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We present results obtained by using nonlinear irreversible models for heat devices. In particular, we focus on
the global performance characteristics, the maximum efficiency and the efficiency at maximum power regimes
for heat engines, and the maximum coefficient of performance (COP) and the COP at maximum cooling power
regimes for refrigerators. We analyze the key role played by the interplay between irreversibilities coming from
heat leaks and internal dissipations. We also discuss the relationship between these results and those obtained by
different models.
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I. INTRODUCTION

Nowadays the thermodynamic description of the efficient
performance regimes in heat devices has been becoming of
special relevance, due to the growing importance of saving
energy resources in any operation of energy conversion. The
Carnot’s theorem states the upper bounds of heat-energy con-
version processes between two heat reservoirs at temperatures
Tc and Th (Tc < Th): for a heat device working as a heat engine
(HE) the maximum efficiency is ηC = 1 − τ (τ ≡ Tc/Th),
while working as a refrigerator (RE) the maximum coefficient
of performance (COP) is εC = τ/(1 − τ ). However, these
upper bounds are of no practical use since they refer to
reversible cycles with zero power output for HE and zero
cooling power for RE. For the thermodynamic analysis of
real heat devices (working at nonzero rate along irreversible
paths), different models and different figures of merit (based
on thermodynamic, economic, compromised, and sustainable
considerations) have been proposed [1–5].

A part of such models is founded on finite-time thermody-
namics (FTT) considerations. FTT focuses on irreversibilities
caused by finite-rate heat transfers between the working fluid
and the external heat reservoirs, internal dissipation of the
working fluid, and heat leaks between the heat reservoirs.
The optimization procedure in FTT, carried out under a
fixed cycle time, usually assumes two degrees of freedom,
that is, the inner temperatures of the isothermal steps of the
working system [2,4–7]. In spite of their analytical simplicity,
these models can reproduce, at least qualitatively, the power-
efficiency and the cooling power-COP behaviors observed in
real HE [6] and RE [8,9]. More simplified FTT models assume
the so-called endoreversible approximation [2,4,6–8], where
the heat leaks and the internal dissipations are neglected. In this
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case, if the linear heat transfer laws are additionally assumed
for the external heat exchange, the resulting efficiency at
maximum power becomes the well-known Curzon-Ahlborn
(CA) efficiency ηCA = 1 − √

τ = 1 − √
1 − ηC [10].

In the recently proposed low-dissipation (LD) model [11],
the basic starting point is that the entropy production in
the isothermal hot (cold) heat exchange process is assumed
to behave as �h/th (�c/tc), with th and tc denoting the
corresponding time durations, and �h and �c being coeffi-
cients containing information on the irreversibility sources.
Considering th and tc as degrees of freedom for optimization,
the LD model for HE provides the upper (η+

maxP = ηC

2−ηC
) and

lower (η−
maxP = ηC

2 ) bounds for the efficiency at maximum
power ηmaxP under extremely asymmetric dissipation limits
�h/�c → ∞ and �h/�c → 0, respectively. Indeed, the LD
model allows us to recover the Curzon-Ahlborn value ηCA

when symmetric dissipation is considered (�h = �c), in this
case without assuming any specific heat transfer law. An
important result of the LD model for HE is the linking of
the CA efficiency to symmetry considerations, providing a
unified framework to understand the quasiuniversal behavior
shown by the efficiency at maximum power of many different
kinds of heat engines. An extension of the LD model to
RE was also reported [12–14], but in this case considering,
as a figure of merit, the χ function defined as χ = εQ̇c,
being ε and Q̇c the COP and the cooling power, respectively.
The lower (ε−

maxχ = 0) and upper (ε+
maxχ = (

√
9 + 8εC − 3)/2)

bounds of the COP at maximum χ were obtained under
extremely asymmetric dissipation limits �h/�c → ∞ and
�h/�c → 0, respectively [12]. Under the symmetric condition
(�h = �c), the optimized COP was found to be εmaxχ =√

1 + εC − 1 ≡ εCA [13]. This result, obtained previously in
different contexts [15–17], could be viewed as a counterpart of
the CA efficiency for HE, though this point is a current issue
of discussion [18] (see Sec. V).

Linear irreversible thermodynamics (LIT) is a well-founded
formalism, which is focused on the irreversible evolution of
macroscopic systems allowing us to extend the scope of the
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equilibrium thermodynamics. LIT assumes systems in local
equilibrium and defines thermodynamic forces and fluxes both
interlinked by means of linear relationships governing the
macroscopic evolution. From the LIT principles, it is possible
to construct models of heat devices [19–26], from which the
optimization procedure considers the thermodynamic force as
the sole relevant degree of freedom. In LIT the endoreversible
features of the simplified FTT models (including the CA
model [10]) of heat devices are recovered under the so-called
tight-coupling condition [19,23,24].

Minimally nonlinear irreversible thermodynamic (MNLIT)
models have also been proposed for cyclic and steady-
state heat devices, in order to account for possible thermal
dissipation effects in the interaction between the working
system and the external heat reservoirs [27,28]. These models
incorporate the Onsager relations with an additional nonlinear
dissipation term. As in LIT, the optimization procedure also
involves only one degree of freedom (the thermodynamic flux),
and the outstanding results provided by the low-dissipation
models [11–13] are recovered by the MNLIT model as a
particular case [27] and [28] (see Appendix). We stress that a
numerical validation of the LD model and thus the MNLIT
model has been confirmed in a computer simulation of a
Carnot cycle with a single particle [29]. However, the MNLIT
models are subject to some criticism. In Ref. [22] it is claimed
that the MNLIT models are misleading, since dissipations
should naturally appear in the LIT models when the local
Onsager relations are extended to a global scale. Indeed, for
the thermoelectric devices these authors of Ref. [22] showed
that the Joule dissipation is well founded in LIT based on this
argument. However, for any generic heat device, the relation
between the local and global scales may be too complicated or
it simply has not been obtained yet. In such cases, the addition
of the dissipative terms adopted in the MNLIT models could
be considered as a reasonable and natural assumption in order
to explain the thermodynamic (macroscopic) influence of the
local dissipative effects on a generic heat device.

The present paper is aimed to present results obtained
by the MNLIT models for both HE and RE, and it has
two main goals: (i) to present a unified description of
nonisothermal heat devices for HE and RE, making emphasis
on the global performance characteristics of the behaviors of
power-efficiency and cooling power-COP curves, including
the non-tight-coupling case; and (ii) to analyze the maximum
efficiency and the efficiency at maximum power regimes for
HE and the maximum COP and the COP at maximum cooling
power regimes for RE. Especially, we reveal the impacts
of irreversibilities by heat leaks (degrees of the coupling
strength), internal dissipations, and their interplay on the
performance of the heat devices, by considering their various
limits.

To attain these goals, after giving a brief theoretical
background in Sec. II, we present in Sec. III a detailed analysis
of the main global performance characteristics of HE and RE in
terms of the degrees of the coupling strength and the dissipation
effects. Then Sec. IV focuses on the optimum performance
regimes, and, finally, we discuss our main results in Sec. V.
The original idea of the MNLIT model, which was proposed
with the motivation to explain and extend the LD model [27],
is also given in Appendix.

II. THEORETICAL BACKGROUND

Although the main theoretical aspects for both HE and
RE have been reported previously [27,28], here for the sake
of completeness, we give a brief theoretical background
emphasizing the unified framework for HE and RE.

A. Minimally nonlinear irreversible model for HE

We start from the entropy production rate σ̇ of the total
system (that is, the heat engine and the heat reservoirs).
Hereafter the dot denotes a quantity divided by cycle period for
cyclic heat engines or a quantity per unit time for steady-state
heat engines. Because the internal state of the heat engine
comes back to the original state after one cycle for cyclic
heat engines or it remains unchanged for steady-state heat
engines, σ̇ can be written by the sum of the entropy-change
rate of the heat reservoirs as σ̇ = Ṡh + Ṡc according to the
local equilibrium hypothesis [30], where Si (i = h,c) denotes
the equilibrium entropy of the heat reservoir. It can be written
as

σ̇ = Ṡh + Ṡc = U̇h

∂Sh

∂Uh

+ U̇c

∂Sc

∂Uc

= −Q̇h

Th

+ Q̇c

Tc

, (1)

where we have used ∂Si

∂Ui
= 1

Ti
with Ui being the equilibrium

internal energy of the heat reservoir, and for HE, we denote
by Q̇h ≡ −U̇h the heat flux from the hot heat reservoir
and by Q̇c ≡ U̇c the heat flux into the cold heat reservoir,
respectively. We also denote by Ẇ ≡ P the power output.
Then, from the relation Q̇c = Q̇h − P = Q̇h − F ẋ with F

and x a generalized external force and its conjugate variable,
respectively, Eq. (1) can be rewritten as

σ̇ = −F ẋ

Tc

+ Q̇h

(
1

Tc

− 1

Th

)
≡ J1X1 + J2X2. (2)

It naturally leads us to define the thermodynamic flux J1 ≡ ẋ

(the motion speed of the heat engine) conjugate to the ther-
modynamic force X1 ≡ −F/Tc, and the other thermodynamic
flux J2 ≡ Q̇h (the heat flux from the hot heat reservoir) con-
jugate to the other thermodynamic force X2 ≡ 1/Tc − 1/Th,
where these quantities are expressed by using the thermody-
namic extensive and intensive parameters of the equilibrium
heat reservoirs [30]. By expanding the thermodynamic flux Ji

by the thermodynamic force Xi around the equilibrium point
X1 = X2 = 0 as Ji = ∑2

j=1 LijXj + ∑2
j,k=1 MijkXjXk +∑2

j,k,m=1 NijkmXjXkXm + . . . with Lij ’s, Mijk’s, and Nijkm’s
being the expansion coefficients of each order, we obtain a
full description of the evolution of the entropy production
rate of the nonequilibrium heat engine. The LIT model
assumes the following linear Onsager relations between the
thermodynamic fluxes and forces [19]:

J1 = ẋ = L11X1 + L12X2, (3)

J2 = Q̇h = L21X1 + L22X2, (4)

where the coefficients Lij ’s are the Onsager coefficients
satisfying the reciprocal relation L12 = L21. In the LIT model,
the entropy production rate σ̇ = J1X1 + J2X2 becomes a
quadratic form in Xi’s and its non-negativity leads to the
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following restriction on the Onsager coefficients Lij ’s as

L11 � 0, L22 � 0, L11L22 − L2
12 � 0. (5)

By changing the variable from X1 to J1 by using Eq. (3), we
can write the Onsager relation Eq. (4) and Q̇c = J2 − P ≡ J3

by using J1 as

J2 = L21

L11
J1 + L22(1 − q2)X2, (6)

J3 = L21Tc

L11Th

J1 + L22(1 − q2)X2 + Tc

L11
J1

2, (7)

respectively, where q is the coupling strength parameter
defined as

q ≡ L12√
L11L22

(|q| � 1). (8)

From Eqs. (6) and (7), we immediately notice that the nonlinear
term Tc

L11
J 2

1 appears only in J3 in an asymmetric way. By using

Eqs. (6) and (7), the entropy production rate σ̇ = − J2
Th

+ J3
Tc

is
given by

σ̇ = L22(1 − q2)X2
2 + J 2

1

L11
, (9)

where it turns out that the nonlinear term expresses the
dissipation effect contributing to the entropy production rate.

Our minimally nonlinear irreversible heat engine assumes
the following extended Onsager relations such that the dissi-
pation terms in both sides of the heat fluxes are equally taken
into account [27] [see Fig. 1(a)]:

J1 = ẋ = L11X1 + L12X2, (10)

J2 = Q̇h = L21X1 + L22X2 − γhJ
2
1 . (11)

The nonlinear term in J2 expresses the dissipation into the
hot heat reservoir caused by the finite-time motion of
the heat engine J1 �= 0 and γh (>0) is a constant meaning
the strength of the dissipation. This choice of the specific form
is motivated by the low-dissipation Carnot cycle model, which
is proved to be equivalent with Eqs. (10) and (11) under the
tight-coupling condition [27] (see Appendix). In the absence of
the nonlinear term, Eqs. (10) and (11) recover the usual linear
Onsager relations Eqs. (3) and (4). Although our extended
Onsager relation Eq. (11) includes the additional nonlinear

FIG. 1. Setup of minimally nonlinear irreversible heat devices:
(a) heat engine and (b) refrigerator. The thin arrows inside the bold
arrows show the direction of the dissipation terms included in the
heat fluxes.

term, we assume that the Onsager reciprocity L12 = L21 and
the restriction Eq. (5) still holds for our Lij ’s (Appendix).

By changing the variable from X1 to J1 by using Eq. (10),
we can write the extended Onsager relation Eq. (11) and Q̇c =
J2 − P = J3 by using J1 as

J2 = L21

L11
J1 + L22(1 − q2)X2 − γhJ1

2, (12)

J3 = L21Tc

L11Th

J1 + L22(1 − q2)X2 + γcJ1
2, (13)

respectively, where we define a constant meaning the strength
of the dissipation into the cold heat reservoir γc as

γc ≡ Tc

L11
− γh > 0, (14)

assuming its positivity. The meaning of each term in Eqs. (12)
and (13) can be highlighted by expressing the entropy
production rate σ̇ = − J2

Th
+ J3

Tc
by using them [27]:

σ̇ = L22(1 − q2)X2
2 + γh

Th

J 2
1 + γc

Tc

J 2
1 , (15)

where it is always assured to be non-negative from Eqs. (5)
and (8), and the non-negativity of γh > 0 and γc > 0. From
Eq. (15), we find that the first terms in Eqs. (12) and (13)
mean the reversible heat transports that do not contribute to
the entropy production rate. The second terms mean the steady
heat leaks from the hot heat reservoir to the cold heat reservoir,
which vanish under |q| = 1 called the tight coupling. This
tight-coupling condition in the MNLIT model assures that the
heat fluxes J2 and J3 vanish simultaneously in the quasistatic
limit J1 → 0, playing a similar role in the LIT model. The third
terms mean the dissipations into the heat reservoirs due to the
finite-time operation of the heat engine. The power output
P = F ẋ = −J1X1Tc is also expressed by using J1 as

P = L12

L11
ηCJ1 − Tc

L11
J 2

1 . (16)

Instead of the extended Onsager relations Eqs. (10) and (11),
we can describe the heat engine by using Eqs. (12) and (13).

Under given Onsager coefficients Lij ’s and the thermo-
dynamic force X2, the working regime of the heat engines
depends on J1. For the requirement of the positive power
P > 0, J1 should be located in the following range:{

0 < J1 < L12X2 (0 < L12),

L12X2 < J1 < 0 (L12 < 0).
(17)

The efficiency η of the heat engine in our minimally
nonlinear irreversible model is expressed as

η = P

J2
=

L12
L11

ηCJ1 − Tc

L11
J 2

1
L21
L11

J1 + L22(1 − q2)X2 − γhJ1
2
, (18)

by using Eqs. (12) and (16).

B. Minimally nonlinear irreversible model for RE

As well as in the case of HE, we start from the entropy pro-
duction rate σ̇ of the total system (the refrigerator and the heat
reservoirs). Because the internal state of the refrigerator comes
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back to the original state after one cycle for cyclic refrigerators
or it remains unchanged for steady-state refrigerators, σ̇ can
be written by the sum of the entropy-change rate of the heat
reservoirs as σ̇ = Ṡh + Ṡc according to the local equilibrium
hypothesis [30], where Si (i = h,c) denotes the equilibrium
entropy of the heat reservoir. It can be written as

σ̇ = Ṡh + Ṡc = U̇h

∂Sh

∂Uh

+ U̇c

∂Sc

∂Uc

= Q̇h

Th

− Q̇c

Tc

, (19)

where we used ∂Si

∂Ui
= 1

Ti
with Ui being the equilibrium internal

energy of the heat reservoir, and for RE, we denote by
Q̇c ≡ −U̇c the heat flux from the cold heat reservoir and by
Q̇h ≡ U̇h the heat flux into the hot heat reservoir, respectively,
as is opposite to HE. We also denote by Ẇ ≡ P the power
injection. Then, from Q̇h = P + Q̇c = F ẋ + Q̇c with F and
x a generalized external force and its conjugate variable,
respectively, Eq. (19) can be rewritten as

σ̇ = F ẋ

Th

+ Q̇c

(
1

Th

− 1

Tc

)
≡ J1X1 + J2X2. (20)

It naturally leads us to define the thermodynamic flux J1 ≡ ẋ

(the motion speed of the refrigerator) conjugate to the thermo-
dynamic force X1 ≡ F/Th, and the other thermodynamic flux
J2 ≡ Q̇c (the heat flux from the cold heat reservoir) conjugate
to the other thermodynamic force X2 ≡ 1/Th − 1/Tc, where
these quantities are expressed by using the thermodynamic
extensive and intensive parameters of the equilibrium heat
reservoirs [30].

To establish our election of the thermodynamic fluxes
and forces for refrigerators, we write the entropy production
rate σ̇ of the refrigerator as a function of Q̇c and Ẇ , thus
incorporating in the formalism in a natural way the specific
job of the refrigerator system (the extracted cooling power
of the low-temperature reservoir Q̇c as a consequence of the
input of an external power Ẇ ). While it is more intuitive from
a thermodynamic point of view that σ̇ is written in terms of
the specific job of each thermodynamic device in this way, an
alternative starting point may be to express σ̇ of the refrigerator
in terms of Ẇ and Q̇h, as for heat engines. If this is done the
thermodynamic fluxes and forces are exactly the same as those
obtained for a heat engine, but it does not change the main
results.

Then, as is similar to the heat engines in Sec. II A, our mini-
mally nonlinear irreversible refrigerator assumes the following
extended Onsager relations between the thermodynamic fluxes
Ji’s and forces Xi’s [28] [see Fig. 1(b)]:

J1 = ẋ = L11X1 + L12X2, (21)

J2 = Q̇c = L21X1 + L22X2 − γcJ
2
1 , (22)

where Lij ’s are the Onsager coefficients satisfying the recip-
rocal relation L12 = L21. The nonlinear term in J2 expresses
the dissipation into the cold heat reservoir caused by the
finite-time motion of the refrigerator and γc (>0) is a constant
meaning the strength of the dissipation. In the absence of the
nonlinear term, Eqs. (21) and (22) recover the usual linear
Onsager relations in LIT [19]. In LIT, the entropy production
rate σ̇ = J1X1 + J2X2 becomes the quadratic form in Xi’s
and its non-negativity leads to the following restriction on the

Onsager coefficients Lij ’s as

L11 � 0, L22 � 0, L11L22 − L2
12 � 0. (23)

Although our extended Onsager relation Eq. (22) includes
the additional nonlinear term, we assume that the restriction
Eq. (23) still holds for our Lij ’s.

By changing the variable from X1 to J1 by using Eq. (21),
we can write the extended Onsager relation Eq. (22) and Q̇h =
J2 + P ≡ J3 by using J1 as

J2 = L21

L11
J1 + L22(1 − q2)X2 − γcJ1

2, (24)

J3 = L21Th

L11Tc

J1 + L22(1 − q2)X2 + γhJ1
2, (25)

respectively, where we define a constant meaning the strength
of the dissipation into the hot heat reservoir γh as

γh ≡ Th

L11
− γc > 0, (26)

assuming its positivity and the coupling strength parameter q

as

q ≡ L12√
L11L22

(|q| � 1). (27)

The meaning of each term in Eqs. (24) and (25) can be
highlighted by expressing the entropy production rate σ̇ =
J3
Th

− J2
Tc

by using them [28]:

σ̇ = L22(1 − q2)X2
2 + γh

Th

J 2
1 + γc

Tc

J 2
1 , (28)

where it is always assured to be non-negative from Eqs. (23)
and (27), and the non-negativity of γh > 0 and γc > 0.
The expression of the entropy production rate Eq. (28) for
the refrigerator agrees with Eq. (15) for the heat engines,
presenting a unified description of heat devices in our MNLIT
models. From Eq. (28), we find that the first terms in Eqs. (24)
and (25) mean the reversible heat transports that do not
contribute to the entropy production rate. The second terms
mean the steady heat leaks from the hot heat reservoir to
the cold heat reservoir, which vanish under the tight-coupling
condition |q| = 1. Under this tight-coupling condition in the
MNLIT model, the heat fluxes J2 and J3 vanish simultaneously
in the quasistatic limit J1 → 0, as it happens in the LIT model.
The third terms mean the dissipations into the heat reservoirs
due to the finite-time operation of the refrigerator. The power
injection P = F ẋ = J1X1Th is also expressed by using J1 as

P = L12

L11εC
J1 + Th

L11
J 2

1 . (29)

Instead of the extended Onsager relations Eqs. (21) and (22),
we can describe the refrigerator by using Eqs. (24) and (25).

Under given Onsager coefficients Lij ’s and the thermo-
dynamic force X2, the working regime of the refrigerators
depends on J1. For the requirement of the positive cooling
power J2 > 0, J1 should be located in the following range:

L21 − √
D

2L11γc

< J1 <
L21 + √

D

2L11γc

, (30)
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where the discriminant D, which should be positive, is given by

D ≡ L2
21 + 4L2

11L22γc(1 − q2)X2 > 0. (31)

Under the tight-coupling condition |q| = 1, Eq. (30) reduces to{
0 < J1 < L21

γcL11
(L12 > 0),

L21
γcL11

< J1 < 0 (L12 < 0),
(32)

showing that the quasistatic limit J1 → 0 is included. In
contrast, under the non-tight-coupling condition |q| < 1, such
quasistatic limit is not included and J1 must be a finite value
as in Eq. (30) for J2 to be positive. Intuitively, this constraint is
necessary for the cooling effect to overcome the steady heat-
leak effect. In addition, from Eq. (31), we also have a constraint
on γc under the non-tight-coupling condition |q| < 1 as

γc < − q2

4(1 − q2)L11X2
≡ γ +

c . (33)

This constraint is also related to the positivity of the cooling
power under |q| < 1: even when the refrigerator operates at a
finite rate, large enough dissipation into the cold heat reservoir
can also violate the positive cooling power. Combining
Eq. (33) with Eq. (26), we obtain the following constraint on
γc depending on the parameter values as

⎧⎪⎪⎨
⎪⎪⎩

0 < γc < Th

L11

(
γ +

c � Th

L11
,i.e., τ � 1

q2

4(1−q2)
+1

)
,

0 < γc < γ +
c

(
γ +

c < Th

L11
,i.e., τ < 1

q2

4(1−q2)
+1

)
.

(34)

As is clear from Eq. (17), such restriction does not exist in
the heat engines. However it plays a key role in the behavior
of the optimum performance regimes of RE (see Sec. IV B).

The COP ε of the refrigerator in our minimally nonlinear
irreversible model is expressed as

ε = J2

P
=

L21
L11

J1 + L22(1 − q2)X2 − γcJ1
2

L12
L11εC

J1 + Th

L11
J 2

1

, (35)

by using Eqs. (24) and (29).

III. GLOBAL PERFORMANCE CHARACTERISTICS

We consider global performance characteristics of the
minimally nonlinear irreversible heat devices described by
Eqs. (12) and (13) for HE or Eqs. (24) and (25) for RE.

A. HE: Performance characteristics

In our model, |q| = 1 means a perfect, tight-coupling
condition for the internal degrees of freedom, so that the
heat-leak terms proportional to the thermodynamic force
X2 in Eqs. (12) and (13) do not play any role. Thus,
the thermodynamic fluxes J2 and J3 depend only on the
thermodynamic flux J1 and the dissipation constants γi’s.
The resulting power-efficiency plots for HE [Figs. 2(a)–2(c)
for |q| = 1] are parabolic shaped defined between the two
null-power states corresponding to a stalled state [19,31]
where the power vanishes due to too quick operation of
the heat engine and the Carnot efficiency state realized in
the quasistatic limit J1 → 0, independently of the dissipation
constants. These figures exhibit the characteristics common
to general Carnot-like models when the heat leak is absent,
and the irreversibilities are thus limited to external coupling
between the working system and external heat reservoirs with
adequate heat transfer laws (endoreversible limit [2,4,6–8]).
Only if additionally the heat transfer law is linear, the CA
efficiency emerges in FTT [10]. However, this is not the case
in our model, where this particular value is realized only as a
limiting case. Later we will come back to this particular point
in Sec. IV.

For |q| < 1, the thermodynamic fluxes J2 and J3 also
depend on an additional direct heat transfer between the hot
and cold heat reservoirs, which is proportional to X2 as in
Eqs. (12) and (13). Now, the resulting power-efficiency (P -η)
plots are loop shaped (as those obtained in the irreversible
Carnot-like FTT models [6]) with near but noncoincident
maximum power and maximum efficiency points. As the
degree of the heat leak increases (i.e., as |q| decreases)
[Figs. 2(a)–2(c)], the distance between maximum power and
maximum efficiency points becomes smaller determining
more closed loops. This loop-shaped behavior is explained
as follows: when |q| < 1, the heat-leak effect steadily remains
even in the quasistatic limit J1 → 0, which implies η → 0
from Eq. (18). In contrast, even when the magnitude of J1
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FIG. 2. Power-efficiency (P -η) curve for the minimally nonlinear irreversible heat engine under various coupling strengths (solid line
for q = 1, dashed line for q = 0.95, and dotted line for q = 0.85): (a) asymmetric dissipation (γh = 0.001 and γc = 0.699), (b) symmetric
dissipation (γh = γc = 0.35), and (c) asymmetric dissipation (γh = 0.699 and γc = 0.001). We used L11 = L22 = 1, Th = 1, and Tc = 0.7.
The Carnot efficiency is ηC = 0.3.
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FIG. 3. Power-efficiency (P -η) curve for the minimally nonlinear irreversible heat engine under various dissipation regimes (solid line for
γh = 0.001, dashed line for γh = 0.35, and dotted line for γh = 0.699): (a) q = 1, (b) q = 0.95, and (c) q = 0.85. We used L11 = L22 = 1,
Th = 1, and Tc = 0.7. The Carnot efficiency is ηC = 0.3.

becomes too large, the efficiency (as well as the power)
becomes 0 at the stalled state J1 = L12X2 [19,31]. Therefore
the optimum J1 that maximizes η must exist somewhere
between these extreme points.

The explicit influence of the dissipation constants γi’s on
the global performance characteristics is better visualized from
Figs. 3(a)–3(c). It is clearly observed that at any fixed power
(including the maximum power point) and any q value, the
efficiency increases as γh increases. This result generalizes the
result reported by Apertet et al. [32,33] for a tightly coupled
thermoelectric generator to any coupling case. As these authors
of Refs. [32,33] argue, the heat released at the hot heat reservoir
can eventually be recycled by the hot isothermal step, and thus
a preferential dissipation into this side provokes increase of the
efficiency at any fixed power. Actually, this mechanism works
for any q value: we can obtain the η = η(P ) curve explicitly
by combining Eqs. (16) and (18) as

η(P ) = P

q2L22X2Ch

2 + L22(1 − q2)X2 − γh
L2

12X
2
2C

2
h

4

, (36)

where Ch is defined as

Ch ≡ 1 ±
√

1 − 4PTc

q2L22η
2
C

, (37)

and the sign + (−) corresponds to a branch for the working
regimes from the stalled-state point (quasistatic limit) to the

maximum power point. From the curve Eq. (36), it is obvious
that the efficiency increases as γh increases at any fixed power
and for any q value.

B. RE: Performance characteristics

Following the same methodology as for HE above, we will
analyze the cooling power-COP (J2-ε) plots. See Figs. 4(a)–
4(d).

Again, we clearly observe open curves under the tight-
coupling condition |q| = 1, which are similar to the charac-
teristics of the endoreversible models [2,4,6–8], where the
maximum cooling power is realized at a finite rate while
the maximum COP is realized at the zero cooling power
(quasistatic limit). In contrast, under the non-tight-coupling
condition |q| < 1, the maximum COP is no longer realized
at the zero cooling power but at a finite cooling power
because in this case the COP at the zero cooling power
(quasistatic limit) becomes zero due to a steady heat leak. Then
we observe loop-shaped curves with near but noncoincident
optimum values for both of the cooling power and COP. As
|q| progressively decreases, this tendency becomes prominent
and both of the cooling power and COP become smaller and
their behaviors are also strongly modulated by the values of
the dissipation constants γi’s. This loop-shaped behavior is
explained as in the HE case above: when |q| < 1, J1 takes
values in a bounded interval as in Eq. (30) for the cooling
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FIG. 4. Cooling power-COP (J2-ε) curve for the minimally nonlinear irreversible refrigerator under various coupling strengths (solid line
for q = 1, dashed line for q = 0.95, and dotted line for q = 0.85): (a) asymmetric dissipation (γh = 0.001 and γc = 0.999), (b) symmetric
dissipation (γh = γc = 0.5), and (c) asymmetric dissipation (γh = 0.999 and γc = 0.001). (d) shows a closer inspection of (c) in the small
ε-range for better understanding of the shape of J2-ε curve (open curve for q = 1 and closed curve for q = 0.95,0.85). Diverging behavior of
J2 in the limit of γc → 0 is confirmed. We used L11 = L22 = 1, Th = 1, and Tc = 0.7. The Carnot COP is εC � 2.33.
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FIG. 5. Cooling power-COP (J2-ε) curve for the minimally nonlinear irreversible refrigerator under various dissipation regimes (solid line
for γc = 0.001, dashed line for γc = 0.5, and dotted line for γc = 0.999): (a) q = 1, (b) q = 0.95, and (c) q = 0.85. We used L11 = L22 = 1,
Th = 1, and Tc = 0.7. The Carnot COP is εC � 2.33.

power J2 to be positive. At both ends in Eq. (30), ε becomes
0 because J2 vanishes there [see Eq. (35)]. Therefore the
optimum J1 that maximizes ε must exist somewhere between
these extreme points. We also see that, in the limit of γc → 0,
the maximum cooling power shows diverging behavior for
all q’s, which has previously been pointed out by Apertet
et al. for the tight-coupling case |q| = 1 in the thermoelectric
generator [18]. Similar behavior has also been reported for
the cooling power at the maximum χ condition for minimally
nonlinear irreversible refrigerators [28].

The explicit influence of the dissipation constants γi’s
on the global performance characteristics can be analyzed
more clearly from Figs. 5(a)–5(c). For |q| = 1 in Fig. 5(a), a
preferential dissipation into the cold heat reservoir (γc → Th

L11
)

provokes a decreasing of the cooling power at any fixed
COP, but the COP at maximum cooling power monotonically
increases. This counterintuitive behavior was also reported
in Ref. [18] for the tight-coupling case |q| = 1 in the
thermoelectric generator. For more realistic situations with
|q| < 1 as in Figs. 5(b) and 5(c), we can see that the preferential
dissipation into the cold heat reservoir generally induces the
smaller loop. Interestingly, we can also see that the COP at

maximum cooling power can show a nonmonotonic behavior
with respect to the strength of the dissipation as in Fig. 5(c)
(q = 0.85) in contrast to the monotonic behavior as in 5(a)
(|q| = 1) and 5(b) (q = 0.95). This behavior of the COP
at maximum cooling power will be discussed in detail in
Sec. IV B.

IV. OPTIMIZED REGIMES

We analyze in detail the optimized performance regimes
of the maximum efficiency and the efficiency at maximum
power for HE and those of the maximum COP and the COP at
maximum cooling power for RE found in the analysis of the
global performance regimes in Sec. III.

A. Optimized regimes: HE

By using the definition of η in Eq. (18) and solving
∂η/∂J1 = 0, we obtain the maximum efficiency ηmax(q,γh/γc)
explicitly as:

ηmax

(
q,

γh

γc

)
=

ηC +
(

1+ γc
γh

)
(1−q2)ηC

q2
(

1−ηC+ γc
γh

)
(

1 −
√

1 + q2
(

1−ηC+ γc
γh

)
(1−q2)

(
1+ γc

γh

)
)

1 − 1−ηC+ γc
γh

1+ γc
γh

1⎛
⎜⎝1−

√√√√√1+ q2
(

1−ηC+ γc
γh

)
(1−q2)

(
1+ γc

γh

)
⎞
⎟⎠

+ (1−q2)ηC

q2
(

1+ γc
γh

)
(

1 −
√

1 + q2
(

1−ηC+ γc
γh

)
(1−q2)

(
1+ γc

γh

)
) . (38)

This is a monotonically increasing function of |q| and
γh/γc [34]. In the limit of the small temperature difference

T → 0, Eq. (38) can be expanded as

ηmax

(
q,

γh

γc

)
= (1 −

√
1 − q2)2

q2


T

T
+ O(
T 2), (39)

where T ≡ (Th + Tc)/2. Up to the first order of 
T , we have
no γh/γc dependence. This expression has been previously
obtained in the framework of LIT [24]. In asymmetric

dissipation limits γh/γc → 0 and γh/γc → ∞, we find that
Eq. (38) is bounded from the lower side by η−

max(q) and the
upper side by η+

max(q), which are given as

η−
max(q) ≡ ηmax

(
q,

γh

γc

→ 0

)

= (1 −
√

1 − q2)2

q2
ηC, (40)
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FIG. 6. Normalized upper bounds η+
max(q)/ηC in Eq. (41) and η+

maxP(q)/ηC in Eq. (48), and lower bounds η−
max(q)/ηC in Eq. (40) and

η−
maxP(q)/ηC in Eq. (46) as a function of ηC: (a) q = 1, (b) q = 0.95, and (c) q = 0.85. η+

max(1) = η−
max(1) = ηC [see Eqs. (40) and (41)].

and

η+
max(q) ≡ ηmax

(
q,

γh

γc

→ ∞
)

=
√

1−q2ηC

1−q2

(
q2η2

C + (q2 − 2)ηC
) + 2ηC(1 − q2ηC)√

1−q2ηC

1−q2 ((3q2 − 2)ηC − q2) + 2ηC(1 − q2ηC)
,

(41)

respectively. In the limit of |q| → 1, η±
max(q) → ηC as ex-

pected, but as the coupling strength decreases, these values
drastically decrease showing the behavior plotted in Figs. 6(b)
and 6(c).

In the case of the symmetric dissipation γh = γc, we obtain

ηsym
max(q) ≡ ηmax

(
q,

γh

γc

= 1

)

=
ηC + 2(1−q2)ηC

q2(2−ηC) H1

1 − 2−ηC

2
1

H1
+ (1−q2)ηC

2q2 H1

, (42)

where H1 is defined as

H1 ≡ 1 −
√

1 + q2(2 − ηC)

2(1 − q2)
. (43)

Among different optimization regimes, the efficiency at
maximum power ηmaxP has been playing an important role
for studies of traditional [11,32,33,35–41], stochastic [31,42–
48], and quantum [49–55] HE. The maximum power and the
efficiency at the maximum power ηmaxP of the present model,
which were studied in Ref. [27] previously, are obtained by
solving ∂P/∂J1 = 0:

Pmax = q2L22η
2
C

4Tc

, (44)

ηmaxP

(
q,

γh

γc

)
= ηC

2

q2

2 − q2

(
1 + ηC

2
(

1+ γc
γh

)) , (45)

where we used the definition of P in Eq. (16) and η in Eq. (18).
Equation (45) is a monotonically increasing function of |q| and
γh/γc [27]. The corresponding lower and upper bounds, and

symmetric case are easily obtained in the limit of γh/γc → 0,
γh/γc → ∞, and γc/γh = 1, respectively:

η−
maxP(q) ≡ ηmaxP

(
q,

γh

γc

→ 0

)
= ηC

2

q2

2 − q2
, (46)

η
sym
maxP(q) ≡ ηmaxP

(
q,

γh

γc

= 1

)

= ηC

2

q2

2 − q2
(
1 + ηC

4

) , (47)

η+
maxP(q) ≡ ηmaxP

(
q,

γh

γc

→ ∞
)

= ηC

2

q2

2 − q2
(
1 + ηC

2

) . (48)

The bounds η−
maxP(q) and η+

maxP(q) are also plotted in
Figs. 6(a)–6(c) for the sake of comparison with the lower and
upper bounds η−

max(q) and η+
max(q) of the maximum efficiency.

Note that as the coupling strength progressively decreases due
to the heat-leak increase [Fig. 6(c)], the maximum efficiency
and efficiency at the maximum power regimes tend to collapse
in a unique inefficient performance regime as we have seen,
for instance, in Fig. 3.

The following limits of Eq. (45) under the tight-coupling
condition |q| = 1 are especially interesting:

η−
maxP = ηC

2

(
γh

γc

→ 0, |q| = 1

)
, (49)

η
sym
maxP = 2ηC

4 − ηC

(
γh

γc

= 1, |q| = 1

)
, (50)

η+
maxP = ηC

2 − ηC

(
γh

γc

→ ∞, |q| = 1

)
, (51)

where Eqs. (49) and (51) are previously obtained in the LD
models [11], and Eq. (50) may be comparable to the previous
result obtained for a heat engine model under a left-right
(spatially) symmetric condition in Ref. [49]. We note that when
ηC → 0 (Tc ∼ Th), η

sym
maxP in Eq. (50) is expanded as

η
sym
maxP = 2ηC

4 − ηC
≈ ηC

2
+ η2

C

8
+ η3

C

32
+ . . . , (52)
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FIG. 7. Normalized upper bounds ε+
max(q)/εC in Eq. (57) and ε+

maxJ2
(q)/εC in Eq. (65), and lower bound ε−

max(q)/εC in Eq. (58) as a function
of τ : (a) q = 1, (b) q = 0.95, and (c) q = 0.85. ε+

max(1)/εC = ε−
max(1)/εC = 1 in all τ range [see Eqs. (57) and (58)].

which reproduces ηCA [10] up to the second order of ηC:

ηCA = 1 −
√

1 − ηC ≈ ηC

2
+ η2

C

8
+ η3

C

16
+ . . . . (53)

Consequently, under the maximum power condition, our
model optimized with respect to only one-parameter J1

reproduces the lower and upper bounds of the low-dissipation
HE model optimized with respect to two parameters in
Ref. [11] and also reproduces the CA efficiency up to second
order in the limit of the small temperature difference [49].

B. Optimized regimes: RE

By using the definition of ε in Eq. (35) and solving
∂ε/∂J1 = 0, the maximum COP under the non-tight-coupling

condition |q| < 1 is given as follows:

εmax

(
q,

γh

γc

)
=

−q2R1R2 + q2R2
1 − (1−q2)

(
1− 1

τ

)
R2

2

1+ γh
γc

q2
(
1 − 1

τ

)
R1R2 + (1 − q2)

(
1 − 1

τ

)
R2

2

, (54)

where R1 and R2 are defined as

R1 ≡ 1 − 1 − 1
τ

1 + γh

γc

, (55)

R2 ≡ 1 +
√

1 + q2R1

1 − q2
, (56)

respectively. Eq. (54) is a monotonically increasing func-
tion of |q| and γh/γc [34]. In the asymmetric dissi-
pation limit γh/γc → ∞, we obtain R1 → 1, R2 → 1 +√

1 + q2/(1 − q2), and the upper bound:

ε+
max(q) = q2

(1 +
√

1 − q2)2
εC. (57)

We also obtain the lower bound as

ε−
max(q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q2

τ2 − q2

τ

(
1+

√
1+ q2

(1−q2)τ

)
−(1−q2)

(
1− 1

τ

)(
1+

√
1+ q2

(1−q2)τ

)2

(
1− 1

τ

)
q2

τ

(
1+

√
1+ q2

(1−q2)τ

)
+(1−q2)

(
1− 1

τ

)(
1+

√
1+ q2

(1−q2)τ

)2

(
γh

γc
→ 0 for τ � 1

q2

4(1−q2)
+1

)
,

0

(
γh

γc
→ γh

γ +
c

for τ < 1
q2

4(1−q2)
+1

)
,

(58)

depending on the parameter values corresponding to each case
in Eq. (34). ε+

max(q) and ε−
max(q) normalized by εC are plotted

in Figs. 7(b) and 7(c).
In the case of the symmetric dissipation γh = γc, we obtain

εsym
max(q) = q2

(
1 − 1

τ

) − q2R3 − (1 − q2)R2
3

q2
(
1 − 1

τ

)
R3 + 2(1 − q2)R2

3

, (59)

where

R3 ≡ 1 +
√

1 + q2
(
1 − 1

τ

)
2(1 − q2)

. (60)

It is evident from Figs. 4 and 5 that the COP at the maximum
cooling power εmaxJ2 is a well-defined optimum performance
regime as is also suggested in Ref. [18]. Analytical derivation
of the maximum cooling power J2,max and the COP at the
maximum cooling power εmaxJ2 are easily done as ∂J2/∂J1 = 0
by using Eq. (24) and they read as

J2,max = q2L22

4γcL11
+ L22(1 − q2)X2, (61)

εmaxJ2

(
q,

γh

γc

)
=

q2εC − 4(1−q2)(
1+ γh

γc

)
2q2 + q2εC

(
1 + γh

γc

) . (62)
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Equation (62) is a monotonically increasing function of
|q|, and a monotonically decreasing function of γh/γc for
|q| = 1 while for |q| �= 1 it depends as follows. By solving
∂εmaxJ2/∂(γh/γc) = 0, we obtain the optimum dissipation

ratio:(
γh

γc

)
opt

= −1 + 4(1 − q2)

q2εC

⎛
⎝1 +

√
1 + q2

2(1 − q2)

⎞
⎠ . (63)

Because of the requirement ( γh

γc
)opt > 0, we obtain a parameter range

εC <
4(1 − q2)

(
1 +

√
1 + q2

2(1−q2)

)
q2

(64)

for this optimum value to exist. A nonmonotonic behavior corresponding to this case can be seen in Fig. 5(c) (εmaxJ2 of γc = 0.5
is the maximum in the three γc’s.), as mentioned in the last part of Sec. III B. If this condition does not hold [e.g., the parameter
values used in Fig. 5(b)], Eq. (62) is a monotonically decreasing function of γh/γc [34] as is similar to the case of |q| = 1. Then
the upper bound of εmaxJ2 (q) depending on the parameter values is given as follows:

ε+
maxJ2

(q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q2εCR4

2(1+R4)(q2+2(1−q2)(1+R4))

⎛
⎝ γh

γc
=

(
γh

γc

)
opt

for εC <
4(1−q2)

(
1+

√
1+ q2

2(1−q2)

)
q2

⎞
⎠ ,

q2εC−4(1−q2)
q2(2+εC)

⎛
⎝ γh

γc
→ 0 for εC �

4(1−q2)

(
1+

√
1+ q2

2(1−q2)

)
q2

⎞
⎠ ,

(65)

where

R4 ≡
√

1 + q2

2(1 − q2)
. (66)

We obtain the lower bound of εmaxJ2 (q) in the asymmetric
dissipation limit of γh/γc → ∞ for any |q| value:

ε−
maxJ2

(q) = 0. (67)

These bounds are compared with those of the maximum COP
in Fig. 7. In this figure, we stress that as q is decreased from
unity, as is similar to the behavior of the heat engine in Fig. 3,
the allowed range of the optimized COPs rapidly becomes
smaller and the maximum COP and the COP at maximum
cooling power regimes tend to collapse in a unique inefficient
performance regime (smaller loop) as in Fig. 5.

For the symmetric dissipation γh = γc, we obtain

ε
sym
maxJ2

(q) = q2εC − 2(1 − q2)

2q2 (1 + εC)
. (68)

Additionally, if the tight-coupling condition |q| = 1 is
fulfilled, we reproduce the results in [18]:

ε−
maxJ2

= 0

(
γh

γc

→ ∞, |q| = 1

)
, (69)

ε
sym
maxJ2

= εC

2(εC + 1)

(
γh

γc

→ 1, |q| = 1

)
, (70)

ε+
maxJ2

= εC

εC + 2

(
γh

γc

→ 0, |q| = 1

)
. (71)

V. DISCUSSION AND CONCLUSIONS

We have reported unified results for both HE and RE
obtained by MNLIT models making emphasis on the influence

of irreversibilities by the heat leaks, internal dissipations, and
their interplay. The results in Sec. III clearly show that in order
to obtain realistic (loop-shaped) power-efficiency and cooling
power-COP performance characteristics, the irreversibilities
by the heat leaks are a necessary ingredient. On the other
hand, the internal dissipations into the heat reservoirs account
for quantitative variations in the involved energetic magnitudes
but without affecting the qualitative behaviors.

In Sec. IV, we have presented explicit calculations for
some optimized figures of merit and their bounds in terms
of dissipation to heat reservoirs and of the coupling parameter.
In particular, the limiting results for |q| = 1 deserve some
comments. In this limit, the efficiency at maximum power
Eq. (45) can be rewritten as

ηmaxP = ηC

2 − γ ηC
, (72)

with γ ≡ 1
1+γc/γh

= γh

γc+γh
, i.e., the ratio of the dissipation

strength in the hot heat reservoir to the overall strength. This
result was also previously reported by Schmiedl and Seifert in
a stochastic heat engine model [31] and then reinterpreted
by Apertet et al. [33] as the characteristic efficiency at
maximum power for exoreversible HE models where the
only irreversibility comes from the internal dissipations.
This formula may also be connected to the LD models by
interpreting the coefficients of dissipation strength as the
coefficients of heat transfer between the working substance
and the heat reservoir in the FTT framework [39]. Indeed, if
we choose γ = 0 and 1 in Eq. (72), we reproduce the bounds
given by Eqs. (49) and (51), respectively, while for symmetric
dissipation γ = 1/2 we reproduce Eq. (50). For RE, the COP
at maximum cooling power Eq. (62) under |q| = 1 is given as

εmaxJ2 = εC

2 + εC
1−γ

, (73)
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by using γ . For γ = 0 and 1 we reproduce the bounds
in Eqs. (71) and (69), respectively, while for symmetric
dissipation γ = 1/2 we reproduce Eq. (70), which is already
reported in Ref. [18] as a particular case of a thermoelectric
refrigerator. Therefore, the MNLIT model under the tight-
coupling condition also reproduces correctly the results of this
exoreversible model.

A special comment is merited by the maximum cooling
power condition for RE expressed in Eq. (73) for which
Apertet et al. [18] have proposed that it should be considered
as the only genuine counterpart of the Schmiedl-Seifert
efficiency Eq. (72) for HE. Both results are obtained under
the same exoreversible conditions optimizing the efficiency
(COP) under maximum useful benefit (power output for HE
and cooling power for RE). On the other hand, the original
CA value was obtained under quite different assumption of
endoreversibility (without internal dissipations and heat leaks),
which when reversed does not allow the optimization of the
cooling power [18]. Exoreversible and endoreversible models
are indeed two (extreme) different models, which define
different specific coupling to the external heat reservoirs, thus
it is not surprising that they lead to different expressions.
Conversely, the LD models provide a unified framework for HE
and RE where the exact CA value emerges linked to a certain
symmetric condition. In this context (with the same model,
same symmetric condition, and same optimization criterion),
εmaxχ = √

1 + εC − 1 ≡ εCA for RE was proposed as the CA
counterpart [13,28]. This value gives a better comparison
with experimental results [56] than the COP at maximum
cooling power Eq. (73) whose maximum possible value is
unity even in the limit of the small temperature difference
as εmaxJ2 ≈ 1 − γ � 1 while the Carnot COP diverges as
εC → ∞ in this limit.

In closing, all of the above clearly illustrates that the min-
imally nonlinear irreversible model succeeds in reproducing
various results derived by previous studies. In particular, the
MNLIT model provides a clear interpretation of the global
performance characteristics of generic heat devices in terms
of the interplay between the heat leaks and the internal dissi-
pations, and it reproduces the figures of merit optimized under
some performance criteria and some conditions for both HE
and RE. Additionally, further studies are needed to establish
clearer connections between the MNLIT models [27,28], FTT
frameworks [10], LD models [11], and LIT models based on
the local force-flux relationships [22]. Related to this, we note
that a recent work [57] reports a complementary idea of the
nonlinear dissipation terms by introducing the concepts of
weighted reciprocal temperatures and weighted thermal fluxes.
In Refs. [37,58] we also note that dissipation effects by the
friction on the heat devices have been discussed. Although
such friction effects as a cause of the dissipations into the
heat reservoirs have not been taken into account in our present
model, an extension of our model along this line would be
interesting in terms of explaining behaviors of actual heat
devices.
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APPENDIX: MNLIT FORMULATION OF LD MODEL

We consider the physical relevance of the nonlinear
dissipation terms in the MNLIT model. The MNLIT model
was originally proposed with the motivation to explain and
extend the low-dissipation Carnot cycle model [11] from
a nonequilibrium thermodynamics point of view. The low-
dissipation Carnot cycle is a finite-time Carnot cycle model
that runs a Carnot cycle at a finite rate, where the heat flowing
during each isothermal process is given by [11]

Qh = Th
S − Th�h

th
, (A1)

Qc = Tc
S + Tc�c

tc
, (A2)

where 
S, ti , and �i are the quasistatic entropy change
of the working substance during the isothermal expansion
process, the time duration, and the strength of the dissipation
of each isothermal process, respectively. For simplicity, we
here neglect the durations of the adiabatic processes [11].
The entropy production rate of the present system σ̇ =

1
th+tc

(−Qh

Th
+ Qc

Tc
) is decomposed as follows:

σ̇ = − 1

th + tc

W

Tc

+ Q̇h

(
1

Tc

− 1

Th

)
≡ J1X1 + J2X2, (A3)

where the thermodynamic fluxes and forces are defined as

J1 ≡ 1

th + tc
, X1 ≡ −W

Tc

, (A4)

J2 ≡ Q̇h, X2 ≡ 1

Tc

− 1

Th

. (A5)

Under these definitions and using Eqs. (A1) and (A2), we
can easily show that J1 and J2 are transformed into the
extended Onsager relations in the MNLIT model in Eqs. (10)
and (11) [27]. Then the heat flux in each side of the isothermal
process turns out to include the nonlinear dissipation term,
which implies that the entropy production occurs equally
in both sides of the isothermal processes. The Onsager
coefficients and the dissipation constants are given as [27]

Lij =
(

Tc

Y

ThTc
S

Y
ThTc
S

Y

T 2
h Tc
S2

Y

)
, (A6)

γh = Th�h(α + 1), γc = Tc�c(α + 1)

α
, (A7)

where Y ≡ (Th�h + Tc�c/α)(α + 1) and α ≡ tc
th

. From
Eq. (A7), we can find that the Onsager reciprocity and the
constraint in Eq. (5) hold even without taking the limit of
the small temperature difference 
T → 0. The tight-coupling
condition |q| = 1 is also confirmed. In the limit of 
T → 0,
we recover the ordinary linear Onsager relations in Eqs. (3)
and (4), where J2 has no nonlinear dissipation term. This
implies that our extended relations are a minimum extension
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of the Onsager relations. The above consideration of the
theoretical tight-coupling example led us to propose the more
general MNLIT model including non-tight-coupling cases as
the minimal model of nonlinear irreversible heat engines. We
can give such a non-tight-coupling example described by the
MNLIT model as the following leaky low-dissipation Carnot
cycle model (see Ref. [28] for its counterpart in refrigerators):

Qh = Th
S − Th�h

th
+ κ(Th − Tc)(th + tc), (A8)

Qc = Tc
S + Tc�c

tc
+ κ(Th − Tc)(th + tc), (A9)

where the last terms express the heat conduction between the
two heat reservoirs according to the Fourier law with κ being
the thermal conductivity. In this model, the thermodynamic

fluxes and forces, and the dissipation constants are given by
the same forms as in Eqs. (A4), (A5), and (A7), while the
Onsager coefficients are modified as

Lij =
(

Tc

Y

ThTc
S

Y
ThTc
S

Y

T 2
h Tc
S2

Y
+ ThTcκ

)
, (A10)

from which we obtain |q| < 1. This leaky low-dissipation
Carnot cycle model indeed takes into account basic irre-
versibilities that exist in nonlinear irreversible heat engines:
dissipation and heat leak. These irreversibilities are also taken
into account by steady-state irreversible heat engines such
as thermoelectric devices [33]. This implies that the cyclic
heat engines and steady-state heat engines with the above
basic irreversibilities are unified in terms of our MNLIT
model. Completely the same arguments can be applied to
refrigerators.
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