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Mixtures of relativistic gases in gravitational fields: Combined Chapman-Enskog and Grad
method and the Onsager relations
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In this work we study an r-species mixture of gases within the relativistic kinetic theory point of view.
We use the relativistic covariant Boltzmann equation and incorporate the Schwarzschild metric. The method
of solution of the Boltzmann equation is a combination of the Chapman-Enskog and Grad representations.
The thermodynamic four-fluxes are expressed as functions of the thermodynamic forces so the generalized
expressions for the Navier-Stokes, Fick, and Fourier laws are obtained. The constitutive equations for the
diffusion and heat four-fluxes of the mixture are functions of thermal and diffusion generalized forces which
depend on the acceleration and the gravitational potential gradient. While this dependence is of relativistic nature
for the thermal force, this is not the case for the diffusion forces. We show also that the matrix of diffusion
coefficients is symmetric, implying that the thermal-diffusion equals the diffusion-thermal effect, proving the
Onsager reciprocity relations. The entropy four-flow of the mixture is also expressed in terms of the thermal and
diffusion generalized forces, so its dependence on the acceleration and gravitational potential gradient is also
determined.
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I. INTRODUCTION

The relativistic kinetic theory of gases is a subject that
began in 1911 when Jüttner [1] proposed a relativistic version
of the velocity distribution function which corresponds to the
Maxwellian distribution function in the nonrelativistic limiting
case. Later, several more studies were made, but for brevity’s
sake we mention Refs. [2,3], where several applications of the
relativistic kinetic theory of gases are discussed.

This work represents a continuation of the study of the
properties of relativistic gases using the Boltzmann equation
in gravitational fields; this subarea has not yet been studied in
depth. Here we quote some works [4–8] on this topic which
have been recently published.

The method used in this paper to solve the covariant
Boltzmann equation is a combination of the Chapman-Enskog
and Grad methods [9,10]. It consists essentially in doing an
expansion of the distribution function for each species which is
the solution of the Boltzmann equation up to first correction.
Such a procedure is like in the Chapman-Enskog method.
Then we impose that such an expansion must be compatible
with the solution of the Boltzmann equation given by the
method of Grad [11]. In order to keep the linear regime
we truncate the Grad distribution function for each species
up to linear terms of the nonequilibrium pressure, pressure
deviator tensor, diffusion, and heat four-fluxes. Therefore,
we obtain a linearized Boltzmann equation that is written
in terms of the local thermodynamic variables and fluxes:
diffusion, heat, nonequilibrium pressure, and pressure deviator
tensor. The next step is to get from that linearized Boltzmann
equation a set of linear algebraic system for the fluxes. We
generate one equation for each thermodynamic flux through
the multiplication of a dynamical function of the particles by
the linearized Boltzmann equation and then the integration
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over the momentum space. Hence, we find the constitutive
equations for the fluxes in terms of gradients of the local
thermodynamic variables and of a gravitational potential that
arises from the Schwarzschild metric. The laws of Navier-
Stokes for the nonequilibrium pressure and pressure deviator
tensor are obtained as well as the generalized Fourier and Fick
laws for the heat and diffusion four-fluxes.

It will be shown that there appears a generalized diffusion
force that has dependence not only on the concentration
and pressure gradients but also on a contribution of the
four-acceleration and the gravitational potential gradient. The
contributions of four-acceleration and potential gradient also
appear as combined forces for the heat flux and they were
analyzed separately by Eckart [12] and Tolman [13,14]. In
the case of Eckart, for a relativistic gas in equilibrium and in
the absence of gravitational fields, the temperature gradient
is counterbalanced by an acceleration. On the other hand, in
the case of Tolman for a relativistic gas in equilibrium and
in the absence of an acceleration, the temperature gradient is
counterbalanced by a gravitational potential gradient.

In order to show that the Onsager reciprocity relations hold
we manipulate the constitutive equations for the heat and
diffusion fluxes. The demonstration is general in the sense
that the interaction of the particles are supposed to maintain
the microscopic reversibility principle.

The structure of this paper is as follows. We define the prob-
lem in Sec. II and establish the Boltzmann equation and the
definitions for both the thermodynamic variables and fluxes. In
Sec. III, we use a method of solution of the Boltzmann equation
that is a combination of the Grad and Chapman-Enskog ones,
the solution is truncated up to first order so we obtain linear
expressions. Such a process will lead us to an algebraic system
of equations for the thermodynamic fluxes that, when it is
properly solved, expresses the thermodynamic coefficients for
an arbitrary intermolecular interaction. In Sec. IV, we show
that the Onsager reciprocity relations hold for an arbitrary
intermolecular interaction. Furthermore, we show that the laws
of Fourier and Fick are expressed in terms of generalized
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thermal and diffusion forces in the presence of gravitational
fields. To give a more general representation, we show in Sec. V
that the entropy four-flow of the mixture is a function of the
generalized thermal and diffusion forces. Section VI is devoted
to the calculation of the constitutive equation for a relativistic
Newtonian fluid, i.e., the Navier-Stokes law. Ultimately, in
Sec. VII, we discuss the obtained results.

II. BACKGROUND

In this section we will define the problem of an r-species
nonreacting mixture in a Riemannian space with metric tensor
gμν . The particles are supposed not to have internal degrees
of freedom. Each of these particles of the constituent a =
1, . . . ,r have mass ma and are characterized by the space-time
coordinates xμ = (ct,x) and the momentum p

μ
a = (p0

a,pa).
The mass-shell condition, i.e., gμνp

μ
a pν

a = m2
ac

2, implies the
following relationships for the contravariant and covariant
temporal components:

p0
a = (

pa0 − g0ip
i
a

)
/g00,

(1)

pa0 =
√

g00m2
ac

2 + (g0ig0j − g00gij )pi
ap

j
a ,

respectively. The analysis is developed within the tenets of the
general relativity, and we adopt the Schwarzschild metric gμν

in which the line element reads [15]:

ds2 =
(

1 − 2GM

c2R

)
(dx0)2 − 1(

1 − 2GM
c2R

)dR2

−R2(dθ2 + sin2 θdψ2), (2)

in terms of the spherical coordinates {R,θ,ψ,ct = x0}. Above,
M is the total mass of the spherical source and G is
the gravitational constant. Here we shall use the isotropic
Schwarzschild metric, which reads

ds2 = g0(r)(dx0)2 − g1(r)δij dxidxj , (3)

g0(r) =
(
1 − GM

2c2r

)2(
1 + GM

2c2r

)2 , g1(r) =
(

1 + GM

2c2r

)4

. (4)

Along the calculation we will use a relativistic parameter ζa =
mac

2

kT
, where c is the speed of light, k the Boltzmann constant,

and T the local temperature, assumed as an invariant. This
parameter is convenient because it tell us how relativistic is the
system, for example, ζa � 1 corresponds to a nonrelativistic
limit. On the other hand, ζa � 1 belongs to an ultrarelativistic
limit.

The most fundamental equation in the kinetic theory is the
the Boltzmann equation; such an equation can be obtained
with two hypotheses as a basis. The first one is that particles
collide elastically and only collisions of pairs are taken into
account. The second one implies a description of the system
with a one-particle distribution function, whereby collisions
represent a process that does not depend on what has occurred
in the past with the particles. This is also known in the literature
as the molecular chaos hypothesis. In our case, the Boltzmann

equation reads [3]:

pμ
a

∂fa

∂xμ
− �i

μνp
μ
a pν

a

∂fa

∂pi
a

=
r∑

b=1

∫
(f ′

af
′
b − fafb)Fbaσab d


√−g
d3pb

pb0
, (5)

for the a species. Here the Latin subindex denotes the species;
note that we have one equation with the same structure of (5)
for each component of the mixture a = 1, . . . ,r . The distri-
bution function fa(xμ,p

μ
a ) has a statistical meaning; indeed,

the quantity fa(xμ,p
μ
a )d3x d3pa at time t is the number of

particles of the constituent a in the volume element between x,
x + d3x and pa , pa + d3pa . In Eq. (5) the Christoffel symbols
�i

μν and the invariant flux Fba =
√

(pμ
a pbμ)2 − m2

am
2
bc

4 also
appear, which plays the role of the relative velocity of the
nonrelativistic Boltzmann equation. We have also the invariant
differential elastic cross section σabd
 for collisions of species
a and b, where d
 is the corresponding solid angle element.
Integrals are made with the invariant differential element√−g

d3pb

pb0
, where

√−g = det[gμν]. In Eq. (5), quantities
denoted with a prime are evaluated with the momentum of the
particles after a binary collision occurs, i.e., f ′

a ≡ f (x,p′
a,t)

and so on. The binary collision is characterized by the
energy-momentum conservation law p

μ
a + p

μ

b = p
′μ
a + p

′μ
b .

Without solving Boltzmann’s equation we can obtain two
important results. The first arises from the H-theorem and
the definition of the thermodynamic variables. A situation of
local equilibrium means that the entropy four-flow production
[see Eq. (29)] vanishes at equilibrium. The solution of the
collisional term of the Boltzmann equation—when it is equal
to zero—is the well-known local equilibrium distribution
function, which reads

f (0)
a = na

4πkT m2
acK2(ζa)

exp

(
− Uμp

μ
a

kT

)
. (6)

Here na is the local number of particles of species a, and the
modified Bessel function of second kind is represented by

Kn(ζ ) =
(

ζ

2

)n
�(1/2)

�(n + 1/2)

∫ ∞

1
e−ζy(y2 − 1)n−1/2 dy, (7)

and Uμ—with UμUμ = c2—is the hydrodynamical four-
velocity. The set of local hydrodynamic variables that de-
scribes the local equilibrium is {n1, . . . ,nr ,Uμ,T }. For the
calculations that will be performed, it is convenient to evaluate
Eq. (6) in a comoving frame, that is, Uμ = (c/

√
g0,0), yielding

f (0)
a = na

4πkT m2
acK2(ζa)

exp

(
− c

√
m2

ac
2 + g1|pa|2
kT

)
. (8)

The second important result that arises from the Boltzmann
equation is the obtention of the balance equations, and for this
purpose we proceed as follows. We multiply the Boltzmann
equation (5) by the collisional invariants, that is, microscopic
dynamical quantities that are conserved between collisions,
i.e., �a + �b = � ′

a + � ′
b, and integrate the resulting equation

over
√−g

d3pa

pa0
. The collisional invariants �a can take the

value of the mass and the energy momentum of the colliding
particles. To obtain the particle four-flow balance equation for
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the a species we take �a = c and integrate; this process leads
to the conservation law

Nμ
a;μ = 0. (9)

Here the semicolon denotes a covariant derivative and we have
defined

Nμ
a = c

∫
pμ

a fa

√−g
d3pa

pa0
(10)

as the particle four-flow of species a. We now introduce a
general decomposition of N

μ
a in terms of the hydrodynamic

four-velocity as

Nμ
a = naU

μ + Jμ
a , where na = N

μ
a Uμ

c2
(11)

denotes the partial particle number density. The quantity Jμ
a is

a spacelike vector defined as

Jμ
a = μ

ν c

∫
pν

afa

d3pa

pa0
(12)

and holds the property Jμ
a Uμ = 0. Above, we have introduced

the projector

μν = gμν − 1

c2
UμUν, (13)

which has the property μνUν = 0. Equation (12) is the
corresponding diffusion four-flux of species a of the mixture
and by taking the sum of (11) over all the components we
easily note that

Nμ =
r∑

a=1

Nμ
a = nUμ, n =

r∑
a=1

na,

r∑
a=1

Jμ
a = 0, (14)

where the last equation implies that there exist only (r − 1)
partial diffusion fluxes that are linearly independent for a
mixture of r constituents.

On the other hand, to obtain the balance equation for the
energy momentum of the a species defined by

T μν
a = c

∫
pμ

a pν
afa

√−g
d3pa

pa0
, (15)

we multiply the Boltzmann equation (5) by the collisional
invariant �a = cp

μ
a and integrate the resulting equation over√−g

d3pa

pa0
. This process yields

T μν
a;ν = P μ

a , (16)

where the production term P
μ
a is given by

P μ
a =

r∑
b=1

c

∫ (
p′μ

a − pμ
a

)
fafbFbaσabd


×√−g
d3pb

pb0

√−g
d3pa

pa0
. (17)

Note that this equation does not represent a conservation law,
but if we sum Eq. (16) over all species we obtain

T μν
;ν =

r∑
a=1

P μ
a = 0, (18)

which represents a conservation equation for the energy-
momentum tensor of the mixture T μν = ∑r

a=1 T
μν
a . By fol-

lowing the decomposition of Eckart (see, e.g., Refs. [16–18]),
the energy-momentum tensor of the a species can be written
as

T μν
a = naea

c2
UμUν+ 1

c2
Uμ

(
qν

a+haJν
a

)+ 1

c2
Uν

(
qμ

a + haJμ
a

)
− (pa + �a)μν + p〈μν〉

a , (19)

where several definitions are to be made. First we can list the
local equilibrium quantities: energy per particle ea , hydrostatic
pressure pa , and the enthalpy per particle ha = ea + pa/na .
Next, the nonequilibrium quantities are dynamical pressure
�a , heat four-flux qμ

a , and pressure deviator tensor p〈μν〉
a . They

are given in terms of the following projections of the energy-
momentum tensor of the a species:

qμ
a + haJμ

a = μ
σ T σν

a Uν, ea = 1

nac2
UμT μν

a Uν, (20)

p〈μν〉
a = (

μ
σ ν

τ − 1
3μνστ

)
T στ

a , (21)

pa + �a = − 1
3μνT

μν
a . (22)

The corresponding quantities for the mixture are

e =
r∑

a=1

na

n
ea, p =

r∑
a=1

pa, � =
r∑

a=1

�a, (23)

h =
r∑

a=1

na

n
ha, p〈μν〉 =

r∑
a=1

p〈μν〉
a , (24)

qμ =
r∑

a=1

(
qμ

a + haJμ
a

)
, (25)

so the energy-momentum tensor of the mixture is written as

T μν = ne
c2

UμUν + 1

c2
(Uμqν + Uνqμ)

− (p + � )μν + p〈μν〉. (26)

Note that the heat four-flux qμ Eq. (25) of the mixture has two
contributions; this is in accordance with the linear irreversible
thermodynamics [19], where one term is related with the partial
heat flux and another with the transport of energy driven by
diffusion.

Another quantity which is important in the analysis of
mixtures of relativistic gases is the entropy four-flow of the
mixture Sμ, defined by

Sμ = −kc

r∑
a=1

∫
pμ

a fa ln(bafa)
√−g

d3pa

pa0
, (27)

where ba is a constant which has inverse units of fa . Its
balance equation is obtained through the multiplication of
the Boltzmann equation (5) by −kc ln(bafa), the subsequent
integration over

√−g
d3pa

pa0
, and the sum over all species,
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yielding

Sμ
;μ = σ � 0, (28)

σ = ck

4

r∑
a=1

r∑
b=1

∫
fafb ln

f ′
af

′
b

fafb

(
f ′

af
′
b

fafb

− 1

)

×Fbaσabd

√−g

d3pb

pb0

√−g
d3pa

pa0
. (29)

The quantity σ is the entropy four-flow production of the
mixture, which is always positive semidefinite, thanks to the
relationship (x − 1) ln x � 0 valid ∀x > 0. The entropy four-
flow of the mixture is decomposed according to:

Sμ = nsUμ + �μ, s = 1

c2n
SμUμ, �μ = μ

ν Sν, (30)

where the quantity s is identified as the entropy per particle of
the mixture and �μ its entropy flux. The entropy per particle
of species a is given by

sa = −kUμ

cna

∫
pμ

a fa ln(bafa)
√−g

d3pa

pa0
, (31)

so we have ns = ∑r
a=1 nasa .

In the kinetic theory of relativistic gases there exist two
decompositions that are often used: the Eckart and the Landau-
Lifshitz (see, e.g., Refs. [2,3]). The difference between the
decompositions is that the heat flux appears in the particle
four-flow but not in the energy-momentum tensor in the
Landau-Lifshitz decomposition, contrary to the Eckart one.
One can take both decompositions for the determination of the
constitutive equations and the results are the same. However,
there are situations where one should apply only one of the
decompositions, which is in the case of using BGK models
of the Boltzmann collision operator. The model equations of
the Boltzmann equation normally considered in the relativistic
kinetic theory are due to Marle and Anderson and Witting
(see, e.g., Refs. [2,3]). For the Marle model one should take
the Eckart decomposition, while for the Anderson and Witting
model the Landau-Lifshitz decomposition should be used.

The main problem in the kinetic theory is to find a solution
of the Boltzmann equation (5), because, as we have seen, all
the above definitions can be evaluated by integrating functions
that involve fa(xμ,p

μ
a ). The equilibrium quantities can be

evaluated with the local equilibrium distribution function (6)
and read:

ea = mac
2

(
Ga − 1

ζa

)
, (32)

pa = nakT , ha = mac
2Ga, (33)

sa = k

{
ln

[
4πm2

ackT K2(ζa)

naba

]
+ ζaGa − 1

}
. (34)

The chemical potential of species a is introduced through the
Gibbs function per particle, namely μa = ea − T sa + pa/na ,
and by taking into account the above expressions we get

μa = kT ln
enaba

4πm2
ackT K2(ζa)

. (35)

In next sections, we will use a method that allows us to
obtain expressions for the diffusion fluxes Jμ

a , heat flux qμ,
nonequilibrium pressure � , pressure deviator tensor p〈μν〉, and
entropy flux �μ. Furthermore, we will show the dependence
of Jμ

a and qμ in terms of the gravitational potential and
demonstrate the validity of the Onsager reciprocity relations.

III. COMBINED CHAPMAN-ENSKOG
AND GRAD METHOD

In this section we will use a method to extract thermo-
dynamic information from the Boltzmann equation [9,10]
that combines the features of the Chapman-Enskog [20] and
Grad’s moments methods [11]. This method has mainly two
advantages. The first is that we do not need a solution of the
integrodifferential Boltzmann equation as in the Chapman-
Enskog method. The second is that we do not need the field
equations for the moments as in the Grad method.

First, we describe how the moment Grad method is
constructed. The central idea is to expand fa(xμ,p

μ
a ) around

the local equilibrium distribution function in a series of an
orthonormal set. In this case, we have 13r + 1 unknown
variables (fields) that are described with the quantities
{na,U

μ,Jμ
a ,T ,�a,q

μ
a ,p〈μν〉

a } (see Ref. [11]). Such an expansion
reads

fa = f (0)
a

[
1 + Aμ

a paμ + Aμν
a paμpaν

]
, (36)

where f (0)
a is the local equilibrium distribution function

(Jüttner distribution) described by Eq. (6). In Eq. (36) the
unknown tensorial coefficients {Aμ

a ,Aμν
a } are calculated by

solving an algebraic system constructed with the help of
the definitions of the particle four-flow N

μ
a and the energy-

momentum tensor T
μν
a . The details of such a calculation are

long and it is not necessary to do them here; they can be
reviewed in Refs. [3,21]. As a result of such developments
the distribution function fa will depend on linear terms of the
thermodynamic fluxes, namely

fa = f (0)
a

{
1 − Jaμ

pa

pμ
a + qaμ

T pa

p
μ
a

ca
p

[
ζaGa − Uνp

ν
a

kT

]
+ pa〈μν〉

2pa

ζa

maha

pμ
a pν

a

+ �a

pa

∂ ln ζa

∂ ln ca
v

[
UμUνp

μ
a pν

a

k2T 2
− 3

(
ca

p + ha/T
)

ca
v

Uμp
μ
a

kT
− ca

vζ
2
a + 3

(
ca

p − h2
a/kT 2

)
ca

v

]}
. (37)

Here we have introduced the abbreviation Ga = K3(ζa)/K2(ζa) and the partial specific heats per particle ca
v = k(ζ 2

a + 5Gaζa −
G2

aζ
2
a − 1) and ca

p = ca
v + k at constant volume and pressure, respectively. Then, following the combined Chapman-Enskog–Grad

method [9], the expansion (37) must be compatible with the truncated Chapman-Enskog series up to first order, that is,
fa = f (0)

a (1 + φa), where φa is the first correction to the distribution function f (0)
a .
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Now we can proceed to linearize the Boltzmann equation as follows. We substitute fa = f (0)
a (1 + φa) into the left-hand

side of the Boltzmann equation (5) and keep the linear terms. This process is technically the same as that developed in the
Chapman-Enskog method. We also use the so-called functional hypothesis, namely fa = fa(xμ,p

μ
a |na,U

μ,T ), leading to

pμ
a

∂f (0)
a

∂xμ
− �i

μνp
μ
a pμ

a

∂f (0)
a

∂pμ
= f (0)

a

{
p

μ
a

na

∂na

∂xμ
+ p

μ
a

T

[
1 − ζaGa + pλ

aUλ

kT

]
∂T

∂xμ
− 1

kT
pμ

a pi
a

∂Ui

∂xμ

− c2

2kT

pk
ap

i
ap

j
aδij δkl

Uτpaτ

dg1

dr

xl

r
+ c2

kT
g1�

i
μν

p
μ
a pν

ap
j
aδij

Uτpaτ

}
. (38)

On the other hand, we substitute the Grad function Eq. (37) in the collisional term (right-hand side) of the Boltzmann
equation (5) and keep only the linear terms. This process yields

r∑
b=1

∫
(f ′

af
′
b − fafb)Fbaσab d


√−g
d3pb

pb0

= −
r∑

b=1

{
Iab

[
p

μ

b

]Jbμ

pb

+ Iab

[
pμ

a

]Jaμ

pa

− Iab

[
p

μ

b

cb
p

(
ζbGb − Uνp

ν
b

kT

)]
qbμ

T pb

− Iab

[
p

μ
a

ca
p

(
ζaGa − Uνp

ν
a

kT

)]
qaμ

T pa

−Iab

[
ζb

mbhb

p
μ

b pν
b

]
pb〈μν〉
2pb

− Iab

[
ζa

maha

pμ
a pν

a

]
pa〈μν〉
2pa

− Iab

[
∂ ln ζb

∂ ln cb
v

(
UμUνp

μ

b pν
b

k2T 2
− 3

(
cb

p + hb/T
)

cb
v

Uμp
μ

b

kT

)]
�b

pb

−Iab

[
∂ ln ζa

∂ ln ca
v

(
UμUνp

μ
a pν

a

k2T 2
− 3

(
ca

p + ha/T
)

ca
v

Uμp
μ
a

kT

)]
�a

pa

}
. (39)

Here we have introduced the collision operators

Iab[ϕa] =
∫

f (0)
a f

(0)
b (ϕ′

a − ϕa)Fabσabd

√−g

d3pb

pb0
(40)

for any function that depends on the momentum four-vector ϕa(pμ
a ). Note that Eq. (40) implies that we can write for an arbitrary

function ψb(pμ

b ) ∫
ψbIab[ϕa]

√−g
d3pa

pa0
=

∫
ϕaIab[ψb]

√−g
d3pa

pa0
, (41)

thanks to the symmetry properties of the collision operator.
By collecting the above information the linearized Boltzmann equation in the combined Chapman-Enskog–Grad method

becomes

f (0)
a

{
p

μ
a

na

∂na

∂xμ
+ p

μ
a

T

[
1 − ζaGa + pλ

aUλ

kT

]
∂T

∂xμ
− 1

kT
pμ

a pi
a

∂Ui

∂xμ
− c2

2kT

pk
ap

i
ap

j
aδij δkl

Uτpaτ

dg1

dr

xl

r
+ c2

kT
g1�

i
μν

p
μ
a pν

ap
j
aδij

Uτpaτ

}

= −
r∑

b=1

{
Iab

[
p

μ

b

]Jbμ

pb

+ Iab

[
pμ

a

]Jaμ

pa

− Iab

[
p

μ

b

cb
p

(
ζbGb − Uνp

ν
b

kT

)]
qbμ

T pb

− Iab

[
p

μ
a

ca
p

(
ζaGa − Uνp

ν
a

kT

)]
qaμ

T pa

−Iab

[
ζb

mbhb

p
μ

b pν
b

]
pb〈μν〉
2pb

− Iab

[
ζa

maha

pμ
a pν

a

]
pa〈μν〉
2pa

− Iab

[
∂ ln ζb

∂ ln cb
v

(
UμUνp

μ

b pν
b

k2T 2
− 3

(
cb

p + hb/T
)

cb
v

Uμp
μ

b

kT

)]
�b

pb

−Iab

[
∂ ln ζa

∂ ln ca
v

(
UμUνp

μ
a pν

a

k2T 2
− 3

(
ca

p + ha/T
)

ca
v

Uμp
μ
a

kT

)]
�a

pa

}
, (42)

due to (38) and (39).
In the next sections we will use (42) in order to determine the constitutive equations for the diffusion fluxes Jμ

a , heat flux qμ,
nonequilibrium pressure � , and pressure deviator tensor p〈μν〉.

IV. FICK AND FOURIER LAWS

Now we will obtain a system of linear equations for the
determination of the the diffusion fluxes Jμ

a and the heat flux
of the mixture qμ. The solution of such a system will represent
the form of the linear fluxes in terms of the thermodynamic

forces. The integral functions for the transport coefficients and
therefore the Onsager reciprocity relations will be analyzed in
the next subsection.

To obtain the first one of the looked set of equations, we
multiply Eq. (42) by cμ

ν pν
a/na and integrate over

√−g
d3pa

pa0
.
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The integrals used for this process can be consulted in the
appendix. The resulting equation is

− 1

na

∇μpa + ha

c2
μi

[
Uν ∂Ui

∂xν
− 1

1 − �2/4c4

∂�

∂xi

]

=
r∑

b=1

(
AabJμ

b − Fabqμ

b

)
, (43)

where ∇μ = μν∂ν is the gradient operator and � = −GM
r

is
the gravitational potential. In Eq. (43) we have introduced the
matrices Aab and Fab. We can split Aab for different indices
{a,b},

Aab = − cμν

3nanbkT

∫
paμIab[pbν]

√−g
d3pa

pa0
, a �= b,

(44)
and for equal indices {a,b = a},

Aaa = − cμν

3n2
akT

[ r∑
b=1

∫
paμIab[paν]

+
∫

paμIaa[paν]

]√−g
d3pa

pa0
. (45)

The matrix Fab introduced in Eq. (43) is written by doing the
same splitting, and for unlike indices {a,b} we have

Fab = − cμν

3nanbkT 2

∫
paμIab

[
ζb

cb
p

(
Gb − Uτp

τ
b

mbc2

)
pbν

]

×√−g
d3pa

pa0
, a �= b, (46)

and for like indices {a,b = a},

Faa = − cμν

3n2
akT 2

{
r∑

b=1

∫
paμIab

[
ζa

ca
p

(
Ga − Uτp

τ
a

mac2

)
paν

]

+
∫

paμIaa

[
ζa

ca
p

(
Ga − Uτp

τ
a

mac2

)
paν

]}
√−g

d3pa

pa0
.

(47)

Next we look for a second equation which is independent
from Eq. (43). Hence, we multiply the linearized Boltzmann
equation (42) by μ

ν
cζa

ca
pnaT

(Ga − Uσ pσ
a

mac2 )pν
a and integrate over

√−g
d3pa

pa0
; for this long process we use also the integrals that

appear in the appendix. The result becomes

1

T

{
∇μT − T

c2
μi

[
Uν ∂Ui

∂xν
− 1

1 − �2/4c4

∂�

∂xi

]}

=
r∑

b=1

(
FbaJμ

b − Habqμ

b

)
, (48)

where another matrix Hab is defined. As with the others
operators, we split Hab into the part for unlike indices {a,b},

Hab = − cμν

3nanbkT 3

∫
ζa

ca
p

(
Ga − Uσpσ

a

mac2

)
paμIab

×
[

ζb

cb
p

(
Gb−Uεp

ε
b

mbc2

)
pbν

]√−g
d3pa

pa0
, a �= b, (49)

and the corresponding for same indices,

Haa = − cμν

3n2
akT 3

{ r∑
b=1

∫
ζa

ca
p

(
Ga − Uσpσ

a

mac2

)
paμ

× Iab

[
ζa

ca
p

(
Ga − Uεp

ε
a

mac2

)
paν

]
+

∫
ζa

ca
p

(
Ga − Uσpσ

a

mac2

)
paμ

× Iaa

[
ζa

ca
p

(
Ga − Uεp

ε
a

mac2

)
paν

]}√−g
d3pa

pa0
. (50)

Hence, we have obtained the desired system of algebraic
equations, namely (43) and (48), which are an independent set
of linear equations for the determination of the diffusion Jμ

a

and heat qμ
a fluxes.

A. Onsager reciprocity relations

In this section we show that the Onsager reciprocity
relations hold for the system under consideration. The idea is to
verify if the matrix associated with the diffusion coefficients is
symmetric and therefore the so-called cross effects are equal
as it is described from one of the hypotheses of the linear
irreversible thermodynamics [19]. One cross effect for our
system is the contribution to diffusion due to the temperature
gradient; this is often called the “Soret” effect. The other cross
effect is the contribution to the heat flux due to the chemical
potential gradient or a concentration gradient. When it is due to
the latter, it is called the “Dufour” effect. This demonstration
is general in the sense that no interaction between the particles
is established, but, of course, the microscopic reversibility
principle is called for the collisional term of the Boltzmann
equation (5).

Let us now write the thermodynamic forces in order to
identify clearly the Soret and Dufour effects in terms of the
temperature and chemical potential gradients.

First, we define a generalized thermal force as

∇μT = ∇μT − T

c2
μi

[
Uν ∂Ui

∂xν
− 1

1 − �2/4c4

∂�

∂xi

]
, (51)

where the first term contains a temperature gradient
while the second one—whose nature is strictly relativistic due
to the factor T/c2—is proportional to the four-acceleration
and the gravitational potential gradient. The term due to the
four-acceleration was proposed by Eckart [12] while the one
due to the gravitational potential gradient was proposed by
Tolman [13,14]. If we think in a relativistic gas in equilibrium,
we can conjecture the following two aspects: (i) in the absence
of a gravitational potential gradient, the temperature gradient
must be counterbalanced by an acceleration, and (ii) in the
absence of an acceleration, the temperature gradient must be
counterbalanced by a gravitational potential gradient. Now
Eq. (48) can be written in terms of the thermal force as

1

T
∇μT =

r−1∑
b=1

(Fba − Fra)Jμ

b −
r∑

b=1

Habqμ

b . (52)
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Above we have considered the constraint
∑r

a=1 Jμ
a = 0 which

implies that there exist only r − 1 linearly independent
diffusion fluxes.

Next we recall that the chemical potential of species a is
defined through the Gibbs function per particle (μa = ea −
T sa + pa/na). So the following important relationship holds
for its gradients:

∇μ

(
μa

T

)
= 1

naT
∇μpa − ha

T 2
∇μT . (53)

Therefore, the substitution of Eq. (53) into (43) yields

−T ∇μ

(
μa

T

)
− ha

T
∇μT =

r∑
b=1

(
AabJμ

b − Fabqμ

b

)
. (54)

Moreover, by considering that there exist r − 1 independent
diffusion fluxes, we can take the rth component of Eq. (54)
and subtract it from (54) itself, yielding

−T ∇μ

(
μa − μr

T

)
− ha − hr

T
∇μT

=
r−1∑
b=1

(Aab − Arb − Aar + Arr )Jμ

b −
r∑

b=1

(Fab − Frb)qμ

b .

(55)

Now we can proceed to solve the system of linear equations
formed by Eqs. (52) and (55). First we solve Eq. (52) for qμ

b ,
yielding

qμ
c =

r∑
d=1

(H−1)cd

{
− 1

T
∇μT

}

+
r∑

d=1

r−1∑
b=1

(H−1)cd (Fbd − Frd )Jμ

b , (56)

where (H−1)cd is the inverse matrix of Hcd so (H−1)cdHda =
δca is the identity matrix. Then we insert Eq. (56) into Eq. (55)
and solve for Jμ

a ,

Jμ
a = −T

r−1∑
b=1

D′
ab∇μ

(
μb − μr

T

)
− Da

T
∇μT . (57)

Here we identify the above equation as the generalized Fick
law, where the coefficients D′

ab and Da are related with the
diffusion and thermal-diffusion (Soret) effects, respectively.
The inverse of the diffusion matrix reads

(D′−1)ab = Aab − Arb − Aar + Arr

−
r∑

c=1

r∑
d=1

(Fac − Frc)(H−1)cd (Fbd − Frd ),

(58)

while the thermal-diffusion coefficients are given by

Da =
r−1∑
b=1

D′
ab

{
hb − hr +

r∑
c=1

r∑
d=1

(Fbc − Frc)(H−1)cd

}
.

(59)
Now we have to obtain the total heat flux as a function of

the temperature and chemical potential gradients. For this end,

we rewrite the total heat four-flux (25) as

qμ =
r∑

a=1

qμ
a +

r−1∑
a=1

(ha − hr )Jμ
a , (60)

and substitute in it the expressions found for qμ
a and Jμ

a , i.e.,
Eqs. (56) and (57). Hence it follows the Fourier law

qμ = −λ′

T
∇μT − T

r−1∑
a=1

D′
a∇μ

(
μa − μr

T

)
, (61)

where we have introduced the thermal conductivity coefficient

λ′ =
r∑

a=1

r∑
b=1

(H−1)ab +
r−1∑
b=1

Db

[
hb − hr

+
r∑

a=1

r∑
c=1

(H−1)ac(Fbc − Frc)

]
, (62)

and the diffusion-thermal coefficient

D′
a =

r−1∑
b=1

D′
ba

[
hb − hr +

r∑
c=1

r∑
d=1

(H−1)cd (Fbd − Frd )

]
.

(63)
Ultimately, we make a close inspection of the matrices Aab,

Fab, and Hab, which are given as functions of the collision
operators Iab. From (44), (46), and (49), we may infer that
only Aab and Hab are symmetric matrices, while Fab is
nonsymmetric. Hence we may conclude from (58) that the
matrix related with the diffusion coefficients are symmetric,
i.e., D′

ab = D′
ba . Moreover, for the coefficients of cross

effects—namely the Soret Da and Dufour D′
a—we note from

the symmetry ofHab andDab that (59) and (63) are equivalent,
soDa = D′

a . The relationshipsD′
ab = D′

ba andDa = D′
a imply

a demonstration of the validity of the Onsager reciprocity
relations. Note that as in another’s demonstrations [22], it
appears to be an ultimate macroscopic effect that can only be
proved because of the symmetries that belong to the collisional
term of the Boltzmann equation (5) given from the H-theorem,
i.e., the microscopic reversibility principle.

B. Thermal and diffusion forces

It is usual in the theory of fluid mixtures to express the
diffusion fluxes and the heat flux of the mixture in terms of the
generalized thermal and diffusion forces. The thermal force for
a relativistic fluid was introduced in the last section [see (51)].
On the other hand, we follow [7] and define the generalized
diffusion force of species a as

dμ
a = ∇μxa + (xa − 1)∇μ ln p − naha − nh

pc2
μj

×
[
Uτ ∂Uj

∂xτ
− 1

1 − �2/4c4

∂�

∂xj

]
, (64)

where xa = pa/p = na/n is the concentration of species a.
We can identify four contributions to the generalized diffusion
force: a concentration gradient, a pressure gradient, a term
proportional to the four-acceleration, and the gradient of the
gravitational potential. Here it is important to emphasize that
contrary to what happens with the thermal force, the terms with
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the four-acceleration and gradient of gravitational potential are
not of a strictly relativistic nature. Indeed, (naha − nh)/c2p =
(namaGa − ∑r

b=1 nbmbGb)/p and Gb → 1 for ζb � 1. This
equation has a very important feature because it represents the
generalization of the diffusion force originally written for the
nonrelativistic case [20,23]. More discussions about this point
can be found in Ref. [7]. Here as in the nonrelativistic case,
exist only r − 1 linearly independent generalized diffusion
forces due to the relationship

∑r
a=1 dμ

a = 0.
Now we can proceed to express the vectorial fluxes in terms

of the generalized thermal and diffusive forces. To do so, we
use the momentum density balance equation (see Ref. [7])

∂p
∂xi

− nh
c2

[
Uν ∂Ui

∂xν
− 1

1 − �2/4c4

∂�

∂xi

]
= 0, (65)

and the gradient of the chemical potential written as

−T ∇μ

(
μa − μr

T

)
= − p

na

(∇μxa + xa∇μ ln p)

+ p
nr

(∇μxr + xr∇μ ln p) + ha − hr

T
∇μT . (66)

After some rearrangements, the expressions for (57) and (61)
become

Jμ
a =

r−1∑
b=1

D̃abdμ

b + D̃a

T
∇μT , (67)

qμ = λ̃

T
∇μT +

r−1∑
a=1

D̃′
adμ

a . (68)

In these representations for the generalized thermal and
diffusion forces, the transport coefficients read:

D̃ab = −
r−1∑
c=1

D′
ac

p
nb

(
δbc + nb

nr

)
, (69)

D̃a = −
r−1∑
b=1

r∑
c=1

r∑
d=1

D′
ab(Fbc − Frc)(H−1)cd , (70)

λ̃ = −
r∑

a=1

r∑
b=1

[
(H−1)ab+

r−1∑
c=1

Dc(H−1)ab(Fcb−Frb)

]
, (71)

D̃′
a = −

r−1∑
b=1

Da

p
na

(
δab + na

nr

)
. (72)

At this point it is worth pausing to make two comments.
First, by looking the expression for the generalized diffusion
force Eq. (64), we note that it depends on (i) a concentration
gradient, which tends to reduce the nonhomogeneity of the
mixture; (ii) a pressure gradient, where heavy particles tend
to diffuse to places with high pressures, e.g., in centrifuges;
(iii) an acceleration, which acts on different masses; and (iv)
a gravitational potential gradient. Second, let us suppose a
mixture in which the generalized thermal force vanishes,
the pressure is constant, and there is no acceleration. We

can think also that there is no diffusive flux, implying a
pseudoequilibrium state. Such a situation is very interesting
because of its physical implications, that is, the gradient of
concentration has to be counterbalanced by the gravitational
potential gradient.

To complete this section, we point out that the thermal
conductivity coefficient λ in a mixture is defined as the ratio
of the heat flux to the temperature gradient. This occurs when
there is no diffusion i.e., when Jμ

a = 0. From (56) and (60),
we have

λ = −
r∑

a=1

r∑
b=1

(H−1)ab. (73)

Furthermore, in the absence of a temperature gradient the con-
stitutive equation for the diffusion fluxes (67) are proportional
only to the generalized diffusion forces and D̃ab is identified
as the matrix of the diffusion coefficients.

V. ENTROPY FLUX OF THE MIXTURE

In this section we will show that the entropy four-flow for
the system under consideration takes the form as predicted
by linear irreversible thermodynamics. According to (27) and
third part of (30) the entropy flux of the mixture is given by

�μ = −kcμ
ν

r∑
a=1

∫
pν

afa ln(bafa)
√−g

d3pa

pa0
. (74)

We substitute the Grad distribution function (37) into the above
expression and linearize in the fluxes Jμ

a ,qμ,�,p〈μν〉. After
integration the entropy flux takes the form

�μ = 1

T

r∑
a=1

qμ
a +

r∑
a=1

saJμ
a = qμ

T
−

r∑
a=1

μa

T
Jμ

a

= qμ

T
−

r−1∑
a=1

μa − μr

T
Jμ

a . (75)

The first equality above shows that the entropy flux of the
mixture is a sum of two terms: One refers to the sum of
all partial heat fluxes divided by the temperature and the
other is a sum of the transport due to diffusion of the partial
entropies per particle. The second equality is well known from
nonrelativistic linear irreversible thermodynamics [19] and is
connected with the transport of the chemical potentials driven
by diffusion.

We can also express the entropy flux of the mixture in terms
of the thermal and diffusion generalized forces by substituting
the representations (67) and (68) into (75), yielding

�μ = − L
T 2

∇μT −
r−1∑
a=1

La

T
dμ

a . (76)

Here the scalar coefficients L and La read

L = λ̃ −
r−1∑
a=1

(μa − μr )D̃a, (77)

La = D̃′
a −

r−1∑
b=1

(μb − μr )D̃ba. (78)
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It is clear from the definitions of the thermal (51) and
diffusive (64) forces that the entropy flux of the mixture (76)
depends on the temperature, concentration, and pressure
gradients as well as on the acceleration and gravitational
potential gradient.

VI. NAVIER-STOKES LAW

In this section we will calculate the constitutive equations
for a relativistic Newtonian fluid, in other words, the Navier-
Stokes law. This law is usually separated into two equations.
The first one is for the nonequilibrium pressures and it is
associated with the bulk viscosity. The second one is for the
pressure deviator tensor and it is associated with the shear
viscosity.

Let us start with the constitutive equation for the partial
nonequilibrium pressures �a of species a; it is obtained as
follows. We multiply (42) by στp

σ
a pτ

a and integrate over√−g
d3pa

pa0
. For this purpose, we use the integrals from the

appendix. We also eliminate the derivative projections Uμ∂μ

with the help of the partial particle number density and energy
per particle balance equations. Such balance equations cor-
respond to a Eulerian fluid, where nonequilibrium quantities
Jμ

a ,qμ
a �a,p

〈μν〉
a vanish, that is,

Uμ∂μna + na∇μUμ = 0, (79)

naca
vU

μ∂μT + pa∇μUμ = 0. (80)

The result of this process becomes a system of equations for
�b and it reads

−
[

pakT

c3

∂ ln ζa

∂ ln ca
v

]
∇μUμ =

r∑
b=1

Rab�b. (81)

Here we have introduced the matrix Rab, which is defined for
different indices {a,b} as:

Rab = UμUνUσ

c2pb

∫
pμ

a pν
aIab

[
∂ ln ζb

∂ ln cb
v

(
Uτp

τ
b

kT

− 3
(
cb

p + hb/T
)

cb
v

)
pσ

b

kT

]√−g
d3pa

pa0
, a �= b. (82)

Similarly as in previous sections, we write this matrix for equal
indices {a,b = a} as

Raa = UμUνUσ

c2pa

{ r∑
b=1

∫
pμ

a pν
aIab

[
∂ ln ζa

∂ ln ca
v

(
Uτp

τ
a

kT

− 3
(
ca

p + ha/T
)

ca
v

)
pσ

a

kT

]
+

∫
pμ

a pν
aIaa

[
∂ ln ζa

∂ ln ca
v

(
Uτp

τ
a

kT

− 3
(
ca

p + ha/T
)

ca
v

)
pσ

a

kT

]}√−g
d3pa

pa0
. (83)

The solution of the linear system of Eq. (81) for the partial
nonequilibrium pressures �a is given by

�a = −
[

r∑
b=1

(R−1)ab

pbkT

c3

∂ ln ζb

∂ ln cb
v

]
∇μUμ, (84)

where (R−1)ab denotes the inverse of the matrix Rab. The
constitutive equation for the nonequilibrium pressure of the
mixture is obtained from the sum of (84) over all constituents
according to third part of (23). Hence it follows that

� = −η∇μUμ, (85)

where the bulk viscosity coefficient of the mixture reads

η =
r∑

a,b=1

(R−1)ab

pbkT

c3

∂ ln ζb

∂ ln cb
v

. (86)

For the second equation that conforms the Navier-Stokes
law, which is the pressure deviator constitutive one, we proceed
in an analogous manner. We take the product of (42) with
[(μ

σ ν)
τ − στ

μν/3]pσ
a pτ

a and integrate over
√−g

d3pa

pa0
.

This process leads to the following linear system of equations
for the partial pressure deviator tensors p〈μν〉

b :

2∇〈μUν〉 =
r∑

b=1

Kabp〈μν〉
b . (87)

In this last equation we have introduced the following
abbreviation for the symmetric and traceless four-velocity
gradient:

∇〈μUν〉 =
(

μ
σ ν

τ + ν
σμ

τ

2
− μνστ

3

)
∂σUτ . (88)

Equation (87) also includes the definition of the matrix Kab

which reads

Kab = −c3μ〈στ 〉ν
10pahapb

∫
pσ

a pτ
aIab

[
ζb

mbhb

p
μ

b pν
b

]
×√−g

d3pa

pa0
, a �= b (89)

Kaa = −c3μ〈στ 〉ν
10pahapa

{ r∑
b=1

∫
pσ

a pτ
aIab

[
ζa

maha

pμ
a pν

a

]

+
∫

pσ
a pτ

aIaa

[
ζa

maha

pμ
a pν

a

]}√−g
d3pa

pa0
. (90)

From the solution of the linear system of Eq. (87) for p〈μν〉
b

and from the relationship p〈μν〉 = ∑r
b=1 p〈μν〉

b , the constitutive
equation for the pressure deviator tensor of the mixture is as
follows:

p〈μν〉 = 2μ∇〈μUν〉. (91)

Here the shear viscosity coefficient of the mixture is given by

μ =
r∑

a,b=1

(K−1)ab. (92)

Equations (85) and (91) are the constitutive equations of a
relativistic Newtonian fluid, also known as the Navier-Stokes
constitutive equations.

VII. CONCLUSIONS

In this work we have studied a mixture of r species of
relativistic gases in the presence of gravitational fields. The
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curvature of the space-time was introduced by incorporating
the Christoffel symbols to the Boltzmann equation. We used
the Schwarzschild metric written in isotropic coordinates. A
linearized Boltzmann equation was obtained by following a
methodology which combines the features of the Chapman-
Enskog and Grad methods.

By applying the Chapman-Enskog–Grad combined method
to the Boltzmann equation we obtained a linear expression
[Eq. (42)] which was used for the determination of the
thermodynamic fluxes as functions of the thermodynamic
forces. The Navier-Stokes law was derived as well as the
generalized of Fourier and Fick laws.

The proof of the validity of the Onsager reciprocity
relations was at last possible because of the symmetries of the
collisional term of the Boltzmann equation. These symmetries
are those associated with the H-theorem and the microscopic
reversibility principle. This reinforces the idea that the Onsager
reciprocity relations are the macroscopic manifestation of the
microscopic symmetries of the trajectories of the particles that
conform the gas.

We have introduced the thermal force

∇μT = ∇μT − T

c2
μi

[
Uν ∂Ui

∂xν
− 1

1 − �2/4c4

∂�

∂xi

]
,

(93)

which is a very eloquent result. Indeed, Eq. (93) turns to
be just the gradient of the temperature in the nonrelativistic
limit, i.e., ∇μT because the factor T/c2 of the second term
is of relativistic order. The inclusion of the acceleration term
into the thermal force was proposed by Eckart [12] while the
one relating the gravitational potential gradient was proposed
by Tolman [13,14]. Here these terms appear as a natural
consequence of the solution of the relativistic Boltzmann
equation in gravitational fields.

On the other hand, we have identified the generalized
diffusion force with

dμ
a = ∇μxa + (xa − 1) ∇μ ln p

− naha − nh
pc2

μj

[
Uτ ∂Uj

∂xτ
− 1

1 − �2/4c4

∂�

∂xj

]
. (94)

This is a new and interesting result because the third term—
which is related with the four-acceleration and the gradient
of the gravitational potential—does not go to zero in the
nonrelativistic limiting case as the thermal force. As was
pointed out in Ref. [7], the diffusion force that came out from a

nonrelativistic kinetic theory [20,23] has a similar expression
to (94). It depends on the concentration and pressure gradients,
but it has a term depending on the forces which act on the
particle of different species, and such a term vanishes when
only gravitational forces are acting on the particles.

Another result obtained is the entropy flux of the relativistic
mixture through the use of Grad’s distribution function, which
has a similar expression as the one of nonrelativistic linear
irreversible thermodynamics [19]. Its constitutive equation
was written in terms of the generalized thermal and diffusion
forces, so it depends also on the acceleration and on the
gravitational potential gradient.

Here is the place to discuss two additional issues. The first
one is the validity of the Onsager reciprocity relations for
the case of a relativistic quantum gas. In such a case, the local
equilibrium distribution [which in this work is given by Eq. (6)]
would take a form of the Fermi-Dirac and Bose-Einstein
distributions for a fermionic and bosonic gas, respectively.
Quantum relativistic gases can be described by the relativistic
Uehling-Uhlenbeck equation (see, e.g., Ref. [3]). As we have
pointed out, the validity of Onsager’s reciprocity relations
are deeply associated with the symmetries that belong to
the H-theorem. In the present work, those symmetries are
implied in Eq. (41). Then, to show the validity of the Onsager
reciprocity relations for a quantum system, we need the validity
of the H-theorem, which has been presented in Refs. [24,25],
raising the possibility of exploring that issue. The second
topic is related with Tolman’s law, which has been derived in
Ref. [13] and is valid for all static spherical symmetrical line
elements. In the present work we have used the Schwarzschild
metric, which, according to Birkoff’s theorem, is the most
general spherically symmetrical nonrotating and uncharged
source of the gravitational field.

As a final comment we call attention to the fact that for
the determination of all the transport coefficients, we have to
specify the interaction potential of the relativistic particles
and evaluate the matrices {Rab,Kab,Aab,Fab,Hab}. This
represents work in progress and will be published in the future.
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APPENDIX

1. Table of integrals

For the purposes of this work, it is convenient to do the following unique decomposition of the integral operators:

X
μν

ab =
∫

pμ
a Iab

[
pν

b

] √−g
d3pa

pa0
= 1

3c2

(
4I 1

ab − I 2
ab

)
UμUν + 1

3

(
I 2
ab − I 1

ab

)
gμν, (A1)

X
μνσ

ab =
∫

pμ
a pν

aIab

[
pσ

b

]√−g
d3pa

pa0
= 2

3c3

(
3I 3

ab − I 4
ab

)
UμUνUσ − 1

3c
I 3
abg

μνUσ + 1

3c

(
I 4
ab − I 3

ab

)
(gμσUν + gνσUμ),

(A2)

052139-10



MIXTURES OF RELATIVISTIC GASES IN . . . PHYSICAL REVIEW E 91, 052139 (2015)

X
μνστ

ab =
∫

pμ
a pν

aIab

[
pσ

b pτ
b

]√−g
d3pa

pa0
= 2

15c4

(
24I 5

ab − 12I 6
ab + I 7

ab

)
UμUνUσUτ + 1

15c2

(
I 7
ab − 2I 6

ab − 6I 5
ab

)
× (gμνUσUτ + gστUμUν) + 1

30c2

(
16I 6

ab − 3I 7
ab − 12I 5

ab

)
(gμσUνUτ + gμτUνUσ + gνσUμUτ + gντUμUσ )

+ 1

30

(
3I 7

ab − 6I 6
ab + 2I 5

ab

)
(gμσgντ + gμτgνσ ) + 1

15

(
I 5
ab − I 7

ab + 2I 6
ab

)
gμνgστ , (A3)

where I 1
ab . . . I 7

ab are given by

I 1
ab = UμUν

c2
X

μν

ab , I 2
ab = gμνX

μν

ab , I 3
ab = UμUνUσ

c3
X

μνσ

ab , I 4
ab = gμσUν

c
X

μνσ

ab , (A4)

I 5
ab = UμUνUσUτ

c4
X

μνστ

ab , I 6
ab = gντUμUσ

c2
X

μνστ

ab , I 7
ab = gμσgντX

μνστ

ab . (A5)

Here we list a table of integrals that are used in the previous sections.∫
e− 1

kT
Uλpλ

d3p

p0
= 4πmkT K1(ζ ),

∫
pμe− 1

kT
Uλp

λ d3p

p0
= 4πm2kT K2(ζ )Uμ, (A6)

∫
pμpνe− 1

kT
Uλp

λ d3p

p0
= −4π (mkT )2

[
K2(ζ )gμν − ζK3(ζ )

UμUν

c2

]
, (A7)

∫
pμpνpσ e− 1

kT
Uλp

λ d3p

p0
= −4πm3(kT )2

[
K3(ζ )

3
g(μνUσ ) − ζK4(ζ )

UμUνUσ

c2

]
, (A8)

∫
pμpνpσpτ e− 1

kT
Uλp

λ d3p

p0
= 4π (mkT )3

[
K3(ζ )

3
g(μνgστ ) − ζK4(ζ )

g(μνUσUτ )

6c2
+ ζ 2K5(ζ )

UμUνUσUτ

c4

]
, (A9)

∫
pμpνpσpτpεe− 1

kT
Uλp

λ d3p

p0
= 4πm4(kT )3

[
K4(ζ )

15
U (εgμνgστ ) − ζK5(ζ )

g(μνUσUτUε)

10c2
+ ζ 2K6(ζ )

UμUνUσUτUε

c4

]
,

(A10)

∫
e− 1

kT
Uλpλ

Uτpτ

d3p

p0
= 4πm[K1(ζ ) − Ki1(ζ )],

∫
pμ e− 1

kT
Uλpλ

Uτpτ

d3p

p0
= 4πm2 K1(ζ )

ζ
Uμ, (A11)

∫
pμpν e− 1

kT
Uλpλ

Uτpτ

d3p

p0
= −4πm2kT

3

{
[K2(ζ ) − ζ (K1(ζ ) − Ki1(ζ ))]gμν − 1

c2
[4K2(ζ ) − ζ (K1(ζ ) − Ki1(ζ ))]UμUν

}
, (A12)

∫
pμpνpσ e− 1

kT
Uλpλ

Uτpτ

d3p

p0
= −4πm2k2T 2

c2

{
K2(ζ )

3
g(μνUσ ) − [ζK3(ζ ) + 2K2(ζ )]

UμUνUσ

c2

}
, (A13)

∫
pμpνpσpτ e− 1

kT
Uλpλ

Uθpθ

d3p

p0
= 4πm3k2T 2

15

{
3K3(ζ ) − ζK2(ζ ) + ζ 2[K1(ζ ) − Ki1(ζ )]

3
g(μνgστ )

− 1

6c2
[18K3(ζ ) − ζK2(ζ ) + ζ 2(K1(ζ ) − Ki1(ζ ))]g(μνUσUτ )

+ 3

c4
[48K3(ζ ) + 4ζK2(ζ ) + ζ 2(K1(ζ ) − Ki1(ζ ))]UμUνUσUτ

}
, (A14)

∫
pμpνpσpτpε e− 1

kT
Uλpλ

Uθpθ

d3p

p0
= 4πm6c4

ζ 3

{
K3(ζ )

15
U (μgντ gσε) − 1

10c2
[8K3(ζ ) + ζK2(ζ )]g(μεUνUσUτ )

+ 1

c4
[ζ 2K3(ζ ) + 12ζK2(ζ ) + 80K3(ζ )]UμUνUσUτUε

}
. (A15)
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Above the parenthesis around N indexes indicate a sum over all permutations of these indexes divided by N !. Furthermore,
Kin(ζ ) denotes the integral

Kin(ζ ) =
∫ ∞

0

e−ζ cosh t

coshn t
dt. (A16)

2. Cristoffel symbols for the Schwarzschild isotropic metric

�0
00 = 0, �0

ij = 0, �k
ij = 0 (i �= j �= k), �i

0j = 0, �
i

i j = 1

2g1(r)

dg1(r)

dr
δjk

xk

r
, (A17)

�0
0i = 1

2g0(r)

dg0(r)

dr
δij

xj

r
, �i

00 = 1

2g1(r)

dg0(r)

dr

xi

r
, �

j

i i = − 1

2g1(r)

dg1(r)

dr

xj

r
(i �= j ). (A18)

The underlined indices above are not summed and

dg0(r)

dr
= 2GM

c2r2

(
1 − GM

2c2r

)(
1 + GM

2c2r

)3 ,
dg1(r)

dr
= −2GM

c2r2

(
1 + GM

2c2r

)3

. (A19)
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