δ[f (x)] ∝ ∫ ∞
−∞ exp[iρf (x)]dρ, and next by integrating over

ηn(η∗
n) as well as ρn(ρ∗

n), we obtain

K ∼ C

∫
exp

[
− 1

2h

∫ T

0

∑
n

F ∗
n Fndt

]
DF ∗

nDFn, (11)
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where C is a factor that does not depend on Fn. By the definition of Fn and by using a functional determinant, the path integral
is given as

K ∼ C

∫
exp

[
− 1

2h

∫ T

0

∑
n

(
γ ∗ da∗

n

dt
− ∂E

∂an

) (
γ

dan

dt
− ∂E

∂a∗
n

)
dt

]
det

[
δF ∗

n

δa∗
n

]
det

[
δFn

δan

]
Da∗

nDan. (12)

The functional determinant is calculated and written by using real variables (X,Y ),

det

[
δFn

δan

]
= exp

[
− 1

8γ

∫ T

0

(
∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
dt

]
. (13)

This factor plays a crucial role in fixing the correct form of the FP equation. The process to derive it will be given in Appendix.
From the above form of the path integral, we see that an action functional is modified as

S =
∑

n

∫ T

0

1

2

∣∣∣γ dan

dt
− ∂E

∂a∗
n

∣∣∣2
dt + h

8

(
1

γ ∗ + 1

γ

) ∑
n

∫ T

0

(
∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
dt =

∑
n

(∫ T

0
L̃ndt + h

∫ T

0
Mdt

)
, (14)

where

M = − α

4|γ |2
(

∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
. (15)

Now we rewrite the Lagrangian L̃n in Eq. (14) by using real coordinates, (X,Y ), explicitly, and further by noting γ = −α + iκ .
Then we obtain

L̃n = 1

2

{
|γ |2 (

Ẋ2
n + Ẏ 2

n

) + α

(
Ẋn

∂E

∂Xn

+ Ẏn

∂E

∂Yn

)
− κ

(
Ẋn

∂E

∂Yn

− Ẏn

∂E

∂Xn

)
+ 1

4

[(
∂E

∂Xn

)2

+
(

∂E

∂Yn

)2]}
. (16)

Here, in order to make a connection with quantum mechanics, we introduce imaginary time τ (= −it), and we set the
Lagrangian as Ln(= −L̃n). By using the conjugate momentum pn = ∂Ln

∂Ẋn
(Ẋn = dXn

dτ
), the Hamiltonian corresponding to Ln

becomes

Hn = 1

2|γ |2
[(

pnX − iα
∂E

∂Xn

+ iκ
∂E

∂Yn

)2

+
(

pnY − iα
∂E

∂Yn

− iκ
∂E

∂Xn

)2]
+ 1

8|γ |2
[(

∂E

∂Xn

)2

+
(

∂E

∂Yn

)2]
. (17)

Thus, the total Hamiltonian is given by H = ∑
n Hn.

IV. THE FOKKER-PLANCK EQUATION

We now derive the FP equation via the “imaginary-time” Schrödinger equation by starting with a quantized version of the
Hamiltonian (17). First we note that the corresponding “wave function” 
({Xn},τ ) is related with the probability distribution
function P ({Xn},t) as follows:


({Xn},τ ) = P ({Xn},t). (18)

As is well known, the Schrödinger equation is given by integral equation

ψ({Xn},τ + ε) =
∫

K({Xn},τ + ε | {X′
n},τ )ψ({X′

n},τ )
∏
n

dX′
n,

where the propagator K is constructed from the action functional given above. Thus, according to the well-known procedure (see
[17]), the Schrödinger equation for the wave function 
({Xn},τ ) turns out to be

ih
∂


∂τ
=

∑
n

1

2|γ |2
[(

pnX − i
α

2

∂E

∂Xn

+ i
κ

2

∂E

∂Yn

)2

+
(

pnY − i
α

2

∂E

∂Yn

− i
κ

2

∂E

∂Xn

)2 ]

 +

∑
n

W
, (19)

where

pnX = −ih
∂

∂Xn

, pnY = −ih
∂

∂Yn

, W = 1

8

[ (
∂E

∂Xn

)2

+
(

∂E

∂Yn

)2 ]
+ Mh. (20)

Then, by using Eq. (20) and replacing the imaginary time τ with the original real time t , namely τ → −it , we obtaind

∂


∂t
=

∑
n

{
h

2|γ |2
[ (

∂

∂Xn

)2

+
(

∂

∂Yn

)2 ]

 + 1

2|γ |2
(

α

[
∂E

∂Xn

∂


∂Xn

+ ∂E

∂Yn

∂


∂Yn

]
+ κ

[
∂E

∂Xn

∂


∂Yn

− ∂E

∂Yn

∂


∂Xn

])

+
[

α

4|γ |2
(

∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
− M

]



}
. (21)
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Using (15), the last term becomes α
2|γ |2 ( ∂2E

∂X2
n
+ ∂2E

∂Y 2
n

). Hence the second and the last terms can be combined in a single form
by noting the relation ∇A · f + A · ∇f = ∇ · (Af ). Further, by getting the wave function 
 back to the original probability
distribution P , we finally obtain the FP equation:

∂P

∂t
=

∑
n

[
h

2|γ |2
(

∂

∂Xn

)2

P + 1

2|γ |2
∂

∂Xn

(
α

∂E

∂Xn

P − κ
∂E

∂Yn

P

)
+ h

2|γ |2
(

∂

∂Yn

)2

P + 1

2|γ |2
∂

∂Yn

(
α

∂E

∂Yn

P + κ
∂E

∂Xn

P

) ]
.

(22)

Here we discuss some specific features of this equation:
(i) Equation (22) can be represented in a continuity equation

of the probability:

∂P

∂t
+ ∇ · J = 0, (23)

where the “current” is defined as J = ∑
n Jn,

Jn = − 1

2|γ |2 (h∇nP + AnP ) , An = α
∂E

∂Xn

− κk × ∂E

∂Xn

,

(24)

with k being the unit vector that is perpendicular to the (X,Y )
plane. Indeed, it has been known that the FP equation can be
derived by following an analogy with the continuity equation
for the probability flow in an intuitive way [18].

(ii) As a special case, we consider stationary distribution,
namely the case of ∂P

∂t
= 0, for which we propose

P = e−βE, (25)

where β = 1/kT denotes the inverse temperature. Substituting
this form, we have

(α − hβ)
∑

n

{
∂2E

∂X2
n

+ ∂2E

∂Y 2
n

−β

[ (
∂E

∂Xn

)2

+
(

∂E

∂Yn

)2 ]}
= 0. (26)

For this relation to be satisfied for an arbitrary function E, the
following relation should be held:

β = α

h
. (27)

This is merely the fluctuation dissipation theorem, which
establishes the relation among three parameters α, β, and
h, representing the dissipation, inverse temperature, and

diffusion, respectively. Note that the effects of κ disappear
in the above relation (26), and nonzero α plays an essential
role for the existence of the equilibrium state. If α = 0,
the equilibrium state does not exist, because the effective
temperature becomes infinite.

Calculation of the partition function. The equilibrium
distribution is used to evaluate the partition function, which
leads to various sorts of thermodynamical quantities [19]: As
a particular case, we consider the case in which the energy
function is given by the unperturbed one, E0 = ∑

n λn(X2
n +

Y 2
n ), for which we have

Z =
∫

exp

[
−β

∑
n

λna
∗
nan

]∏
n

da∗
ndan =

∏
n

[
2π

βλn

]
.

(28)
This is the same form as the partition function used in
the superconductivity near the phase transition [5,20],
which is described by the time-independent LG free
energy. That is, the partition function is given by Z =∫

exp [ − βF [ψ,ψ∗]]
∏

dψ∗dψ with F [ψ,ψ∗] =∫
ψ∗Hψ dx. H is given as the Hamiltonian that depends on

the electromagnetic field. In this way, the present approach
includes the stationary problem for the LG theory as a special
case.

(iii) The FP equation describes the coupling among the
modes ai (i = 1, . . . ,∞). This is governed by the perturbation
term Ev in the energy function (5), which is written in terms
of the real variables (Xn,Yn):

Ev =
∑
n,m

Bnm(XnXm + YnYm) + Cnm(XnYm − XmYn), (29)

where B,C are the real and imaginary parts of the Hermitian
matrix Vnm:(Vnm = Bnm + iCnm); hence these become the
symmetric and skew-symmetric matrices, respectively, namely
Bnm = Bmn, Cnm = −Cmn.

In particular, the FP equation described by the unperturbed
energy E0 yields

∂P

∂t
=

∑
n

[
h

2|γ |2
(

∂

∂Xn

)2

P + λn

|γ |2
∂

∂Xn

(αXnP − κYnP ) + h

2|γ |2
(

∂

∂Yn

)2

P + λn

|γ |2
∂

∂Yn

(αYnP + κXnP )

]
. (30)

Furthermore, the term coming from Ev gives rise to the modification to the above, that is,∑
nm

1

|γ |2
∂

∂Xn

[α (BlmXm + ClmYm) P − κ(BlmYm − ClmXm)P ]

+
∑
nm

1

|γ |2
∂

∂Yn

[α(BlmYm − ClmXm)P + κ(BlmXm − ClmYm)P ]. (31)
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This term plays the role of the perturbation to the unperturbed
equation (30). Also the coefficients Bnm,Cnm have time depen-
dence in general, so we have a time-dependent perturbation
theory for the FP equation that may be expected to bring about
specific physical consequences.

V. ANALYSES OF THE STOCHASTIC EQUATION

The FP equation that was derived above is described by the
energy function E, which includes the coupling among various
modes. In the following discussion, we restrict the argument to
the specific case of the independent mode E0 = ∑

n λna
∗
nan.

For this case, the stochastic equation is given by (30), and
the analyses of this will be carried out in a simple manner,
because the modes are decoupled from each other. That is, the
distribution function is written as a product form:

P ({X},t) =
∏
n

Pn(Xn,Yn,t),

where Pn(Xn,Yn,t) means the distribution for the nth mode,
and the term including κ is omitted because it does not
contribute to the equilibrium state. In what follows, we
consider the nth mode only, so the index n is suppressed.
Then, we set the variable separation as

P (X,Y,t) = exp[−εt]f (X,Y ).

Thus, we get the eigenvalue problem as follows:(
∂2

∂X2
+ ∂2

∂Y 2

)
f + 2λα

h

(
X

∂f

∂X
+ Y

∂f

∂Y

)

= −2α

h
(αε + 2λ) f. (32)

Here we use the polar coordinates X = R cos θ , Y = R sin θ ,
and we consider the case in which the eigenfunction f (X,Y )
does not depend on the angular variable θ . Therefore, the
eigenvalue problem becomes

1

R

d

dR

[
R

(
df

dR
+ μ

2

dU

dR
f

)]
= −2α2

h
εf, (33)

where μ = 2λα
h

= 2λβ. Here we use the notation U (R) =
X2 + Y 2 = R2, and then the Hamiltonian is written as H =
λU (R).

A. Strong-coupling approximation

The eigenvalue problem (33) looks simple, but this may
not be represented by special functions that have been used so
far. If we note that Eq. (33) includes the parameter μ, which
can be regarded as a perturbation parameter, one may think
of carrying out the perturbation scheme by expansion with
respect to the small parameter μ (|μ| � 1). That is, one starts
with the equation for μ = 0 as an unperturbed solution, which
is given by the Bessel function. However, this procedure may
not be relevant, since the case μ = 0 corresponds to α = 0,
which does not represent thermodynamic equilibrium as it
is pointed out above. From this inspection, it is suitable to
consider the case in which |μ| is not small, |μ| 
 1, which
we call the “strong-coupling approximation.” The following
procedure is similar to that used in the stochastic approach

of ferromagnetic particles [18], although the problem under
consideration belongs to a completely different discipline.

Then, we immediately get the solution for the zero
eigenvalue (ε = 0):

f0(R) = exp

[
−μ

2
U (R)

]
. (34)

This corresponds to the Boltzmann distribution, which is
identified with the “ground state.” As a sequel of the ground
state, we assume an “excited state” as

f (R) = exp

[
−μ

2
U (R)

]
g(R). (35)

The function g(R) satisfies

d

dR

(
R exp

[
−μ

2
U

]
dg

dR

)
= 2α2

h
εR exp

[
−μ

2
U

]
g. (36)

In particular, for ε = 0, we can set dg

dR
to zero, which gives

g0(R) = k (constant).
The eigenvalue equation (36) is equivalent to the following

variational problem: That is, the functional given by

I =
∫ ∞

0

(
dg

dR

)2

exp

[
−μ

2
U

]
R dR (37)

should be minimized under the normalization condition∫ ∞

0
g2 exp

[
−μ

2
U

]
R dR = 1. (38)

Furthermore, we propose that the orthogonality relation should
be held between two eigenstates g and g̃:∫

gg̃ exp

[
−μ

2
U

]
R dR = 0. (39)

Under this prescription, we consider the first-excited state
as a concrete example. To perform the variational calculation,
we choose the trial function as the quadratic expression

g1(R) = A + BR + CR2. (40)

The coefficients A, B, and C are determined by three
conditions corresponding to Eqs. (37)–(39), which are written
explicitly as

I = J1B
2 + 4J2BC + 4J3C

2 (≡ε1) (41)

and

J1A
2 + 2J2AB + J3(2AC + B2) + 2J4BC + J5C

2 = 1,
(42)

J1A + J2B + J3C = 0,

respectively. Here we set Jk = ∫ ∞
0 exp[−μ

2 R2]RkdR. The
minimum value of I is obtained as follows: First, by elimi-
nating A from Eq. (42), one gets the quadratic constraint with
respect to B,C:

G(B,C) =
(

J 2
2

J1
+ J3

)
B2 + 2J4BC

+
(

J5 − J 2
3

J1

)
C2 − 1 = 0. (43)
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Next, by using this constraint and following the Lagrange
multiplier method, we have the relations

∂

∂χi

(I − λG) = 0 (χi = B,C,λ), (44)

where λ is a multiplier. Equation (44) leads to simultaneous
equations for B, C, and λ. By solving this, we can obtain the
value of ε1. The explicit manipulation is rather tedious and is
omitted here.

By continuing the above procedure, we can obtain a
sequence of the excited states gn(R). By using this, the
distribution function P (R,t) is expanded as

P (R,t) =
∑

n

Cn(t)gn(R) exp

[
−μ

2
U

]
. (45)

The expansion coefficient Cn(t) satisfies dCn/dt =
−εnCn, and from the initial condition P (R,0) =∑

n Cn(0)gn(R) exp[−μ

2 U ], we get Cn(0) = ∫
P (R,0)gn(R)

exp[−μ

2 U ]RdR. As an actual situation, it may be sufficient to
keep the terms up to the first-excited state,

P (R,t) = {C0(t)g0 + C1(t)g1(R)} exp

[
−μ

2
U

]
. (46)

The distribution of this form may be utilized to calculate the
time evolution of the average value of physical quantities under
consideration.

B. Small diffusion limit

We consider another procedure of the nonperturbational
scheme that is given as the asymptotic limit of the path integral,
namely the limit of zero diffusion, h ∼ 0. This corresponds to
the semiclassical approximation in quantum mechanics. The
path integral expression for h ∼ 0 becomes

Ksc = exp

[
−Ssc

h

]
. (47)

Here the classical action is written as a sum of the contributions
coming from each mode n; Ssc = ∑

n Sn
sc. In what follows, we

take account of the mode n only, and we suppress the index n.
The final result is obtained by summing over n. By using the
polar coordinate, the action functional is given as

Ssc =
∫ [

α2

2

(
Ṙ − ζ

dU

dR

)2

+ α2

2
R2θ̇2

]
dt, (48)

where ζ = λ
2α

. The conjugate momentum for θ , pθ = R2θ̇ ,
is conserved because θ is a cyclic coordinate. Then, the
Lagrangian becomes

L = α2

2

(
Ṙ − ζ

dU

dR

)2

+ c2

2R2
. (49)

Following the procedure of classical dynamics (see [21]), the
equation of motion is derived by a Routhian given by R =
cθ̇ − L. It is rather complicated to deal with this equation,
but one can ignore the term including c if c can be chosen as
small. Then the equation of motion is written in a form of the
so called “instanton” equation

Ṙ = ζ
dU

dR
= 2ζR. (50)

By using this, Ksc is simply written as

Ksc = exp

[
− c2

2h

∫ t

ti

dt

R2

]
. (51)

Furthermore, noting dt
dR

= 1
2ζR

, it follows that the transition
probability from the initial point Ri to the final one Rf is

Ksc(Rf ,t |Ri,ti) = exp

[
− c2

4ζh

∫ Rf

Ri

dR

R3

]

= exp

[
− c2

8ζh

(
1

R2
i

− 1

R2
f

)]
. (52)

As the final step, attaching the index of mode for the orbit,
we write R as R(k), and taking the product over all modes k,
we obtain

Ksc({Rf },t |{Ri},ti) =
∏
k

exp

[
− c2

k

4ζkh

∫ R(k)f

R(k)i

dR(k)

R(k)3

]

=
∏
k

exp

[
− c2

k

8ζkh

(
1

R(k)2
i

− 1

R(k)2
f

)]
,

(53)

where ck,ζk indicate that the quantities correspond to mode k.

VI. SUMMARY

We studied a stochastic theory for the generalized
Schrödinger equation by using a method of eigenfunction
expansion. The present approach would have an advantage in
that once one starts with the expansion for the wave function
(order parameter) in terms of the set {an}, one can always
obtain the Langevin equation in a very general way. Thus
this approach would provide an efficient way to investigate a
wide class of systems that can be described by the generalized
Schrödinger equation.

By using the functional (or path) integral formalism, the
Langevin equation results in the FP equation based on the
assumption of Gaussian white noise for the fluctuation. We
paid particular attention to the calculation of the functional
Jacobian, which is simply incorporated in the action functional.
As a consequence of this procedure, we arrived at the specific
form of the FP equation (22), which is relevant to our
subsequent analyses of the distribution function.

The analyses of the distribution function have been given
for the case of the unperturbed Hamiltonian, which can be
treated within two categories: (i) by using the expansion with
respect to the dissipation constant α, and (ii) by adopting the
asymptotic limit of “zero” diffusion (h ∼ 0). Our analyses
have an advantage in that we can obtain a concise analytic
form for the distribution function and the transition probability.
In this connection, the FP equation that was developed
in Ref. [13] seems to be a complicated way to obtain a
simple form of the distribution function. As a potentially
useful application of our method, we mention the problem
of a calculation for various sorts of transport coefficients
in nonequilibrium statistical physics that is inspired by the
generalized Schrödinger equation [22].
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An immediate application of the present formalism could
be the calculation of conductivity for the superconducting
fluctuation current just above the critical temperature. The FP
equation (22) is expected to play a key role in calculating
the time-dependent average for the current leading to the
conductivity. The details of this topic will be discussed in
a forthcoming paper.

APPENDIX: THE CALCULATION OF THE
FUNCTIONAL JACOBIAN

To evaluate det[ δFn

δan
], we start with a general procedure that

was developed in Ref. [23]. Let us write F = γ da
dt

− A, and
define F = γ db

dt
. We note the relation

det

[
δF

δa

]
= det

[
δḃ

δb

δb

δa

]
=

(
det

[
δḃ

δb

])(
det

[
δb

δa

])
. (A1)

The first factor det[ δḃ
δb

] = det[ d
dt

] = C can be omitted because
it is simply a divergent factor. Then we have the integral
equation

γ b(t) = γ a(t) −
∫ t

0
A [a(τ )] dτ, (A2)

which is rewritten by using the step function,

γ b(t) = γ a(t) −
∫ T

0
θ (t − τ )A [a(τ )] dτ. (A3)

Using this form, the interval of integration can be converted
to [0,T ], which coincides with the interval in the path integral
(12). Then, Eq. (A3) is expressed as a discrete form:

γ b(ti) = γ a(ti) −
∑

j

θ (ti − τj )A[a(τj )]ε. (A4)

By carrying out the differential with respect to a(tk), we obtain

γ
∂b(ti)

∂a(tk)
= γ

∂a(ti)

∂a(tk)
−

∑
j

θ (ti − τj )
∂A[a(τj )]

∂a(tk)
ε, (A5)

which is reduced to

∂b(ti)

∂a(tk)
= δik − 1

γ
θ (ti − tk)

∂A[a(tk)]

∂a(tk)
ε. (A6)

The matrix represented by these elements is a triangular matrix.
For ti > tk , it follows that

∂b(ti)

∂a(tk)
= − 1

γ

∂A[a(ti)]

∂a(ti)
ε. (A7)

For ti = tk , noting θ (ti − tk) = 1/2, which is a Dirichlet
discontinuous factor [24], we get

∂b(ti)

∂a(ti)
= 1 − 1

2γ

∂A[a(ti)]

∂a(ti)
ε. (A8)

Here it is crucial to have the factor 1
2 . The determinant, except

for the infinite factor C, is given as

det

[
δF

δa

]
= det

[
δb

δa

]
=

∏
i

(
1 − 1

2γ

∂A[a(ti)]

∂a(ti)
ε

)
, (A9)

which turns out to be

det

[
δb

δa

]
= exp

[
− 1

2γ

∫ T

0

∂A[a(t)]

∂a(t)
dt

]
. (A10)

Therefore, by substituting A = ∂E
∂a∗

n
, we have the functional

Jacobian,

det

[
δFn

δan

]
= exp

[
− 1

8γ

∫ T

0

(
∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
dt

]
. (A11)

Also, we have the complex conjugate of (A11),

det

[
δF ∗

n

δa∗
n

]
= exp

[
− 1

8γ ∗

∫ T

0

(
∂2E

∂X2
n

+ ∂2E

∂Y 2
n

)
dt

]
. (A12)

By summing up (A11) and (A12), we obtain the terms that are
proportional to M in the text.
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