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I. INTRODUCTION

Nonzero ground-state disorder and associated entropy,
S0 �= 0, is an important subject in statistical mechanics; a
physical realization is provided by water ice, for which,
at atmospheric pressure, S0 = 0.82 ± 0.05 cal/(K mol), i.e.,
S0/R = 0.41 ± 0.03 [1–3]. A particularly simple model ex-
hibiting ground-state entropy without the complication of
frustration is the q-state Potts antiferromagnet (AF) on a
lattice � for sufficiently large q [4]. This subject also has
an interesting link with mathematical graph theory, since the
partition function of the q-state Potts antiferromagnet at zero
temperature on a graph G satisfies

Z(G,q,T = 0)PAF = P (G,q), (1.1)

where P (G,q) is the chromatic polynomial of G, which
is equal to the number of ways of coloring the vertices
of G with q colors subject to the constraint that no two
adjacent vertices have the same color. Such a color assignment
is called a proper vertex q-coloring of G. The minimum
number of colors required for a proper vertex q-coloring of
the graph G is called the chromatic number of the graph,
denoted χ (G). We will focus here on regular N -vertex lattice
graphs �N and, in particular, on the thermodynamic limit
N → ∞ (with appropriate boundary conditions), which will
be denoted simply as �. In this limit, the ground-state (i.e.,
zero-temperature) degeneracy per vertex (site) of the q-state
Potts antiferromagnet on � is given by

W (�,q) = lim
N→∞

P (�N,q)1/N , (1.2)

and the associated ground-state entropy per site is given by
S0(�,q) = kB ln W (�,q). It will be convenient to express our
bounds on the ground-state entropy per site in terms of its
exponent, eS0(�,q)/kB = W (�,q).

In [5,6], lower bounds on W (�,q) were derived for the
triangular (tri), honeycomb (hc), (4 × 82), and sqd lattices.
Here an Archimedean lattice � is defined as a uniform tiling of
the plane with a set of regular polygons such that all vertices are
equivalent. Our notation for an Archimedean lattice follows the
standard mathematical format [7,11], namely � = (

∏
i p

ai

i ),
where the product is over the regular polygons pi that are
traversed in a circuit around a vertex, and ai � 1 refers to

*(1) Permanent address; (2) present address on sabbatical.

possible contiguous repetitions of a given type of polygon in
such a traversal. The sqd lattice is a nonplanar lattice formed
from the square lattice by adding edges (bonds) connecting
the two sets of diagonal next-nearest-neighbor vertices in each
square. In [7], Shrock and Tsai derived corresponding lower
bounds on W (�,q) for all Archimedean lattices � and their
planar duals, using a coloring compatibility matrix (CCM)
method employed earlier by Biggs for the square (sq) lattice
[8], in combination with the Perron-Frobenius theorem [9] and
a theorem giving a lower bound on the maximal eigenvalue of
a symmetric non-negative matrix [10].

In this paper, we introduce several generalizations of the
method used in [5–8] and apply these to derive improved lower
bounds on W (�,q) for several lattices �. References [5,6,8]
also used CCM methods to derive upper bounds on W (�,q).
However, it was shown in [5,6] that, while the upper bounds
were moderately restrictive, the lower bounds were very close
to the actual values of W (�,q). Therefore, as in [7], we focus
here on the lower bounds on W (�,q).

This paper is organized as follows. In Sec. II we explain
the basic coloring compatibility matrix method. In Sec. III
we discuss our generalizations of this method. In Secs. IV–VI
we apply our generalized methods to derive new and more
restrictive lower bounds on W (�,q) for the square, triangular,
and honeycomb lattices. In Secs. VII and VIII we present
corresponding results for two heteropolygonal Archimedean
lattices, namely the (4 · 82) and (3 · 6 · 3 · 6) (i.e., kagomé)
lattices. In Sec. IX we report results for the sqd lattice. In
Sec. X we compare the large-q Taylor series expansions of our
lower bounds for the various lattices with the large-q series
expansions of the actual W functions for these respective
lattices. Our conclusions are given in Sec. XI. We list
some results on r-partite lattices in Appendix A, the lower
bounds on W (�,q) for Archimedean lattices � from [5–8] in
Appendix B, and some higher-degree algebraic equations that
are used in the text in Appendix C.

II. BASIC CALCULATIONAL METHOD

In this section, we explain the basic calculational method
used in [5–8] to derive lower bounds on W (�,q). In the
next section, we generalize this method in several ways. We
consider a sequence of (regular) lattices of type � of length
Lx = n vertices in the longitudinal direction and width Ly = m

vertices in the transverse direction. In the thermodynamic
limit n → ∞, m → ∞ with the aspect ratio m/n finite,
the boundary conditions do not affect W (�,q). It will be
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convenient to take periodic boundary conditions (PBCs) in
both directions. If a lattice � is r-partite, then m and n are
chosen so as to maintain this property.

The construction of the coloring compatibility matrix T

begins by considering an n-vertex path Pn in the longitudinal
direction on �. The number of proper vertex q-colorings of
Pn is the chromatic polynomial P (Pn,q). Now focus on two
adjacent parallel paths, Pn and P ′

n. Define compatible proper
q-colorings of the vertices of these adjacent paths as proper
q-colorings such that no two adjacent vertices on Pn and P ′

n

have the same color. One can then associate with this pair
of adjacent paths an (N × N )-dimensional symmetric matrix
T , where N = P (Pn,q) = P (P ′

n,q), with entries TPn,P ′
n
=

TP ′
n,Pn

= 1 or 0 if the proper q-colorings ofPn andP ′
n are or are

not compatible, respectively. This matrix is thus defined in the
space of allowed color configurations for these adjacent paths.

It follows that, for fixed m and n,

P (�m×n,q) = Tr(T m). (2.1)

For a given n, since T is a non-negative matrix, one can apply
the Perron-Frobenius theorem [9] to conclude that T has a real
positive maximal eigenvalue λmax. Hence, for fixed n,

lim
m→∞ Tr(T m)

1
mn = (λmax)

1
n . (2.2)

Therefore, taking the n → ∞ limit,

W (�,q) = lim
n→∞(λmax)

1
n . (2.3)

Let us denote the column sum

κj (T ) =
N∑

i=1

Tij , (2.4)

which is equal to the row sum

ρj (T ) =
N∑

i=1

Tji (2.5)

(since T T = T ) and the sum of all entries of T as

S(T ) =
N∑

i,j=1

Tij . (2.6)

Note that S(T )/N is the average row sum (equal to the average
column sum).

For a general non-negative N × N matrix A [9], one has
the nested inequalities

min{κj (A)} � λmax(A) � max{κj (A)} (2.7)

and

min{ρj (A)} � λmax(A) � max{ρj (A)} (2.8)

for j = 1, . . . ,N . Since T T = T , these are equivalent here.
One also has the following more restrictive one-parameter
family of lower bounds depending on the parameter k, for a
symmetric non-negative matrix T [10]:[

S(T k)

N

]1/k

� λmax(T ). (2.9)

References [5–8] derived lower and upper bounds on
W (�,q) using the k = 1 special case of (2.9). We will denote

a generic lower bound on W (�,q) with the subscript � as
W (�,q)�. We will distinguish specific lower bounds that we
obtain with the additional subscripts b and k, as explained
below. The lower bounds obtained in [5–8] were for b = 1
and k = 1. References [5–7] studied how close the upper and
lower bounds obtained on W (�,q) were to the actual values
of W (�,q) for a number of lattices, where the latter were
determined mainly from Monte Carlo calculations, augmented
by large-q series expansions together with a few exact results.
It was found that for a given lattice �, as q increases beyond
the region of χ (�), the lower bounds rapidly approach very
close to the actual value of W (�,q).

We next introduce some notation that will be used below
for reduced functions obtained from W (�,q), which will
be analyzed in the large-q limit. This large-q limit is the
natural one to consider for chromatic polynomials, since the
constraint in a proper q-coloring of the vertices of a graph,
namely that no two adjacent vertices have the same color,
becomes progressively less restrictive as the number of colors
increases to large values. The chromatic polynomial of an
arbitrary N -vertex graph G is a polynomial of degree N ,
and consequently, W (�,q) ∼ q as q → ∞. To deal with a
finite quantity in the q → ∞ limit, one therefore considers the
reduced (r) function

Wr (�,q) = W (�,q)

q
. (2.10)

A variable equivalent to 1/q that is convenient to use for a
large-q series expansion of Wr (�,q) is

y = 1

q − 1
. (2.11)

These large-q (i.e., small-y) series expansions are normally
given for the function

W (�,y) = Wr (�,q)

(1 − q−1)��/2
= W (�,q)

q(1 − q−1)��/2
, (2.12)

where �� is the lattice coordination number of the lattice �

(i.e., the degree of the vertices of �). In terms of the expansion
variable y, these series thus have the form

W (�,y) = 1 +
∞∑

k=1

w�,ky
k. (2.13)

Analogously, for the expansion of our lower bound, we define
the reduced lower bound function W (�,y)� as

W (�,y)� = W (�,q)�
q(1 − q−1)��/2

. (2.14)

Before proceeding, we note a subtlety in the definition of
W (�,q). As pointed out in [12], the formal Eq. (1.2) is
not, in general, adequate to define W (�,q) because of a
noncommutativity of limits,

lim
N→∞

lim
q→qs

P (�N,q)1/N �= lim
q→qs

lim
N→∞

P (�N,q)1/N (2.15)

at certain special points qs . We denote the definitions based on
the first and second orders of limits in (2.15) as W (�,q)DNq

and
W (�,q)DqN

, respectively. This noncommutativity can occur
for q < qc(�), where qc(�) denotes the maximal (finite) real
value of q, where W (�,q) is nonanalytic [12]. These values
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include qc(sq) = 3, qc(tri) = 4, and the formal value qc(hc) =
(3 + √

5)/2 = 2.618 . . . [4,12] for the square, triangular, and
honeycomb lattices. As explained in [12], the underlying
reason for the noncommutativity is that as q decreases from
large values, there is a change in the analytic expression for
W (�,q) as q decreases through the value qc(�). We do not
have to deal with this complication here because elementary
results yield exact values of W (sq,2), W (hc,2), W ((4 · 82),2),
and W (tri,3) [see Eqs. (A1) and (A2)], namely

W (sq,2) = W (hc,2) = W ((4 · 82),2) = 1, W (tri,3) = 1.

(2.16)

Hence, our lower bounds are not needed at the respective values
q = 2 for the square, honeycomb, and (4 · 82) lattices or for
q = 3 on the triangular lattice, and we therefore focus on their
application to q � 3 for � = sq,hc,(4 · 82) and to q � 4 for
� = tri, and similarly for other lattices.

III. GENERALIZED COLORING COMPATIBILITY
MATRIX METHOD

A. Coloring compatibility matrix joining
adjacent strips of width b

The lower bounds on W (�,q) derived in [5–8] for various
lattices � used Eq. (2.9) with T being a coloring compatibility
matrix joining adjacent paths and with k = 1. Here we gener-
alize this method in several ways. Our first generalization is to
use a coloring compatibility matrix that joins adjacent strips
of width b � 2 vertices, rather than adjacent one-dimensional
(b = 1) paths. For simplicity, we explain this for the square
lattice; similar discussions apply for other lattices. We define
the matrix T to enumerate compatible colorings of a strip of
transverse width b vertices and an adjacent parallel strip of
width b and arbitrary length Lx vertices, with cyclic boundary
conditions. (Here, by cyclic boundary conditions for a given
strip, we mean in the x, i.e., longitudinal, direction along this
strip.) The condition that these strips are adjacent is equivalent
to the statement that they share a common set of edges. Thus,
this CCM is an N × N matrix, where N is the chromatic
polynomial for the cyclic strip of width b vertices and arbitrary
length Lx , with cyclic boundary conditions. For this CCM, the
sum of elements S(T ) is equal to the chromatic polynomial
of a strip of width Ly = 2b − 1 vertices and arbitrary length
Lx vertices with cyclic boundary conditions. These chromatic
polynomials of lattice strips of a fixed width Ly and arbitrarily
great length Lx with periodic boundary conditions in the
longitudinal direction and free boundary conditions in the
transverse direction have the form

P (�,Ly × Lx,cycl,q) =
Ly∑

d=0

c(d)
nP (Ly,d)∑

j=1

(λsq,Ly,d,j )Lx (3.1)

with

c(d) =
d∑

j=0

(−1)j
(

2d − j

j

)
qd−j , (3.2)

where ( a

b
) = a!/[b!(a − b)!] is the binomial coefficient. For a

table of the nP (Ly,d), see [13]. Because of the limits (2.2) and
(2.3), only the largest λ�,Ly,d,j enters in the lower bound (2.9)

in the thermodynamic limit. As specific studies such as [14–17]
showed, the dominant λ for the values of q of relevance here
is λ�,Ly,0,1.

Applying this generalization of the coloring compatibility
matrix in combination with the k = 1 case of (2.9), we derive
the new lower bound for b � 2:

W (�,q) � W (�,q)�;b,1, (3.3)

where

W (�,q)�;b,1 =
[
λ�,2b−1,0,1

λ�,b,0,1

] 1
b−1

. (3.4)

The final subscript, 1, in W (�,q)�;b,1 in (3.3) and (3.4) is the
value of k.

The corresponding lower bound for W (�,y) is

W (�,y) � W (�,y)�;b,1, (3.5)

where, in accordance with Eq. (2.12),

W (�,y)�;b,1 = W (�,q)�;b,1

q(1 − q−1)��/2
, (3.6)

with �� being the coordination number of the lattice �, as
before. The inequality (3.3) with (3.4) is actually an infinite
family of lower bounds depending on the strip width b =
1,2, . . . , and similarly with (3.5) and (3.6). This is one of our
two major results, which we will proceed to apply to a number
of different lattices. The special case b = 1 was previously
used in [8] and [5–7] to derive lower bounds, which we denote
here as W (�,q)�;1,1 and correspondingly W (�,y)�;1,1. Our
generalization in this subsection is to b � 2 with k = 1.

B. Coloring compatibility matrix acting k times
joining paths of width b = 1

Our second generalization is to use a coloring compatibility
matrix method that involves paths (i.e., one-dimensional strips,
with b = 1) on � that are separated by k edges, where k � 2,
rather than the situation with b = 1 and k = 1 considered in
[5–7], where the paths were adjacent. This means using the
coloring compatibility matrix T defined as connecting adjacent
paths, and having it operate k times, with k � 2. Hence, N =
P (CLx

,q), and S(T k) is the chromatic polynomial of a strip
of width Ly = k + 1 vertices and arbitrary length Lx vertices
with cyclic boundary conditions. Again, only the dominant
λ�,Ly,d,j terms enter in (2.9) in the thermodynamic limit. Using
this method in combination with (2.9), we derive the lower
bound

W (�,q) � W (�,q)�;1,k, (3.7)

where

W (�,q)�;1,k =
[
λ�,k+1,0,1

λ�,1,0,1

] 1
k

. (3.8)

In (3.7) and (3.8), the first subscript after �; is b = 1.
An important theorem extending the result (2.9) is that for

a symmetric non-negative matrix T [18],[
S(T k)

N

]1/k

is an increasing function of k. (3.9)
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It follows that, for the physical range of q of relevance for our
application to a lattice �,

W (�,q)�;1,k is an increasing function of k. (3.10)

The corresponding lower bound for W (�,y) is

W (�,y) � W (�,y)�;1,k, (3.11)

where, in accordance with Eq. (2.12),

W (�,y)�;1,k = W (�,q)�;1,k

q(1 − q−1)��/2
. (3.12)

Again, the inequality (3.7) with (3.8) is actually a one-
parameter family of lower bounds depending on the parameter
k = 1,2, . . . , and similarly with (3.11) and (3.12). This is the
second of our major results. The special case k = 1 (with b =
1) was previously used in [5–8]; the generalization presented
in this subsection is to k � 2 with b = 1. We have also carried
out further generalizations of lower bounds on W (�,q) with
both b � 2 and k � 2. These are more complicated and will
be presented elsewhere.

C. Measures of improvement of bounds

For a lattice � and a given q, we define the ratio of a lower
bound W (�,q)�;b,k to the actual value of W (�,q) as

R�,q;�;b,k ≡ W (�,q)�;b,k

W (�,q)
. (3.13)

This ratio is useful as a measure of how close a particular
lower bound W (�,q)�;b,k is to the actual value of the ground-
state degeneracy per vertex, W (�,q). For most lattices and
values of q, the value of W (�,q) is not known exactly, but
rather is determined for moderate values of q by Monte Carlo
simulations, as discussed in [5,6] and, for larger values of q,
by large-q series expansions [20]. Special cases of � and q

for which exact results are known will be noted below.
An important property of our new lower bounds is that,

for a given lattice �, they are larger than and hence more
restrictive than the bounds W (�,q)�;1,1 derived in [5–8]. Since
the lower bounds W (�,q)�;1,1 were very close to the actual
values of W (�,q) for all but the lowest values of q, our
improved lower bounds are even closer to these actual values.
For the same reason, our new lower bounds yield the greatest
fractional improvement for low to moderate values of q and
are only slightly greater than W (�,q)�;1,1 for larger values of
q. This will be evident in our explicit results. For our present
discussion, we take T to be the matrix that acts k times mapping
a strip of width b to an adjacent strip of width b on �. Then
the theorem (3.9) and its corollary (3.10) imply that, for fixed
b, the ratio of our lower bound W (�,q)�;b,k to the actual value
W (�,q) is an increasing function of k, i.e.,

R�,q;�;b,k is an increasing function of k. (3.14)

That is, as k increases, the lower bound W (�,q)�;b,k becomes
more restrictive. From our analysis, we also find that for fixed
k = 1 and b � 2,

R�,q;�;b,1 is an increasing function of b. (3.15)

For a given � and q, it is also of interest to compare the various
lower bounds with each other. For this purpose, we define the

ratio

R�,q;(b,k)/(b′,k′) ≡ W (�,q)�;b,k

W (�,q)�;b′,k′
. (3.16)

By the same argument, theorem (3.9) and its corollary (3.10)
imply that for a given lattice �, our new lower bounds
W (�,q)�;1,k improve on the bound W (�,q)�;1,1 derived in
[5–8]: W (�,q)�;1,k � W (�,q)�;1,1, i.e.,

R�,q;(1,k)/(1,1) � 1 for k � 2. (3.17)

We observe also that

R�,q;(b,1)/(1,1) � 1 for b � 2. (3.18)

As will be evident from our explicit results, for the range of
q that we consider, these inequalities are realized as strict
inequalities. As noted above, since the latter lower bounds
W (�,q)�;1,1 are very close to the actual values of W (�,q),
even for q only moderately above χ (�), as shown in Table I
of [5] and Tables I–III of [6], our new bounds are even closer
to these actual values of W (�,q). In all cases, we find that the
ratios approach unity rapidly in the limit q → ∞.

A major result of Ref. [7] was the derivation of general
formulas for the lower bound W (�,q)�;1,1 and W (�,y)�;1,1 for
all Archimedean lattices and their (planar) duals [Eqs. (4.11),
(4.13), (5.1), and (5.2) in [7]]. As will be evident below, aside
from the basic theorems, our new lower bounds W (�,q)�;b,k

with b � 2 and/or k � 2 do not have such simple general
formulas. However, as noted, they do provide a useful im-
provement on the earlier W (�,q)�;1,1 lower bounds, especially
for q values not too much larger than χ (�).

IV. SQUARE LATTICE

As noted above, since the value W (sq,2) = 1 is known
exactly by elementary methods, we focus on the application
of our new lower bounds to the range q � 3. We first recall
the result for the case b = 1, k = 1. With T being the coloring
matrix connecting adjacent rows or columns of a square lattice,
and with the application of the k = 1 special case of the
theorem (2.9), one has

W (sq,q) � W (sq,q)�;1,1, (4.1)

where [8]

W (sq,q)�;1,1 = q2 − 3q + 3

q − 1
. (4.2)

In terms of W (sq,y), given by (2.12) with � = sq and � = 4,
the lower bound is the b = 1 case of (3.5) with � = sq, namely

W (sq,y)�;1,1 = 1 + y3, (4.3)

as listed in Table III of [7].

A. CCM method with b = 2,3 and k = 1

We first use our generalized method with the coloring
compatibility matrix relating the allowed colorings of a width
b = 2 cyclic ladder strip of the square lattice to those of the
adjacent b = 2 strip. For this, we need the dominant term in
the chromatic polynomial for the square-lattice strip of width
2b − 1 = 3 for the relevant range of q � 3. This chromatic
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polynomial was calculated in [14], and the dominant term is
λsq,3,0,1, namely

λsq,3,0,1 = 1
2 [(q − 2)(q2 − 3q + 5) + ((q2 − 5q + 7)

× (q4 − 5q3 + 11q2 − 12q + 8))1/2]. (4.4)

This term is also the dominant λ in the chromatic polynomial
for the strip of the square lattice with transverse width

Ly = 3 vertices and arbitrary length, with free longitudinal
and transverse boundary conditions [19]. Our lower bound
with b = 2 (and k = 1) then reads

W (sq,q) � W (sq,q)�;2,1, (4.5)

where (with λsq,2,0,1 = q2 − 3q + 3) [21]

W (sq,q)�;2,1 = λsq,3,0,1

λsq,2,0,1
= (q − 2)(q2 − 3q + 5) + [(q2 − 5q + 7)(q4 − 5q3 + 11q2 − 12q + 8)]1/2

2(q2 − 3q + 3)
. (4.6)

Using the analytic results (4.2) and (4.6), we have proved
the following inequality (for q � 3):

W (sq,q)�;2,1 � W (sq,q)�;1,1. (4.7)

In terms of the ratio Rsq,q;(2,1)/(1,1),

Rsq,q;(2,1)/(1,1) � 1. (4.8)

The inequality (4.8) means that our new lower bound, (4.5), is
more stringent than the previous lower bound (4.1) obtained
with the CCM method with b = 1 and k = 1.

Reference [5] showed that as q increases, Rsq,q;1,1 rapidly
approaches extremely close to unity. For example, for q =
4,5,6, Rsq,q;1,1 is equal to 0.9984, 0.9997, and 0.9999 (see
Table I in [5]), respectively, and it increases monotonically
with larger q. Our improved lower bound (4.5) on W (sq,q)
is therefore even closer to the respective actual values of
W (sq,q). As will be discussed below, this is also true of our
other new lower bounds using b = 1 and k � 2. We note that
if one were formally to extend the range of applicability of
(4.7) down to q = 2, it would be realized as an equality, and
if one were to extend the range of applicability of (4.8) to
2 � q � ∞, it would be realized as an equality at q = 2 and
in the limit q → ∞.

For the previous lower bound W (sq,q)�;1,1, the largest
deviation from the actual value occurs at q = 3. It happens

that for q = 3, W (sq,3) is known exactly [22]:

W (sq,3) = 8

33/2
= 1.539 600 7 . . . . (4.9)

For the old bound,

W (sq,3)�;1,1|q=3 = 3
2 , (4.10)

so that

W (sq,3)�;1,1|q=3

W (sq,3)
= 35/2

16
= 0.974 279 (4.11)

to the indicated floating point accuracy. As guaranteed by
the general inequality (4.8), our lower bound (4.5) with (4.6)
improves on this. For q = 3, we have

W (sq,3)�;2,1|q=3 = 5 + √
17

6
= 1.520 517 6 . . . , (4.12)

so that

Rsq,3;�;2,1 ≡ W (sq,3)�;2,1|q=3

W (sq,3)

=
√

3 (5 + √
17 )

16
= 0.987 605 . . . . (4.13)

We show these ratios Rsq,3;�;1,1 and Rsq,3;�;2,1 in Table I.
In terms of the function W (sq,y), our lower bound (4.5)

reads

W (sq,y) � W (sq,y)�;2,1, (4.14)

where

W (sq,y)�;2,1 = (1 + y)[(1 − y)(1 − y + 3y2) + ((1 − 3y + 3y2)(1 − y + 2y2 − y3 + 3y4))1/2]

2(1 − y + y2)
. (4.15)

We have also calculated the lower bound W (sq,q)�;b,1 for b = 3, and we list the ratio Rsq,3;�;3,1 in Table I.

B. CCM method with b = 1 and 2 � k � 5

Next, we apply our second generalized method to the square lattice. For k = 2, our lower bound obtained using this method
is (3.7) with (3.8), namely

W (sq,q) � W (sq,q)�;1,2, (4.16)

where

W (sq,q)�;1,2 =
[
λsq,3,0,1

λC,0,1

]1/2

=
[

(q − 2)(q2 − 3q + 5) + [(q2 − 5q + 7)(q4 − 5q3 + 11q2 − 12q + 8)]1/2

2(q − 1)

]1/2

. (4.17)
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The corresponding lower bound on W (sq,y) is

W (sq,y) � W (sq,y)�;1,2, (4.18)

where

W (sq,y)�;1,2 = 1√
2

(1 + y)[(1 − y)(1 − y + 3y2) + [(1 − 3y + 3y2)(1 − y + 2y2 − y3 + 3y4)]1/2]1/2. (4.19)

For b = 1 and k = 3, we need the dominant λ in the
chromatic polynomial for the cyclic square-lattice strip of
width Ly = 4 vertices and arbitrary length Lx , namely λsq,4,0,1,
which was calculated in [23] (and is the same as the dominant
λ in the chromatic polynomial of the free square-lattice strip
of width Ly = 4 [19]). This term λsq,4,0,1 is the largest (real)
root of the cubic equation (C1) in Appendix C. Our bound is
then W (sq,q) � W (sq,q)�;1,3, where

W (sq,q)�;1,3 =
[
λsq,4,0,1

q − 1

]1/3

. (4.20)

In a similar manner, for b = 1 and k = 4, we have obtained
the bound W (sq,q) � W (sq,q)�;1,4, where

W (sq,q)�;1,4 =
[
λsq,5,0,1

q − 1

]1/4

. (4.21)

and λsq,5,0,1 is the largest (real) root of an algebraic equation
of degree 7 [24].

As a special case of our general result (3.10), we have

Rsq,q;(1,4)/(1,1) � Rsq,q;(1,3)/(1,1) � Rsq,q;(1,2)/(1,1) � 1. (4.22)

In the range q � 3 under consideration here, we find that each
� is realized as >, i.e., a strict inequality.

It is also of interest to compare our various lower bounds
W (sq,q)�;b,1 and W (sq,q)�;1,k with each other. For the first two
above the old case b = 1, k = 1, we find

Rsq,q;(2,1)/(1,2) > 1. (4.23)

That is, our lower bound with (b,k) = (2,1) is larger, and hence
more restrictive, than our lower bound with (b,k) = (1,2). In
the limit q → ∞, the ratio (4.23) approaches 1.

C. Plots

In Fig. 1 we plot the ratios Rsq,q;(b,1)/(1,1) for b = 2 and
3 as functions of q in the range 3 � q � 6, and in Fig. 2
we plot the ratios Rsq,q;(1,k)/(1,1) for k = 2 up to k = 5 as
functions of q in the same range. (Here and below, such

TABLE I. Values of Rsq,q;�;b,k for q = 3 and some illustrative
values of b and k.

b k W (sq,3)�;b,k Rsq,3;�;b,k

1 1 1.500 000 0.974 279
2 1 1.520 518 0.987 605
3 1 1.530 340 0.993 985
1 2 1.510 224 0.980 919
1 3 1.516 2645 0.984 843
1 4 1.520 249 0.987 430
1 5 1.523 073 0.989 265

plots entail a continuation of the relevant expressions from
integral q to real q.) These plots illustrate the result that we
have proved in general, that, for a given q, R�,q;(1,k)/(1,1)

is an increasing function of k, and also our result that
Rsq,q;(3,1)/(1,1) � Rsq,q;(2,1)/(1,1). (If formally continued below
q = 3 to 2, the curves reach maxima and then decrease;
for example, Rsq,q;(2,1)/(1,1) reaches a maximum of 1.06 at
q 	 2.29 and then decreases to 1 as q ↘ 2, while Rsq,q;(1,2)/(1,1)

reaches a maximum of 1.03 at q 	 2.29 and then decreases
to 1 as q ↘ 2.) As the results in these figures show, our new
lower bounds improve most on the earlier W (sq,q)�;1,1 in the
region of q � 3; as q increases beyond this region, the new
bounds approach the earlier one. This feature will be evident
from the large-q (small-y) expansions, since the new bound
and the earlier one coincide in terms of the small-y expansion
up to O(y6). We also find this type of behavior for the new
lower bounds that we have derived for other lattices; that is, the
degree of improvement is greatest for the region of moderate
q slightly above χ (�). On a given lattice �, for larger q, our
new bounds rapidly approach the earlier one with k = 1 and
b = 1; i.e., the ratio R�,q;(b,k)/(1,1) rapidly approaches unity.

Combining these results with the results in Table I in
[5] and Table I in [6], it follows that as q increases above
the interval of q = 3 and 4, these lower bounds approach

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

ratios

3 3.5 4 4.5 5 5.5 6
q

FIG. 1. Plot of the ratios Rsq,q;(2,1)/(1,1) (lower curve) and
Rsq,q;(3,1)/(1,1) (upper curve) as functions of q for 3 � q � 6.
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FIG. 2. Plot of the ratios Rsq,q;(1,k)/(1,1) for k = 2 to 5 as functions
of q for 3 � q � 6. From bottom to top, the curves refer to k = 2, 3,
4, and 5, respectively.

extremely close to the actual respective values of W (sq,q). As
was evident from these tables in [5,6], in the range q � 3, the
greatest deviation of the lower bound W (sq,q)�;1,1 from the
actual value of W (sq,q) occurs at q = 3. It is thus of interest
to determine how much closer our improved lower bounds
are to W (sq,3). From our general expression for W (sq,q)�;1,2,
we calculate the q = 3 value

W (sq,3)�;1,2|q=3 =
√

5 + √
17

2
= 1.510 223 959 . . . (4.24)

so that

Rsq,3;�;1,2 ≡ W (sq,3)�;1,2|q=3

W (sq,3)

=
3
√

3(5 + √
17)

16
= 0.980 919 2 . . . . (4.25)

This ratio and the other ones discussed here are listed in Table I.

V. TRIANGULAR LATTICE

A. b = 1, k = 1

Since W (tri,3) = 1 is exactly known, we will restrict our
consideration of lower bounds to the range q � 4. We recall
that for b = 1 and k = 1, one has the lower bound [5–7]
W (tri,q) � W (tri,q)�;1,1, where

W (tri,q)�;1,1 = (q − 2)2

q − 1
. (5.1)

As was discussed in [5], q increases beyond the lowest
values above χ (tri) = 3. This lower bound rapidly approaches
the known value of W (tri,q) (see Table I in [5]), where
the latter was determined by a numerical evaluation of an
integral representation and infinite product expression [26].
For example, for q = 5,6,7, Rtri,q;1,1 is equal to 0.9938, 0.9988,
and 0.9996, respectively, and it increases monotonically with
larger q. Since our new lower bounds on W (tri,q) are more
restrictive than (5.1), they are therefore even closer to the
respective actual values of W (tri,q).

The corresponding lower bound on W (tri,y) is W (tri,y) �
W (tri,y)�;1,1, where

W (tri,y)�;1,1 = (1 − y2)2 (5.2)

(see Table III in [7]).

B. b = 2,3, k = 1

Here we derive a new lower bound on W (tri,q) using our
first generalization of the CCM method with b = 2, k = 1.
For this purpose, we need the chromatic polynomial of the
cyclic strip of the triangular lattice of width Ly = 3 vertices
and arbitrary length, Lx . This was calculated in [25]. The
dominant λ in (3.1) is

λtri,3,0,1 = 1
2 [q3 − 7q2 + 18q − 17 + (q6 − 14q5 + 81q4

− 250q3 + 442q2 − 436q + 193)1/2]. (5.3)

Combining this with λtri,2,0,1 = (q − 2)2, we derive the lower
bound

W (tri,q) � W (tri,q)�;2,1, (5.4)

where

W (tri,q)�;2,1 = λtri,3,0,1

λtri,2,0,1
= [q3 − 7q2 + 18q − 17 + (q6 − 14q5 + 81q4 − 250q3 + 442q2 − 436q + 193)1/2]

2(q − 2)2
. (5.5)

The reduced function W (tri,y) is given by Eq. (2.12) with � = tri and � = 6. The corresponding lower bound is

W (tri,y) � W (tri,y)�;2,1, (5.6)

where

W (tri,y)�;2,1 = (1 + y)2[1 − 4y + 7y2 − 5y3 + (1 − 8y + 26y2 − 46y3 + 53y4 − 42y5 + 17y6)1/2]

2(1 − y)2
. (5.7)
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Our new lower bound W (tri,q)�;2,1 is larger than, and hence
more restrictive than, the previous lower bound, W (tri,q)�;1,1.
That is, from the analytic forms (5.2) and (5.7), we have proved
that (for q � 4)

Rtri,q;(2,1)/(1,1) > 1. (5.8)

This ratio approaches 1 as q → ∞.
As was evident in Table I in [5], the deviation of

W (tri,q)�;1,1 from the actual value of W (tri,q) was greatest
for q = 4. Hence, it is of interest to determine how much
closer our new lower bound W (tri,q)�;2,1 is to the W (tri,q) for
this value, q = 4. A closed-form integral representation has
been given for W (tri,q) [26]; in particular, an explicit result is
the value for q = 4:

W (tri,4) = 3	(1/3)3

4π2
= 2π√

3 	(2/3)3
= 1.460 998 486. . . ,

(5.9)

where the equivalence follows from the relation
	(z)	(1 − z) = π/ sin(πz) for the Euler Gamma function.
We recall that

W (tri,4)�;1,1 = 4
3 (5.10)

so

Rtri,4;�;1,1 = 2	(2/3)3

√
3 π

= 0.912 617 874 6 . . . (5.11)

(see Table I of [5]). The value of our new lower bound at q = 4
is

W (tri,4)�;2,1 = 7 + √
17

8
= 1.390 388 2 . . . (5.12)

so

Rtri,4;�;2,1 = (7 + √
17 )

√
3 	(2/3)3

16π
= 0.951 669 845. . . .

(5.13)

We have also calculated the lower bound W (tri,q)�;b,1 for
b = 3 and evaluated this for q = 4. For reference, we list the
various ratios Rtri,4;�;b,k in Table II. We see that W (tri,4)�;2,1

and W (tri,4)�;3,1 are closer to the exact value of W (tri,4) than
W (tri,4)�;1,1.

TABLE II. Values of Rtri,q;�;b,k for q = 4 and some illustrative
values of b and k.

b k W (tri,4)�;b,k Rtri,4;�;b,k

1 1 1.333 333 0.912 618
2 1 1.390 388 0.951 670
3 1 1.427 052 0.976 765
1 2 1.361 562 0.931 939
1 3 1.380 569 0.944 949
1 4 1.393 923 0.954 089
1 5 1.403 672 0.960 762

C. b = 1, 2 � k � 5

By the same means as above, we derive

W (tri,q) � W (tri,q)�;1,2, (5.14)

with

W (tri,q)�;1,2 =
[
λtri,3,0,1

q − 1

]1/2

, (5.15)

where λtri,3,0,1 was given in Eq. (5.3). Equivalently,

W (tri,y) � W (tri,y)�;1,2, (5.16)

where

W (tri,y)�;1,2 = 1√
2

(1 + y)2[1 − 4y + 7y2 − 5y3

+ (1 − 8y + 26y2 − 46y3 + 53y4

− 42y5 + 17y6)1/2]1/2. (5.17)

For b = 1, k = 3, we need the dominant λ in the chromatic
polynomial for the cyclic strip of the triangular lattice of width
Ly = k + 1 = 4, namely λtri,4,0,1. This chromatic polynomial
was calculated in [25], and the dominant λ is given as the
largest root of the quartic equation (C2) in Appendix C. This
is also the dominant λ in the chromatic polynomial of the free
strip of the triangular lattice with width Ly = 4 and arbitrary
length [19]. We have also calculated W (tri,q)�;1,k for k = 4,5.
For reference, we list the various ratios Rtri,4;�;1,k in Table II.

D. Plots

In Fig. 3 we plot the ratios Rtri,q;(b,1)/(1,1) for b = 2 and 3 as
functions of q in the range 4 � q � 6, and in Fig. 4 we plot

1

1.01
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1.03

1.04

1.05

1.06

1.07

ratios

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
q

FIG. 3. Plot of the ratios Rtri,q;(2,1)/(1,1) (lower curve) and
Rtri,q;(3,1)/(1,1) (upper curve) as functions of q for 4 � q � 6.
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FIG. 4. Plot of the ratios Rtri,q;(1,k)/(1,1) for k = 2 to 5 as functions
of q for 4 � q � 6. From bottom to top, the curves refer to k = 2, 3,
4, and 5, respectively.

the ratios Rtri,q;(1,k)/(1,1) for k = 2 up to k = 5 as functions of q

in same range. As with the square lattice, these plots illustrate
the result that we have proved in general, namely that, for a
given q, R�,q;(1,k)/(1,1) is an increasing function of k, and also
our result that Rtri,q;(3,1)/(1,1) � Rtri,q;(2,1)/(1,1).

VI. HONEYCOMB LATTICE

Since W (hc,2) = 1 is exactly known, we restrict our
consideration of lower bounds for the honeycomb lattice to
the range q � 3. We recall that for b = 1 and k = 1, one has
the lower bound W (hc,q) � W (hc,q)�;1,1, where [6]

W (hc,q)�;1,1 = (D6)1/2

q − 1

= (q4 − 5q3 + 10q2 − 10q + 5)1/2

q − 1
, (6.1)

where the general expression for Dn is given in Eq. (B6).
Reference [6] noted that as q increases beyond the lowest
values above χ (hc) = 2, this lower bound rapidly approaches
the actual value of W (hc,q) (see Table I in [6]), where the
latter was determined by a Monte Carlo simulation checked
for larger q with a large-q series approximation. For example,
for q = 3,4,5, Rhc,q;1,1 is equal to 0.998 98, 0.999 85, and
0.999 96, respectively, and it increases monotonically with
larger q. Since our new lower bounds on W (hc,q) are more
restrictive than (6.1), they are therefore even closer to the
respective actual values of W (hc,q).

The corresponding lower bound on W (hc,y) is W (hc,y) �
W (hc,y)�;1,1, where [7]

W (hc,y)�;1,1 = (1 + y5)1/2 (6.2)

(see Table III in [7]).
For the calculation of W (hc,q)�;2,1, we need the chromatic

polynomial of the cyclic strip of the honeycomb lattice of
width Ly = 2b − 1 = 3 vertices and arbitrary length, Lx , in
particular the dominant λ. This λhc,3,0,1 is the largest (real)
root of the cubic equation (C3) in Appendix C [27]. This
dominant λ is also the input that we need for the calculation
of W (hc,q)�;1,2, since the latter requires the same chromatic
polynomial of the cyclic strip of the honeycomb lattice of
width Ly = k + 1 = 3 vertices and arbitrary length, Lx , in
particular the dominant term. This λ is also the dominant term
in the chromatic polynomial of the strip of the honeycomb
lattice of width Ly = 3 vertices and arbitrary length, with free
boundary conditions [19].

VII. 4 · 82 LATTICE

Using the CCM method with b = 1 and k = 1, Ref. [6]
derived the lower bound W ((4 · 82),q) � W ((4 · 82),q)�;1,1,
where

W ((4 · 82),q)�;1,1 = (D4D8)1/4

q − 1
. (7.1)

Equivalently, W ((4 · 82),y) > W ((4 · 82),y)�;1,1, where

W ((4 · 82),y)�;1,1 = [(1 + y3)(1 + y7)]1/4. (7.2)

We have obtained the slightly more restrictive lower bound
W ((4 · 82),q) � W ((4 · 82),q)�;1,2, where

W ((4 · 82),q)�;1,2 =
[
λ(4·82),3,0,1

q − 1

]1/3

, (7.3)

where λ(4·82),3,0,1 is the largest (real) root of the cubic equa-
tion (C4) in Appendix C. Correspondingly, W ((4 · 82),y) �
W ((4 · 82),y)�;1,2. We analyze the small-y expansion of
W ((4 · 82),y)�;1,2 below.

VIII. 3 · 6 · 3 · 6 (KAGOMÉ) LATTICE

In this section, we consider the (3 · 6 · 3 · 6) lattice, com-
monly called the kagomé lattice (which we shall abbreviate as
kag). Using the CCM method with b = 1 and k = 1, Ref. [7]
derived the lower bound W (kag,q) � W (kag,q)�;1,1, where

W (kag,q)�;1,1 = D
2/3
3 D

1/3
6

q − 1
. (8.1)

Equivalently, W (kag,y) > W (kag,y)�;1,1, where [7]

W (kag,y)�;1,1 = (1 − y2)2/3(1 + y5)1/3. (8.2)

The zigzag path used in the derivation of this lower bound was
described in detail in Ref. [7]. Here, we again take b = 1 and
k = 1 but use a different type of path. A section of the kagomé
lattice is shown in Fig. 5. Rather than the zigzag path used in
[7], we choose the path to be given as the horizontal line in
Fig. 5. The matrix T then links the proper q-coloring of the
vertices on this line, the vertices between this line and, say, the
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line above it, and the vertices on this higher-lying horizontal
line. It turns out that the use of this different path yields

a slightly more restrictive lower bound, which we shall indicate
with a prime, namely W (kag,q) � W (kag,q)′�;1,1, where

W (kag,q)′�;1,1

=
[

(q − 2)[q4 − 6q3 + 14q2 − 16q + 10 + (q8 − 12q7 + 64q6 − 200q5 + 404q4 − 548q3 + 500q2 − 292q + 92)1/2]

2(q − 1)2

]1/3

.

(8.3)

Equivalently, we have W (kag,y) � W (kag,y)′�;1,1, where

W (kag,y)′�;1,1 = 2−1/3(1 + y)[(1 − y)[1 − 2y + 2y2 − 2y3 + 3y4

+ (1 − 4y + 8y2 − 12y3 + 14y4 − 16y5 + 16y6 − 12y7 + 9y8)1/2]]1/3. (8.4)

We find that

W (kag,q)′�;1,1 � W (kag,q)�;1,1. (8.5)

The fact that the use of a different path can yield a more restric-
tive bound with the same value of b and k was already shown
for the honeycomb lattice in [5,6]. Thus, both Refs. [6] and
[5] used the CCM method with b = 1 and k = 1, but Ref. [6]
obtained a more restrictive lower bound for the honeycomb
lattice by using a different path. The bounds W (kag,q)�;1,1

and W (kag,q)′�;1,1 both rapidly approach the actual value
of W (kag,q) as q increases beyond the chromatic number,
χ (kag) = 3. Below we shall show how the slight improvement
with the new bound is manifested in the respective small-y
expansions of W (kag,q)�;1,1 and W (kag,q)′�;1,1. In passing,
we note that we have also studied generalizations of the CCM
method for some other Archimedean lattices.

IX. sqd LATTICE

So far, we have considered planar lattices. The coloring
compatibility matrix method and our generalizations of it also
apply to a subclass of nonplanar lattices, namely the subclass
that can be constructed starting from a planar lattice and
adding edges between vertices on the original planar lattice. An
example of this is the sqd lattice. As noted above, the sqd lattice
is formed from the square lattice by adding edges (bonds)
connecting the two sets of diagonal next-nearest-neighbor

FIG. 5. Section of the (3 · 6 · 3 · 6) (kagomé) lattice.

vertices in each square. Thus, the vertices and edges in
each square form a K4 graph. (Here, the KN graph is the
graph with N vertices such that each vertex is connected
to every other vertex by one edge.) Although an individual
K4 graph is planar, the sqd lattice is nonplanar. This lattice
has coordination number �sqd

= 8 and chromatic number
χ (sqd ) = 4. Although it is not 4-partite, an analysis of the
way in which the number of proper 4-colorings of the vertices
of a section of the sqd lattice grows with its area shows that
W (sqd ,4) = 1.

Using the b = 1, k = 1 CCM, Ref. [6] derived the lower
bound W (sqd ,q) � W (sqd ,q)�;1,1, where

W (sqd ,q)�;1,1 = λsqd ,2,0,1

λC,0,1
= (q − 2)(q − 3)

q − 1
. (9.1)

A. b = 2, k = 1

For our first generalization, namely b = 2 and k = 1, we
need the dominant λ for a cyclic strip of the sqd lattice of width
Ly = 3, which is [17]

λsqd ,3,0,1 = (q − 3)

2
[q2 − 6q + 11 + (q4 − 12q3

+ 54q2 − 112q + 97)1/2]. (9.2)

We thus derive the new lower bound W (sqd ,q) �
W (sqd ,q)�;2,1, where W (sqd ,q)�;2,1 = λsqd ,3,0,1/λsqs ,2,0,1, i.e.,

W (sqd ,q)�;2,1

= q2 − 6q + 11 + [q4 − 12q3 + 54q2 − 112q + 97]1/2

2(q − 2)
.

(9.3)

From these explicit analytic results, we find

Rsqd ,q;(2,1)/(1,1) > 1. (9.4)

That is, our new lower bound W (sqd ,q)�,2,1 is larger and hence
more restrictive than the one obtained in [6].

The corresponding lower bounds for the reduced W

functions are W (sqd ,y) � W (sqd ,y)�;1,1, where

W (sqd,y)�;1,1 = (1 − y)(1 − 2y)(1 + y)3

= 1 − 4y2 − 2y3 + 3y4 + 2y5 (9.5)
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and W (sqd ,y) � W (sqd ,y)�;2,1, where

W (sqd ,y)�;2,1 = (1 + y)3[1 − 4y + 6y2 + (1 − 8y + 24y2 − 36y3 + 28y4)1/2]

2(1 − y)
. (9.6)

B. b = 1, k = 2

For b = 1 and k = 2, we derive the lower bound W (sqd ,q) � W (sqd ,q)�;1,2, where

W (sqd ,q)�;1,2 =
[
λsqd ,3,0,1

λC,0,1

]1/2

=
[

(q − 3)[q2 − 6q + 11 + (q4 − 12q3 + 54q2 − 112q + 97)1/2]

2(q − 1)

]1/2

. (9.7)

Equivalently, W (sqd ,y) � W (sqd ,y)�;1,2, where

W (sqd ,y)�;1,2 = 1√
2

(1 + y)3{(1 − 2y)[1 − 4y + 6y2 + (1 − 8y + 24y2 − 36y3 + 28y4)1/2]}1/2. (9.8)

X. SMALL- y EXPANSIONS OF NEW LOWER BOUNDS

A. General

A lower bound on a function such as W (�,q) or W (�,y)
plays a role that is different from, and complementary to, that
of a Taylor series expansion, in this case a small-y expansion.
The lower bound is valid for any value of q that is physical, but
need not, a priori, be an accurate approximation to the actual
function. In contrast, the large-q (equivalently small-y) Taylor
series expansion is an approximation to the function itself, and,
within its radius of convergence, it satisfies the usual Taylor
series convergence properties. Thus, if one truncates this series
to a fixed order of expansion, then it becomes a progressively
more accurate approximate as the expansion variable becomes
smaller, and for a fixed value of the expansion variable, it
becomes a more accurate expansion as one includes more
terms.

A lower bound on a function W (�,y) need not, a priori,
agree with the terms in the small-y Taylor series expansion
of this function. Some explicit examples of this are given in
Appendix A. Interestingly, as discussed in [5–7], the lower
bounds derived there do agree with these small-y series to
a number of orders in y (listed for Archimedean lattices in

TABLE III. Lower bounds W (�,y)�,1,1 for Archimedean lattices
� = (

∏
i p

ai

i ), from [7]. The number ic denotes the maximum order,
O(yic ), to which the small-y Taylor series expansion of W (�,y)�,1,1

coincides with the Taylor series expansion of W (�,y).

� W (�,y)�;1,1 ic

(36) (1 − y2)2 4
(44) 1 + y3 6
(63) (1 + y5)1/2 10
(34 · 6) (1 − y2)4/3(1 + y5)1/6 4
(33 · 42) (1 − y2)(1 + y3)1/2 4
(32 · 4 · 3 · 4) (1 − y2)(1 + y3)1/2 4
(3 · 6 · 3 · 6) (1 − y2)2/3(1 + y5)1/3 8
(3 · 4 · 6 · 4) (1 − y2)1/3(1 + y3)1/2(1 + y5)1/6 5
(3 · 122) (1 − y2)1/3(1 + y11)1/6 13
(4 · 6 · 12) (1 + y3)1/4(1 + y5)1/6(1 + y11)1/12 11
(4 · 82) (1 + y3)1/4(1 + y7)1/4 12

Table III and for the duals of Archimedean lattices in Table IV
of Ref. [7]).

It is thus clearly of interest to carry out a similar comparison
to determine the extent to which our new lower bounds, which
we have shown improve upon those in [8] and [5–7], agree
with the respective small-y expansions to higher order. We do
this in the present section, showing that our new lower bounds
are not only more stringent than the earlier ones, but also agree
with the small-y expansions of W (�,y) to higher order in y

than these earlier lower bounds.
Because W (�,y)�;b,k is a lower bound on W (�,y), one can

draw one immediate inference concerning the comparison of
the small-y Taylor series for these two functions, namely that
for a given lattice �, if the small-y Taylor series of W (�,y)�;b,k

coincides with the small-y series for W (�,y) to order O(yic ),
inclusive, then the difference

W (�,y) − W (�,y)�;b,k = κic+1y
ic+1 with κic+1 > 0.

(10.1)

Thus, for example, with the O(yic+1) term in W (�,y)
denoted w�,ic+1 as in Eq. (2.13) and with the O(yic+1) term in
W (�,y)�;b,k denoted w�;b,k;ic+1, we have

w�;ic+1 � w�;b,k;ic+1. (10.2)

We discuss a subtlety in this comparison. One should first
show that the small-y expansion is, in fact, a Taylor series
expansion, i.e., that W (�,y) is an analytic function at y = 0
in the complex y plane, or equivalently, that Wr (�,q) is an
analytic function at 1/q = 0 in the complex plane of the
variable 1/q. In fact, there are families of N -vertex graphs
GN such that Wr ({G},q) is not analytic at 1/q = 0 [28],
where here {G} denotes the formal limit limN→∞ GN . This is a
consequence of the property that the accumulation set of zeros
of the chromatic polynomial P (GN,q), denoted B, extends
to infinite |q| in the q plane, or equivalently, to the point
1/q = 0 in the 1/q plane. [The zeros of P (G,q) are denoted
as the chromatic zeros of G.] Reference [28] constructed
and analyzed various families of graphs for which this is the
case. For regular (vertex-transitive) N -vertex graphs G�,N of
a lattice � with either free or periodic (or twisted periodic)
boundary conditions, the resultant Wr (�,q) functions obtained
in the N → ∞ limit are analytic at 1/q = 0. This follows
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because a necessary condition that B extends to infinitely
large |q| as N → ∞ is that the chromatic zeros of G�,N have
magnitudes |q| → ∞ in this limit. However, a vertex-transitive
graph G has the property that all vertices have the same degree,
�, and a chromatic zero of G has a magnitude bounded above
as |q| < 8.4� [29]. So for the N → ∞ limit of a regular lattice
graph �, Wr (�,q) is analytic at 1/q = 0, and equivalently,
W (�,y) is analytic at y = 0, and the corresponding series
expansions in powers of 1/q and powers of y are Taylor series
expansions.

B. Square lattice

The small-y expansion of W (sq,y) is [20]

W (sq,y) = 1 + y3 + y7 + 3y8 + 4y9 + 3y10

+ 3y11 + O(y12). (10.3)

This series and several others for regular lattices are known to
higher order than we list; we only display the various series
up to the respective orders that are relevant for the comparison
with our lower bounds. As is evident from Eq. (4.3), the
previous lower bound W (sq,y)�;1,1 = 1 + y3 [8] coincides
with the small-y series to O(y6), inclusive.

We list below the small-y expansions of the various new
lower bound functions W (sq,y)�;b,k that we have derived with
b � 2 and k = 1 and with b = 1, k � 2:

W (sq,y)�;2,1 = 1 + y3 + y7 + 3y8 + 3y9 + O(y10), (10.4)

W (sq,y)�;1,2 = 1 + y3 + 1
2y7 + 3

2y8 + 3
2y9 + O(y10),

(10.5)

and

W (sq,y)�;1,3 = 1 + y3 + 2
3y7 + 2y8 + 7

3y9 + O(y10).

(10.6)

Comparing the small-y expansion of our new lower bound
function W (sq,y)�;b,1 with b = 2, as well as the old lower
bound function W (sq,y)�;1,1, with the actual small-y series
for W (sq,y) in Eq. (10.3), we can make several observations.
First, the small-y expansions for W (sq,y)�;2,1 coincides with
the small-y expansion of W (sq,y) to O(y8), inclusive, which
is an improvement by two orders in powers of y as compared
with W (sq,y)�;1,1 [see Eq. (4.3)]. Since increasing b (with k

fixed) improves the accuracy of the lower bound, it follows that
W (sq,y)�;b,1 will also coincide with the series for W (sq,y) to at
least O(y8) for b � 3 as well as for b = 2. Moreover, although
the respective coefficients of y9 in the series for W (sq,y)�;1,1

and W (sq,y)�;2,1, namely 0 and 3, do not match the coefficient
of y9 in the actual small-y expansion of W (sq,y), which is 4,
one can see that as b increases from 1 to 2, this coefficient of
the y9 term increases toward the exact coefficient.

Regarding the matching of terms in the small-y expansions
of the W (sq,y)�;b,1, as compared with W (sq,y)�;1,k , that we
have calculated, we find that this matching is better by two
orders for the W (sq,y)�;b,1 than W (sq,y)�;1,k . That is, for the
k values that we have calculated, namely k = 2,3, the lower
bounds W (sq,y)�;1,k match the small-y expansion of W (sq,y)
to order O(y6), the same order as W (sq,y)�;1,1.

A related property of our lower bounds for a general
lattice � and, in particular, for the square lattice, follows as a
consequence of the theorem (3.9) and (3.10): with b = 1, since
the lower bound W (�,y)�;1,k is a monotonically increasing
function of k, the degree of matching of coefficients in the
small-y expansion for W (�,y) must improve monotonically as
k is increased. A priori, this improvement could be manifested
in two ways (or a combination of the two): (i) as k is increased,
coefficients of terms of higher order in y are exactly matched,
or (ii) the coefficient of a given term of a certain order in
y approaches monotonically toward the exact value. For the
present lattice � = sq, we see that, for the W (sq,q)�;1,k that we
have calculated, the latter type of behavior, (ii), occurs. That is,
as we increase k from 1 to 2 to 3, the coefficient of the y7 term
in the small-y series for W (sq,y)�;1,k increases from 0 to 1/2
to 2/3, moving toward the exact value of 1. This is similar to
the behavior that we observed with the respective coefficients
of the y9 term in the small-y expansions of W (sq,y)�;b,1 as
compared with the exact value. This type of behavior is in
accord with the inequality (10.2).

Regarding the relative ordering of the various lower bounds
that we have obtained, from the small-y expansion, we find,
for large q, the ordering

W (sq,y) > W (sq,y)�;3,1 > W (sq,y)�;2,1

> W (sq,y)�;1,3 > W (sq,y)�;1,2 > W (sq,y)�;1,1. (10.7)

In fact, we find that this ordering also extends down to the
lowest value where we apply our lower bounds, namely q = 3.
For bounds on W (sq,4) and W (sq,5), see [30].

C. Triangular lattice

The small-y expansion of W (tri,y) is [20]

W (tri,y) = 1 − 2y2 + y4 + y5 + 5y6 + 16y7 + 47y8

+ 134y9 + O(y10). (10.8)

As is evident from Eq. (5.2), the previous lower bound
W (tri,y)�;1,1 = (1 − y2)2 [5,7] matches the small-y series to
O(y4), inclusive.

We list below the small-y expansions of the various new
lower bounds W (tri,y)�;b,k that we have derived with b � 2
and k = 1, and with b = 1, k � 2:

W (tri,y)�;2,1 = 1 − 2y2 + y4 + y5 + 5y6 + 14y7 + O(y8),

(10.9)

W (tri,y)�;1,2 = 1 − 2y2 + y4 + 1
2y5 + 5

2y6 + O(y7),

(10.10)

and

W (tri,y)�;1,3 = 1 − 2y2 + y4 + 2
3y5 + 10

3 y6 + O(y7).

(10.11)

Comparing these with the small-y series for W (tri,y)�;1,1, we
find that, among (10.9) and (10.11), the greatest matching
of terms is achieved with (10.9), i.e., by increasing b.
Specifically, the small-y expansion for W (tri,y)�;2,1 matches
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the small-y expansion of W (tri,y) to O(y6) inclusive, which
is an improvement by two orders in y as compared with
W (tri,y)�;1,1. This increase by two orders in y is the same
amount of improvement that we found for our lower bound for
the square lattice, W (sq,y)�;2,1 as compared with W (sq,y)�;1,1.

As was true of the lower bounds for the square lattice, the
lower bounds W (tri,y)�;1,k with k = 2 and 3 coincide with the
small-y series for W (tri,y) to the same order, namely O(y4),
as W (tri,y)�;1,1. However, as k increases from 1 to 2 to 3, the
coefficient of the first unmatched term in the respective small-y
series for W (tri,y)�;1,k , viz., the y5 term, increases from 0 to
1/2 to 2/3, moving toward the exact value of 1. An inequality
that follows from the theorem (3.9) and general result (3.10)
is that with b = 1, W (tri,y)�;1,k is a monotonically increasing
function of k.

Concerning the relative ordering of the various lower
bounds that we have obtained, from the small-y expansion,
we find, for large q, the ordering

W (tri,y) > W (tri,y)�;2,1 > W (tri,y)�;1,3

> W (tri,y)�;1,2 > W (tri,y)�;1,1. (10.12)

Indeed, we find that this ordering also extends down to the
lowest value where we apply our bounds, namely q = 4.

D. Honeycomb lattice

The small-y expansion of W (hc,y) is [20]

W (hc,y) = 1 + 1
2y5 − 1

23 y
10 + y11 + 2y12 + 3

2y13

+ y14 − 15
24 y

15 + O(y16). (10.13)

The previous lower bound W (hc,y)�;1,1 = (1 + y5)1/2 [5–7]
has the small-y expansion

W (hc,y)�;1,1 = 1 + 1
2y5 − 1

23 y
10 + 1

24 y
15 + O(y20). (10.14)

Thus, as was noted in [5–7], this small-y expansion coincides
with the small-y expansion of W (hc,y) to the quite high order
O(y10).

We list below the small-y expansions of the various new
lower bound functions W (hc,y)�;b,k that we have derived with
b � 2 and k = 1 and with b = 1, k � 2:

W (hc,y)�;2,1 = 1 + 1
2y5 − 1

23 y
10 + y11

+ 2y12 + y13 + O(y15) (10.15)

and

W (hc,y)�;1,2 = 1 + 1
2y5 − 1

23 y
10 + 1

2y11 + y12 + O(y13).

(10.16)

As with the square and triangular lattices, we find that among
(10.15) and (10.16), the greatest matching of terms is achieved
with (10.15), i.e., by increasing b. Specifically, the small-y
expansion for W (hc,y)�;2,1 matches the small-y expansion of
W (hc,y) to O(y12) inclusive, which is an improvement by two
orders in y as compared with W (hc,y)�;1,1.

The theorem (3.9) and corollary (3.10) imply that
W (hc,q)�;1,2 > W (hc,q)�;1,1, and this inequality is reflected
in the degree of matching of the small-y expansions for
the corresponding functions W (hc,y)�;1,2 and W (hc,y)�;1,1.

Although W (hc,y)�;1,2 does not increase the order of matching,
as compared with W (hc,y)�;1,1, it begins the process of
building up a nonzero coefficient for a y11 term, which was
zero in the expansion of W (hc,y)�;1,1. Specifically, the small-y
expansion of W (hc,y)�;1,2 contains a y11 term with coefficient
1/2, building toward the exact coefficient, 1, of y11 in (10.13).

E. 4 · 82 lattice

We next consider a (bipartite) heteropolygonal
Archimedean lattice, namely the (4 · 82) lattice. The
small-y expansion of W ((4 · 82),y) is [6,7]

W ((4 · 82),y) = 1 + 1
4y3 − 3

25 y
6 + 1

4y7 + 7
27 y

9

+ 1
24 y

10 − 77
211 y

12 + O(y13). (10.17)

The small-y expansion of the lower bound obtained in [5,7],
W ((4 · 82),y)�;1,1, is

W ((4 · 82),y)�;1,1 = 1 + 1
4y3 − 3

25 y
6 + 1

4y7 + 7
27 y

9

+ 1
24 y

10 − 77
211 y

12 − 3
27 y

13

− 3
25 y

14 + 231
213 y15 + O(y16). (10.18)

As was noted in [6,7], this coincides with the small-y
expansion of W ((4 · 82),y) to the quite high order O(y12).

We list below the small-y expansions of the various new
lower bound functions W ((4 · 82),y)�;b,k that we have derived
with b � 2 and k = 1 and with b = 1, k � 2:

W ((4 · 82),y)�;2,1 = 1 + 1
4y3 − 3

25 y
6 + 1

4y7 + 7
27 y

9 + 1
24 y

10

− 77
211 y

12 + 189
27 y13 + O(y14) (10.19)

and

W ((4 · 82),y)�;1,2 = 1 + 1
4y3 − 3

25 y
6 + 1

4y7 + 7
27 y

9 + 1
24 y

10

− 77
211 y

12 + 93
27 y

13 + 45
32y14 + O(y15).

(10.20)

Evidently, the small-y series expansions of W ((4 · 82),y)�;2,1

and W ((4 · 82),y)�;1,2 match the small-y expansion of
W ((4 · 82),y) to at least the same order as W ((4 · 82),y)�;1,1.
Further, we observe that for small y,

W ((4 · 82),y)�;2,1

> W ((4 · 82),y)�;1,2 > W ((4 · 82),y)�;1,1. (10.21)

F. 3 · 6 · 3 · 6 (kagomé) lattice

The small-y expansion of W (kag,y) is [7]

W (kag,y) = 1 − 2
3y2 − 1

32 y
4 + 1

3y5

− 4
34 y

6 − 2
32 y

7 − 7
35 y

8 + O(y9). (10.22)

As was discussed in [7], the small-y expansion of the b = 1,
k = 1 lower bound W (kag,y)�;1,1 derived there [listed above
as Eq. (8.1)] coincides with O(y8) with the small-y series for
the actual quantity W (kag,y). Explicitly,

W (kag,y)�;1,1 =1 − 2
3y2 − 1

32 y
4 + 1

3y5 − 4
34 y

6 − 2
32 y

7 − 7
35 y

8

− 1
33 y

9 − 95
36 y

10 + O(y11). (10.23)
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Our new bound has the small-y expansion

W (kag,y)′�;1,1 =1 − 2
3y2 − 1

32 y
4 + 1

3y5 − 4
34 y

6 − 2
32 y

7 − 7
35 y

8

+ 8
33 y

9 + 634
36 y10 + O(y11). (10.24)

Thus,

W (kag,y)′�;1,1 − W (kag,y)�;1,1 = 1
32 y

9 + O(y10). (10.25)

One could derive similar lower bounds for other Archimedean
lattices not considered here, e.g., the 3 · 12 · 12 lattice [7,31].

G. sqd lattice

Since the lower bound W (sqd ,y)�;1,1 derived in [6] and
given above in Eq. (9.5) is a polynomial, it is identical to its
small-y Taylor series expansion.

Expanding W (sqd ,y)�;2,1, we find

W (sqd ,y)�;2,1 = 1 − 4y2 − y3 + 6y4 + 5y5 + O(y6).

(10.26)

Similarly,

W (sqd ,y)�;1,2 = 1 − 4y2 − 3
2y3 + 9

2y4 + 7
2y5 + O(y6),

(10.27)

W (sqd ,y)�;1,3 = 1 − 4y2 − 4
3y3 + 5y4 + 13

3 y5 + O(y6).

(10.28)

From these expansions, we find, for large q, the ordering

W (sqd ,y) > W (sqd,y)�;2,1 > W (sqd ,y)�;1,2 > W (sqd ,y)�;1,1.

(10.29)

This is the same ordering that we found for the other lattices.

XI. CONCLUSIONS

Nonzero ground-state entropy per site, S0, and the asso-
ciated ground-state degeneracy per site, W = eS0/kB , are of
fundamental importance in statistical mechanics. In this paper,
we have presented generalized methods for deriving lower
bounds on the ground-state degeneracy per site, W (�,q), of the
q-state Potts antiferromagnet on several different lattices �.
Our first generalization is to consider a coloring compatibility
matrix that relates a strip of width b � 2 vertices to an
adjacent strip of the same width. Our second generalization
is to consider a coloring compatibility matrix that acts k � 2
times in relating a path on � to an adjacent parallel path. We
have applied these generalizations to obtain new lower bounds
on W (�,q), denoted W (�,q)�;b,k . In this notation, the lower
bounds previously derived in [5–8] have b = 1 and k = 1.
One of the interesting properties of these bounds W (�,q)�;1,1

obtained in [5–8] was that as q increases beyond χ (�), they
rapidly approach quite close to the actual respective values
of W (�,q). We have shown that our new lower bounds are
slightly more restrictive than these previous lower bounds,
and consequently are even closer to the actual values W (�,q).
We have demonstrated how this is manifested in the matching

to higher-order terms with the large-q (small-y) Taylor series
expansions for the corresponding functions W (�,y) for the
various lattices that we have considered.
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APPENDIX A: W (�r p.,q) at q = χ (�)

We mention here a subtlety that results from the noncom-
mutativity in the limits (2.15). An r-partite (rp) graph with
N vertices, Grp,N , has chromatic number χ (Grp,N ) = r . One
equivalent definition of an r-partite graph is that its chromatic
polynomial, evaluated at q = r , satisfies

P (Grp,N ,r) = r! (A1)

The square and honeycomb lattices are bipartite [as are the
(4 · 6 · 12) and (4 · 8 · 8) lattices, among Archimedean lat-
tices], while the triangular lattice is tripartite (for other
Archimedean lattices and their planar duals, see, e.g., Tables I
and II in [7]). It follows that, with the DNq definition for
W (�,q), namely setting q = r and then taking the N → ∞
limit in Eq. (1.2), one has

W (�rp,r) = 1. (A2)

As discussed in [12], because of the noncommutativity (2.15),
if instead of setting q = r , evaluating P (Grp,r), and then
taking the N → ∞, one first takes N → ∞ with q in the
vicinity of r , and then performs the limit q → r , one can,
in general, get a different result for W (�,q). Indeed, this is
the case for many lattice strips of regular lattices of a fixed
width Ly , an arbitrary length Lx , and various transverse and
longitudinal boundary conditions [12,14,23,25]. The coloring
problem on a given lattice � is of interest for q � χ (�),
since this is the minimum (integer) value of q for which
one can carry out a proper q-coloring of the vertices of
�. In a number of cases, χ (�) < qc(�). If one considers
W (�,q) for q < qc(�), then one must deal with the generic
noncommutativity in the limits (2.15) [12]. Here we always
use the order DNq , i.e., we fix q to a given value and then take
N → ∞. Actually, in view of the results (A1) and (A2), for
the square and honeycomb lattices, W (sq,2) = W (hc,2) = 1,
and for the triangular lattice, W (tri,3) = 1. Since our new
lower bounds are intended for practical use, and since one
already knows (with the DNq definition) the values of W (sq,2),
W (hc,2), and W (tri,3) exactly, we may restrict our analysis to
the application of our new bounds in the range q � 3 for the
square and honeycomb lattices and to the range q � 4 for the
triangular lattice.

For reference, we recall an elementary lower bound on
P (G,q) and hence on limN→∞ P (G,q)1/N , where G is an
N -vertex graph. If G is bipartite (bp), then one can assign
a color to all of the vertices of the even subgraph in any
of q ways, and then one can assign one of the remaining
q − 1 colors to each of the vertices on the odd subgraph
independently, so P (Gbp,q) � q(q − 1)N/2. Hence, for a
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bipartite lattice, denoting �bp as the N → ∞ limit of Gbp, one
has W (�bp,q) � (q − 1)1/2. Both of these lower bounds are
realized as equalities only in the case q = 2. More generally,
if Grp is an r-partite graph and �rp = limN→∞ �rp.,N , then

P (Grp,q) �
[

r−2∏
s=0

(q − s)

]
[q − (r − 1)]N/r (A3)

and hence

W (�rp,q) � [q − (r − 1)]1/r . (A4)

Thus, for example, one has the elementary lower bounds
W (sq,q) � (q − 1)1/2 and W (tri,q) � (q − 2)1/3, etc.

For q > r on �rp, the lower bound (A4) is less stringent
than the ones derived in [7,8] and here via coloring matrix
methods. Indeed, these lower bounds illustrate the fact noted
in the text, namely that, a priori, a lower bound need not
agree with terms in the large-q expansion of Wr (�,q) or the
equivalent small-y expansion of W (�,y). For example, for the
square and honeycomb lattices, the r = 2 special cases of (A4)
read, for q � 2,

W (sq,q) � (q − 1)1/2 (A5)

and

W (hc,q) � (q − 1)1/2. (A6)

Since W (�,q) ∼ q for large q, these lower bounds becomes
progressively worse (i.e., farther from the actual value) as q

increases above 2. The corresponding lower bounds in terms
of W (sq,y) and W (hc,y) are

W (sq,y) � (1 + y)
√

y (A7)

and

W (hc,y) �
√

y(1 + y). (A8)

Rather than matching any terms in the respective small-y
expansions (10.3) and (10.13), the right-hand sides of these
lower bounds vanish for small y. Similarly, since the triangular
lattice is tripartite, the r = 3 special case of (A4) yields the
lower bound, for q � 3,

W (tri,q) � (q − 2)1/3. (A9)

In terms of W (tri,y), this is

W (tri,y) � y2/3(1 − y)1/3(1 + y)2. (A10)

Again, for small y, this vanishes rather than matching any of
the terms of the small-y expansion (10.8). Thus, as noted, a
lower bound need not match any of the terms in the small-y
expansion. This emphasizes how impressive the new lower
bounds are in their matching of these terms in the small-y
expansions for the various lattices to high order.

APPENDIX B: LOWER BOUNDS W (�,q)�;1,1 AND
W (�, y)�;1,1 FOR ARCHIMEDEAN LATTICES

We list here some general results that were proved in Ref. [7]
for the lower bounds W (�,q)�;1,1 and the corresponding lower
bounds W (�,y)�;1,1 for the 11 Archimedean lattices. These
are useful here because we compare our new lower bounds
W (�,q)�;b,k and the corresponding lower bounds W (�,y)�;b,k

with b � 2 and/or k � 2 to these earlier ones with b = k = 1.
(Reference [7] also gave lower bounds for the planar duals of
the Archimedean lattices; we do not list these here but instead
refer the reader to [7].)

We begin with some basic definitions and properties of
Archimedean lattices. As stated in the text, an Archimedean
lattice is defined as a uniform tiling of the plane by one
or more types of regular polygons in which all vertices
are equivalent (see, e.g., [11]). Such a lattice is specified
by the ordered sequence of polygons that one traverses in
making a complete circuit around a vertex in a given (say
counterclockwise) direction. This definition is incorporated in
the mathematical notation for an Archimedean lattice, � =
(
∏

i p
ai

i ), where in the above circuit, the notation p
ai

i indicates
that the regular polygon pi occurs contiguously ai times; it
can also occur noncontiguously. Because the starting point is
irrelevant, the symbol is invariant under cyclic permutations.
For later purposes, when a polygon pi occurs several times in
a noncontiguous manner in the product, we shall denote ai,s as
the sum of the ai’s over all of the occurrences of the given pi in
the product. There are 11 Archimedean lattices, including (36),
(44), (63), (34 · 6), (3 · 6 · 3 · 6), (3 · 122), and (4 · 82). Of these
lattices, three are homopolygonal, i.e., they only involve one
type of regular polygon: (36) = tri, (44) = sq, and (63) = hc.
The other eight are heteropolygonal, i.e., involve tilings with
more than one type of regular polygon. The (3 · 6 · 3 · 6) lattice
is commonly called the kagomé lattice in the physics literature.

The degree � of a vertex of a graph G is the number
of edges (bonds) that connect to this vertex. For a regular
(infinite) lattice, this is the same as the coordination number.
For an Archimedean lattice � as given above, the coordination
number is

� =
∑

i

ai,s . (B1)

Of course, for a finite lattice with free boundary conditions, the
vertices on the boundary have lower values of � than those in
the interior; this will not be important for our rigorous bounds,
which pertain to the thermodynamic limit on an infinite lattice.
For a homopolygonal lattice � = (pa), there is a constraint
relating the coordination number to p, namely

� = a = 2p

p − 2
for � = (pa). (B2)

This can be written in the symmetric form �−1 + p−1 = 1/2.
The number of polygons of type pi per site is given by

νpi
= Npi per v

Nv per pi

= ai,s

pi

. (B3)

The set of homopolygonal Archimedean lattices is invariant
under the (planar) duality transformation, which interchanges
0-cells (vertices) and 2-cells (faces) and thus maps (pa) →
(ap). When one applies the (planar) duality transformation to
the other eight Archimedean lattices, the resultant lattices are
not Archimedean.

As noted, the chromatic polynomial of a circuit graph is

P (Cn,q) = (q − 1)n + (q − 1)(−1)n. (B4)
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Since this chromatic polynomial has q(q − 1) as a factor, we
can write it as

P (Cn,q) = q(q − 1)Dn(q), (B5)

where

Dn(q) = P (Cn,q)

q(q − 1)
=

n−2∑
s=0

(−1)s
(

n − 1

s

)
qn−2−s . (B6)

Reference [7] proved the following general lower bounds
for an Archimedean lattice, � = (

∏
i p

ai

i ) [where we add the
subscripts 1,1 to indicate b = 1 and k = 1 to match our current
notation for W (�,q)�;b,k]:

W

(( ∏
i

p
ai

i

)
,q

)
� W

(( ∏
i

p
ai

i

)
,q

)
�;1,1

, (B7)

where

W

(( ∏
i

p
ai

i

)
,q

)
�;1,1

=
∏

i Dpi
(q)νpi

q − 1
, (B8)

Here, the {i} in the product label the set of pi-gons involved
in � and νpi

was defined in Eq. (B3).
This lower bound takes a somewhat simpler form in terms

of the related function W (�,y)�, namely

W

(( ∏
i

p
ai

i

)
,y

)
� W

(( ∏
i

p
ai

i

)
,y

)
�;1,1

, (B9)

where

W

(( ∏
i

p
ai

i

)
,y

)
�,1,1

=
∏

i

[1 + (−1)pi ypi−1]νpi . (B10)

These are summarized in Table III.

APPENDIX C: HIGHER-DEGREE ALGEBRAIC
EQUATIONS FOR CERTAIN λ�,L y,0,1

In this Appendix, we list some algebraic equations of degree
higher than 2 that are used in the text. The cubic equation
whose largest (real) root is λsq,4,0,1, used for our lower bound
W (sq,q)�;1,3, is

λ3 − (q4 − 7q3 + 23q2 − 41q + 33)λ2 + (2q6 − 23q5 + 116q4 − 329q3 + 553q2 − 517q + 207)λ

− q8 + 16q7 − 112q6 + 449q5 − 1130q4 + 1829q3 − 1858q2 + 1084q − 279 = 0. (C1)

The quartic equation whose largest (real) root is λtri,4,0,1, used for our lower bound W (tri,q)�;1,3, is

λ4 − (q4 − 10q3 + 42q2 − 88q + 76)λ3 + (q − 2)(q − 3)2(3q3 − 22q2 + 60q − 60)λ2

− (q − 2)2(q − 3)3(3q3 − 21q2 + 51q − 43)λ + (q − 2)6(q − 3)4 = 0. (C2)

The cubic equation whose largest (real) root is λhc,3,0,1 used in our lower bound W (hc,q)�;2,1 is

λ3 − (q6 − 8q5 + 28q4 − 56q3 + 71q2 − 58q + 26)λ2 + (q − 1)2(q6 − 10q5 + 43q4

− 102q3 + 144q2 − 120q + 49)λ − (q − 1)4(q − 2)2 = 0. (C3)

The cubic equation whose largest (real) root is λ(4×82),3,0,1 used in our bound W ((4 × 82),q)�;1,2 is

λ3 − (q12 − 16q11 + 120q10 − 558q9 + 1794q8 − 4212q7 + 7437q6 − 10 018q5 + 10 324q4 − 8064q3 + 4648q2

− 1854q + 414)λ2 + (q − 1)4(q12 − 20q11 + 188q10 − 1094q9 + 4375q8 − 12 640q7 + 27 033q6 − 43 164q5

+ 51 235q4 − 44 380q3 + 26 931q2 − 10 462q + 2017)λ − (q − 1)8(q − 2)2(q − 3)2(q2 − 3q + 3)2 = 0. (C4)

[1] W. F. Giauque and J. W. Stout, J. Am. Chem. Soc. 58, 1144
(1936). Here, R = NAvogkB = 1.99 cal/(K mol).

[2] L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935); The Nature
of the Chemical Bond (Cornell University Press, Ithaca, NY,
1960), p. 466.

[3] B. A. Berg, C. Muguruma, and Y. Okamoto, Phys. Rev. B 75,
092202 (2007).

[4] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
[5] R. Shrock and S.-H. Tsai, Phys. Rev. E 55, 6791 (1997).
[6] R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 2733 (1997).
[7] R. Shrock and S.-H. Tsai, Phys. Rev. E 56, 4111 (1997).
[8] N. L. Biggs, Bull. London Math. Soc. 9, 54 (1977).
[9] See, e.g., P. Lancaster and M. Tismenetsky, The Theory of

Matrices, with Applications (Academic Press, New York, 1985);
H. Minc, Nonnegative Matrices (Wiley, New York, 1988).

[10] D. London, Duke Math. J. 33, 511 (1966).
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