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Condensation, demixing, and orientational ordering of magnetic colloidal suspensions
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In this work we study the phase behavior of magnetic particles suspended in a simple nonmagnetic solvent.
Magnetic particles are modelled as spherical particles carrying a three-dimensional, classical Heisenberg spin,
whereas solvent molecules are treated as spherically symmetric Lennard-Jones particles. The binary mixture
of magnetic particles and solvent is studied within the framework of classical density functional theory (DFT).
Within DFT pair correlations are treated at the modified mean-field level at which they are approximated by
orientation dependent Mayer f functions. In the absence of an external magnetic field four generic types of phase
diagrams are observed depending on the concentration of magnetic particles. In this case we observe liquid-liquid
phase coexistence between an orientationally ordered (polarized) and a disordered phase characterized by slightly
different concentrations of magnetic particles. Liquid-liquid phase coexistence is suppressed by an external field
and vanishes completely if the strength of the field is sufficiently large.

DOI: 10.1103/PhysRevE.91.052127 PACS number(s): 05.20.Jj, 64.60.A−, 64.60.fd

I. INTRODUCTION

Understanding the phase behavior of (model) fluids con-
sisting of spherical particles with an internal, vectorial degree
of freedom by theory and computer simulations has attracted
attention for decades and still continues to do so [1,2].
Prominent examples of such systems are “spin” fluids where
the spheres carry a discrete, one-dimensional (1D) [3], a
continuous XY (2D) [2,4], or a classical Heisenberg (3D)
spin [5–9].

These models have been originally introduced as classical
off-lattice counterparts of corresponding (quantum) models
for magnetic solids and have thus raised fundamental interest
in their own right [1,2]. From a physical point of view, the XY
fluid is often considered as a candidate to describe superfluid
transitions in pure 4He [2,10], whereas the Heisenberg
fluid serves as the most basic model to describe magnetic
ordering in fluids [5–9], particularly in undercooled liquid
alloys. Moreover, Heisenberg-like interactions also occur in
models of amphiphilic colloidal spheres with an internal
anisotropy stemming from two different materials (so-called
Janus particles) [11–13]. Further important and well-studied
examples of spherical, anisotropic particles are dipolar (hard
or soft) spheres (see, e.g., Refs. [14–17]), where the spin
is replaced by a point dipole moment yielding a model
ferrocolloid, and variants of these describing more complex
(e.g., capped) magnetic particles [18,19]. Typical methods
of investigation targeting the phase behavior include Monte
Carlo (MC) or molecular dynamics computer simulations
[5,8,13–15], classical density functional theory (DFT) in-
volving (approximate) free-energy functionals [8,16,20], and
integral equation approaches [2,5,6,17].

Many, yet not all, of these studies focused on the one-
component case, either without or in the presence of an
external ordering field. These systems already show rich
phase behavior characterized by gas-liquid transitions and
transitions into orientationally ordered phases, accompanied

by tricritical, critical end, and triple points (see, e.g., Ref. [2]
and references therein). However, more recently also (binary)
mixtures involving anisotropic spheres have been studied,
such as Ising mixtures [21], mixtures of dipolar spheres
characterized by different dipolar coupling strengths [22–26],
as well as mixtures of dipolar and neutral spheres [22,27–
29]. In general, phase separation in mixtures is relevant,
for example, to evaluate the stability of molecular and
colloidal solutions [30] and to understand the interactions
between nanoparticles and macromolecules including novel
phenomena such as Casimir forces [31]. Moreover, knowledge
of the bulk phase behavior of a mixture is crucial to understand
interfacial and confinement effects occurring in the presence
of surfaces. Such effects can be particularly pronounced in
mixtures involving internal degrees of freedom and a resulting
sensitivity to an external field. For example, recent MC
simulations of a mixture of dipolar and hard spheres under
confinement [28] have reported a field-induced inversion of
the composition in the (slitlike) pore, and related instabilities
are seen close to an electrode [27]. Finally, an issue gaining
increasing attention is the theoretical description of colloidal
mixtures in nonequilibrium, e.g., in the context of spinodal
decomposition [32–34], in the presence of sedimentation [35]
or due to a time-dependent field. Again, internal degrees
of freedom here lead to a variety of new behaviors. An
example is the symmetry-breaking pattern formation of a two-
dimensional, phase-separating magnetic mixture in a magnetic
ratchet field [36]. Clearly, a precise understanding of such
nonequilibrium phenomena has as its foundation knowledge
of the equilibrium phase diagram.

Motivated by these issues we present here an equilibrium
DFT of the phase behavior of a three-dimensional, binary
fluid composed of Heisenberg particles carrying a magnetic
(3D) spin and simple spheres. Both zero-field systems and
the case of an external field are considered. The Heisenberg
mixture can be viewed as the most basic model for a
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colloidal suspension including both magnetic particles and
nonmagnetic particles such as polymers. Such mixtures are
promising candidates for the controlled fabrication of patterns
on the micron scale [37]. Following previous work on Janus
fluids [12,13] and one-component Heisenberg fluids [8], our
DFT approach invokes the so-called modified mean field
(MMF) approximation [38] involving a Boltzmann ansatz for
the two-particle correlation functions.

We deliberately consider mixtures with Heisenberg parti-
cles rather than the more complicated case of dipolar mixtures
for the following reasons. First, extensive density functional
studies of dipolar mixtures already exist [25,26], whereas the
simpler case of a Heisenberg mixture has, to our knowledge,
only been studied in two dimensions [33,34] and for a
limited set of parameters. Thus, the global phase behavior
in three dimensions is not known. This somehow contrasts the
importance of the model not only for magnetic-nonmagnetic
mixtures but also for other complex colloids such as mixtures
involving Janus spheres [12,13].

Second, previous studies of one-component Heisenberg
fluids [8] and related systems [12,13] have demonstrated that a
reasonable free-energy approximation such as the MMF-DFT
yield predictions for the ferromagnetic transitions which are
in semiquantitative agreement with corresponding MC results.
This differs in dipolar systems where the long-range direc-
tional dependence (resulting from the coupling of distance and
orientation vectors) of the pair interactions implies profound
challenges for theoretical descriptions. Indeed, many specific
consequences of dipolar interactions such as aggregation at low
densities (see, for example, Ref. [15] for a recent discussion)
and the competition between ordering and frustration at high
densities (see, for example, Refs. [14,39]) are still beyond the
capabilities of standard DFT (and integral-equation) methods.

As an example in the mixture case, recent MC simulations
of dipolar-hard sphere mixtures have shown [29] that the
theoretically predicted demixing transition temperatures are
significantly overestimated. For the (ferromagnetic) off-lattice
Heisenberg system, on the other hand, the interaction is not
only of short range (as modelled, e.g., by a Yukawa- or van-der
Waals-like potential) but also separable; therefore frustration
does not exist. This leads to a much better performance of
mean-field-like DFT approaches for one-component Heisen-
berg fluids [5,8,13], and a similar accuracy can be expected for
mixtures. Having this in mind, the overall goal of our density
functional study is to predict the morphologies of all possible
phase diagrams in the fluid regime.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model potential for our Heisenberg
mixture and Sec. III summarizes key elements of the DFT
theory on which our theoretical work is based. Numerical
results for various mixtures without and in presence of an
external field are presented in Sec. IV. The paper concludes
with a summary of our main findings in Sec. V.

II. MODEL SYSTEM

A. Isotropic interactions

We consider a binary fluid mixture consisting of spheri-
cally symmetric solvent molecules (component 1) and spher-
ical nanoparticles carrying a classical, three-dimensional

(Heisenberg) spin. Particles of both species have a hard core
of the same diameter σ such that the interaction between these
cores is described by the hard-sphere potential function

ϕhs(r12) =
{∞, r12 < σ

0, r12 � σ
, (2.1)

irrespective of the components to which the interacting
molecules pertain. In Eq. (2.1), r12 = |r12| = |r1 − r2| is the
distance between the centers of the hard cores located at r1

and r2, respectively.
For distances r12 � σ , a (generally) anisotropic attraction

is superimposed to the hard-sphere repulsion. It can be cast as

ϕab (r12,ω1,ω2) = ϕiso
ab (r12) + ϕanis (r12,ω1,ω2) δa2δb2, (2.2)

where a,b = 1,2 labels the mixture component and the δ’s
denote Kronecker symbols.

In Eq. (2.2), ωi = (θi,φi) (i = 1,2), where θi and φi are
Euler angles specifying the orientation of uniaxial molecules
in a space-fixed frame of reference. In writing Eq. (2.2) we
assume orientation-dependent interactions (ϕanis) only within
component 2. Focusing exclusively on dispersion interactions
we take ϕiso

ab to be given by the well-known Lennard-Jones
potential, that is,

ϕiso
ab (r12) = 4εab

[(
σ

r12

)12

−
(

σ

r12

)6]
, (2.3)

where εab is the depth of the attractive well associated with
the interaction between molecules of components a and b. To
limit the dimensions of the parameter space of our model we
shall be concerned exclusively with so-called pseudomixtures
for which in general ε11 = ε22 ≡ ε �= ε12.

B. Anisotropic attractions

To describe the interaction between a pair of (Heisenberg)
spins we adopt

ϕanis (r12,ω1,ω2) = −4εεH

(
σ

r12

)6

û (ω1) · û (ω2)

= 4 (4π )3/2

√
3

εεH

(
σ

r12

)6


110 (ω1,ω2,ω) ,

(2.4)

where û (ωi) (i = 1,2) is a unit vector specifying the ori-
entation of molecule i of component 2. The dimensionless
parameter εH introduced in Eq. (2.4) permits us to control the
coupling strength between a pair of interacting spins. Here we
assume εH � 0 corresponding to ferromagnetic coupling. In
Eq. (2.4), ω specifies the orientation of r̂12 = r12/r12.

The quantity 
110 in Eq. (2.4) is a rotational invari-
ant [13,40] which can be cast more explicitly as


110 (ω1,ω2,ω)=− 1

(4π )3/2

1√
3

[Y∗
11 (ω1)Y11 (ω2)

+Y11 (ω1)Y∗
11 (ω2) + Y10 (ω1)Y10 (ω2)]

= û (ω1) · û (ω2) . (2.5)

In Eq. (2.5), Ylm is a spherical harmonic and the asterisk
denotes the complex conjugate [40].
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In addition to the intermolecular interactions we allow for
the presence of a homogeneous (i.e., nonlocal) external field H
capable of interacting with the spins of the magnetic particles.
Hence, we have a one-body external potential,

ϕext (ω2) = −H · û (ω2) = −H cos θ2 = −HP1 (x) , (2.6)

where x ≡ cos θ2 and P1 is the first Legendre polynomial. In
writing Eq. (2.6) we assumed without loss of generality that
the external field, if present, points along the z axis of our
space-fixed frame of reference and H = |H| is the magnitude
of the external field.

III. ELEMENTS OF DENSITY FUNCTIONAL THEORY

A. Modified mean-field grand-potential functional

In this work we employ classical DFT to study the phase
behavior of the model introduced in Sec. II. Hence, we are
seeking minima of the grand potential functional

�[{ρa(r,ω)}] = F[{ρa(r,ω)}]−
∑

a

μa

∫
d r dω ρa(r,ω),

(3.1)

where F is the free-energy functional, μa is the chemical
potential of component a, and ρa (r,ω) is the orientation-
dependent, singlet density of that mixture compound. The
free-energy functional can be written as a sum of five terms,

F = Fid + For + Fext + Fhs + Fex, (3.2)

where we have dropped the arguments to ease the notational
burden.

In Eq. (3.2) the last two terms correspond to the interaction
(excess) part of the free energy. Specifically, Fhs is the contri-
bution from the hard-sphere reference system [see Eq. (3.14)]
and Fex corresponds to the change in free energy between
the single-component hard-sphere reference system and the
fully interacting binary mixture [see Eqs. (2.1) and (2.2)].
Within the so-called MMF approximation [12,22,38,41,42],
where one approximates the pair correlation functions via

gab (r12,ω1,ω2) =
{

0, r12 < σ

exp [−β (ϕhs + ϕab)] , r12 � σ
, (3.3)

it is straightforward to show that [12]

βFex = −1

2

∑
a,b

∫
r12�σ

d r1 d r2

∫
dω1 dω2 ρa (r1,ω1)

×ρb (r2,ω2) fab (r12,ω1,ω2) , (3.4)

where β ≡ 1/kBT (kB is Boltzmann’s constant and T is
temperature). In Eq. (3.4), the quantity fab ≡ exp (−βϕab) − 1
is the Mayer f function for the interaction between a molecular
pair of components a and b. Notice that in the limit of vanishing
density Eq. (3.3) becomes exact.

Because we are interested in binary fluid mixtures without
any positional order we may describe the singlet densities in
Eq. (3.4) by

ρ1 (r,ω) = ρ1

4π
, (3.5)

ρ2 (r,ω) = ρ2α (ω) , (3.6)

where ρa is the partial number density of component a

and α (ω) is the orientation distribution function normalized
according to ∫

dω α (ω) = 1. (3.7)

We note in passing that Eqs. (3.5) and (3.6) remain valid for
H �= 0 on account of the nonlocality of H . Because only
the magnetic particles (component 2) carry a spin, the Mayer
f functions f11 and f12 depend only on r12 such that the
integration over orientations in Eq. (3.4) can be carried out
trivially using Eq. (3.7) and the fact that

∫
dω = 4π . For f22

[see Eq. (2.2)] the resulting free-energy contributions can be
derived as detailed elsewhere [12]. Hence, we eventually arrive
at

βFex

V
= 1

4

∑
a,b

ρaρbu
(ab)
0 + ρ2

2

∞∑
l=1

α2
l u

(22)
l . (3.8)

In Eq. (3.8), V denotes volume,

u
(ab)
l = − (−1)l√

π (2l + 1)3/2

∫ ∞

σ

dr12 r2
12 f

(ab)
ll0 (r12) (3.9)

accounts for the contribution of attractive interactions arising
for r12 � σ between particles of both species, and the
coefficients f

(ab)
ll0 are obtained from an expansion of the

corresponding fab in the basis of rotational invariants [13].
In Eq. (3.9), the expression for l = 0 is related to the
isotropic contribution to ϕab. Because of our choice ε11 =
ε22 = ε, u

(11)
0 = u

(22)
0 = u0 and we shall retain the super-

script only for u
(12)
0 which differs in general from u0 be-

cause ε �= ε12 in binary pseudomixtures. Moreover, because
only the interaction between a pair of magnetic particles
contributes to the second term on the right-hand side of
Eq. (3.8), we shall also drop the superscript on u

(22)
l for l � 1

henceforth.
Members of the set {αl} in Eq. (3.8) are coefficients in-

troduced through the expansion of the orientation distribution
function

2πα (ω) = α (x) = 1

2
+

∞∑
l=1

αlPl (x) (3.10)

in terms of Legendre polynomials Pl . This expansion is
adequate here because of the uniaxial symmetry of ordered
phases. In this expression, α0 = 1

2 is treated separately be-
cause it arises regardless of whether one of the components
of the mixture is orientationally ordered. Notice that the
uniaxial symmetry of ordered phases is preserved even in
the case H �= 0. Because of the orthogonality of Legendre
polynomials (see Eq. (A.9b) of Ref. [40]) we introduce order
parameters

Pl ≡ 2

2l + 1
αl =

∫ 1

−1
dx α (x) Pl (x) , l � 1, (3.11)

to quantify the order in different phases. In disordered phases
these order parameters vanish, whereas in ordered phases they
are nonzero regardless of l.
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The presence of the external field also causes a contribution
to the mixture’s free energy that may be cast as

βFext

V
= −H

∫
d r dω ρ2 (r,ω) ϕext (ω)

= −βHρ2

∫
dx α (x) P1 (x)

= −βHρ2P1, (3.12)

where the bottom line follows from Eqs. (2.6), (3.6),
and (3.11).

Associated with the formation of ordered phases in the
presence or absence of the external field, a loss of orientational
entropy needs to be accounted for when such an orderd phase
forms. Because this entropic loss affects only the magnetic
particles the corresponding free-energy contribution may be
expressed as

βFor

V
= ρ2

∫
dx α (x) ln [2α (x)] , (3.13)

which has the same functional form as in the case of a pure
fluid composed of only the magnetic particles [13].

For the hard-sphere contribution to the free-energy func-
tional we adopt the well-known Carnahan-Starling expres-
sion [43]

βFhs

V
≡ βfhs = ρ

4η − 3η2

(1 − η)2 , (3.14)

which is valid here because we are assuming the hard spheres
of both components to be of equal diameter [22]. In Eq. (3.14),
ρ = ρ1 + ρ2 is the total number density and η = π

6 ρσ 3 is the
total hard-sphere packing fraction.

Finally, the ideal-gas contribution can be expressed as

βFid

V
= ρ1[ln(ρ1�

3) − 1] + ρ2[ln(ρ2�
5m/I) − 1], (3.15)

where � =
√

βh2/2πm is the thermal de Broglie wavelength,
h denotes Planck’s constant, m is the particle mass (which we
assume to be the same for both components), and I is the
moment of inertia of a uniaxial magnetic particle. Because
we will eventually be dealing with mixtures at equilibrium,
specific values for �, m, and I are irrelevant. This is reflected
by the fact that these quantities do not appear in the final
equations as one can see from Eqs. (A1)–(A3). These three
equations are forming a subset of the nonlinear equations that
we need to solve numerically in our search for coexisting
phases at thermodynamic equilibrium.

B. Equilibrium states and phase coexistence

Focusing on these equilibrium states, the equations

β

V

(
∂�

∂ρ1

)
T ,V

= 0, (3.16)

β

V

(
∂�

∂ρ2

)
T ,V

= 0, (3.17)

β

V

δ�

δα (x)
= λ (T ,ρ2) , (3.18)

need to be satisfied simultaneneously, where λ is a Lagrangian
multiplier. It serves to guarantee that any solution of Eq. (3.18)
is always properly normalized [see Eq. (3.7)] and the δ operator
in Eq. (3.18) indicates a functional derivative.

It is then straightforward to show that Eq. (3.16) can be
recast as

0 = ln(ρ1�
3) + βμhs + 1

2

(
ρ1u0 + ρ2u

(12)
0

) − βμ1, (3.19)

where μhs = (∂fhs/∂ρ)T ,V is the chemical potential of
the hard-sphere reference fluid. Likewise, we obtain from
Eq. (3.17) the expression

0 = ln(ρ2�
5m/I) +

∫ 1

−1
dx α (x) ln [2α (x)] − 2

3
βHα1

+βμhs + 1

2

(
ρ1u

(12)
0 + ρ2u0

) + 2ρ2

∞∑
l=1

ulα
2
l − βμ2.

(3.20)

As for pure fluids composed of magnetic particles [8,13] we
also have∫ 1

−1
dx α (x) ln [2α (x)] = u0

2
ρ2 − ln

1

2

∫ 1

−1
dx � (x; H )

−2ρ2

∞∑
l=0

ulα
2
l , (3.21)

which satisfies Eq. (3.18). In Eq. (3.21),

� (x; H ) ≡ exp

[
−ρ2

∞∑
l=1

(2l + 1) ulαlPl (x) + βHP1 (x)

]
.

(3.22)
Thus, combining Eqs. (3.20) and (3.21) allows us to introduce
the expression

0 = ln(ρ2�
5m/I) − ln

1

2

∫ 1

−1
dx �(x; H ) − βHP1

+βμhs + 1

2

(
ρ1u

(12)
0 + ρ2u0

) − βμ2. (3.23)

Next, to obtain a closed expression for the grand potential
for a globally stable or metastable equilibrium state we solve
Eqs. (3.19) and (3.23) for βμ1 and βμ2, respectively, and
replace the corresponding terms in Eq. (3.1). Using also
Eqs. (3.2), (3.8), and (3.12)–(3.15) it is straightforward to
demonstrate that

β�

V
= −βP = −ρ + βffs + βρμhs + u0

4

(
ρ2

1 + ρ2
2

)
+ u

(12)
0

2
ρ1ρ2 − ρ2

2

∞∑
l=1

ulα
2
l , (3.24)

where P denotes pressure.
A number of comments seem appropriate at this stage. First,

Eq. (3.24) no longer depends on �, m, or I, which is to be
expected because Eq. (3.24) explicitly assumes equilibrium
conditions. Second, limρ1,ρ2→0 β�/V = −ρ and thus reduces
to the ideal-gas limit as it must. This is because, except
for the first term on the right-hand side of Eq. (3.24), all
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other terms depend on the partial number densities at least
quadratically in leading order. Third, Eq. (3.24) does not
depend explicitly on the external field H which enters this
equation only implicitly via {Pl}. The latter becomes apparent
by realizing that Eq. (3.11) can be recast as [12]

Pl =
∫ 1
−1 dx � (x; H ) Pl (x)∫ 1

−1 dx � (x; H )
. (3.25)

IV. RESULTS

A. Numerical details

In the following we express all physical quantities in
dimensionless (i.e., “reduced”) units. For example, energy is
given in units of ε [see Eq. (2.3)] and length is given in terms
of the hard-sphere diameter σ [see Eq. (2.1)]. Other quantities
are given in terms of suitable combinations of these basic
parameters. For example, T is expressed in units of ε/kB ,
density in units of σ−3, pressure in units of ε/σ 3, and the
external field is given in units of ε.

To determine the phase diagram between pairs of phases
labeled ′ and ′′ we need to solve a system of six nonlinear
coupled equations for the variables ρ ′

1, ρ ′
2, P ′

1, ρ ′′
1 , ρ ′′

2 , and
P ′′

1 . As in our previous work [13] we truncate the expansion
on the right-hand side of Eq. (3.22) after the leading term
proportional to l = 1. Therefore,P1 is the only order parameter
to be considered.

As we showed in Sec. III B, coexisting phases at thermo-
dynamic equilibrium are characterized by values of ρ ′

1, ρ ′
2,

P ′
1, ρ ′′

1 , ρ ′′
2 , and P ′′

1 satisfying Eqs. (3.20) and (3.23)–(3.25).
These values can be obtained by solving the coupled set
of Eqs. (A1)–(A5) simultaneously, which we accomplish
iteratively by a simple Newton-Raphson scheme (see also
Appendix or Ref. [13]). More specifically, we need to solve
the pair of equations

s(x(n)) = −J(x(n)) · δx(n), (4.1)

x(n+1) = x(n) + δx(n), (4.2)

in vector notation where elements si of s are the six functions
introduced in Eqs. (A1)–(A5), elements of the vector x(n) are
given by the actual values of the six variables ρ ′

1, ρ ′
2, α′

1,
ρ ′′

1 , ρ ′′
2 , and α′′

1 in the n-th iteration, and the vector δx(n) is
a (sufficiently small) correction to these values that allows
us to compute improved guesses for the six variables in the
(n + 1)-th iteration. The iteration is halted if max

∣∣δx(n)
∣∣ �

10−6. Within the framework of the Newton-Raphson scheme,
the Jacobian J is a 6 × 6 matrix whose elements are partial
derivatives of s with respect to elements of x. Because of the
simplicity with which J can be derived no explicit expressions
are given here.

Thermodynamic states at coexistence depend on T , H , and
the concentration of magnetic particles in the higher-density
(ordered or disordered) phase denoted as x ′′

2 for given model
parameters εH and ε12. Notice that for nonzero H the gas
phase may also be ordered to some extent such that P ′

1 �= 0 in
general; P ′

1 = 0 only for the special case H = 0 regardless of
T and x ′′

2 .

The standard temperature increment for which phase dia-
grams below have been generated is T = 10−4. Based upon
that, resolution lines are plotted in the phase diagrams shown
below. To enhance the clarity of the graphical presentation
symbols have been used in increments of approximately
T ≈ 0.10 in addition to solid lines. These numbers are
adjusted in cases where a greater resolution of the phase
diagrams is wanted.

B. Phase behavior without external field

In the absence of the external field and in the limit
x ′′

2 = 1.00 our model system reduces to a pure Heisenberg
fluid. Depending on the Heisenberg coupling parameter εH one
anticipates three topologically distinct phase diagrams [8,13].

For weak coupling between the Heisenberg spins (εH �
0.06) one finds coxistence between a gas (G) and a polar (P)
liquid phase (Pl�1 �= 0) at lower T , whereas at higher T a G
phase coexists with an isotropic (I) (i.e., disordered) liquid
phase. The junction between I and P phases, respectively,
constitutes a critical end point at which a line of critical points
starts that extends to higher T (see Fig. 1(a) of Ref. [13]). We
refer to this as a “type I” phase diagram.

At intermediate values of εH one observes the topologically
richest phase diagram. Again at lower T one has coexistence
between G and P phases. As T increases, however, the phase
diagram shows separate coexistence between the G and I and
the I and P phases such that there is a narrow one-phase region
of stable I phases. The critical line is shifted to higher T and
starts at a tricritical point instead of a critical end point. A
triple point exists at which the G, I, and P phases coexist (see
Fig. 1(b) of Ref. [13]). Phase diagrams of this type have been
termed “type II.”

In the strong-coupling limit (εH � 0.11) the GI critical
point is suppressed such that a disordered fluid phase coexists
with an ordered phase (see Fig. 1(c) of Ref. [13]). The isotropic
fluid phase spans a rather broad density range. Phase diagrams
of this general topology are referred to as “type III.” These three
types of phase diagrams seem generic. For example, they do
not depend on the degree of sophistication of the mean-field
approximation on which the DFT is based [13].

Focusing now on a suspension of magnetic particles in
a solvent rather than a pure fluid containing only magnetic
particles, we begin our discussion with the case of strong
coupling between the Heisenberg spins. Specifically, we
consider the case εH = 0.12 and ε12 = 1.40 such that a strong
tendency to blend is realized for both mixture components.

If the concentration of magnetic particles is sufficiently
low the phase diagram plotted in Fig. 1(a) reveals that on the
liquid side only I phases exist. At these low concentrations the
magnetic particles cannot organize themselves into an ordered
phase, at least not over the temperature range numerically
accessible. Both the G and the I phase boundaries in Fig. 1(a)
merge at the mean-field critical point. Compared with a pure
Heisenberg fluid the critical temperature Tc appears to be
elevated by about 20% in the present case which is largely
ascribed to the relatively strong attraction between a magnetic
particle and a solvent molecule. This conclusion is drawn
on the basis that in a pure Heisenberg fluid the spin-spin
interaction is largely irrelevant for the location of the GI critical
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FIG. 1. (Color online) Phase diagrams in temperature T versus
total number density ρ representation. Data have been obtained
for εH = 0.12 and ε12 = 1.40. (a) x ′′

2 = 0.25, GI phase coexistence
( , ) and (b) x ′′

2 = 0.55, GP ( , ) and GI phase coexistence
( , ). Also shown is the critical line ( , ) starting at a critical
end point (see text).

point (see Figs. 1(a) and 1(b) of Ref. [13]). We shall call phase
diagrams of this particular topology “type 0,” henceforth.

This conclusion makes sense in comparison with the
phase diagram plotted for a higher concentration of magnetic
particles in Fig. 1(b). At the higher concentration there is
a larger number of interactions between unlike molecules
and yet a lower configurational potential energy. Because of
that one would anticipate an elevated Tc in the present case.
A comparison of plots in Figs. 1(a) and 1(b) confirms the
anticipated increase of Tc with x ′′

2 .
However, this logic also implies that the largest Tc should

be observed if the number of interactions between unlike
molecules is maximum which is obviously the case for
N1 = N2 = N/2. This notion is confirmed by the plot in Fig. 3
which shows that the GI critical temperature passes through a
maximum at x ′′

2 = 0.50 and is symmetric with respect to that
concentration as expected.

Another interesting feature is that, depending on the
concentration of magnetic particles, all three generic phase
diagrams described at the beginning of this section for pure
Heisenberg fluids are recovered as plots in Figs. 1(b), 2(a),
and 2(b) clearly show. The participation of ordered liquid
phases in the phase diagrams of type I and II is illustrated
by plots of the order parameter P1 along the liquid-phase
boundary in Fig. 4. For the system at the lower concentration
of magnetic particles x ′′

2 = 0.55 the plot of P1 drops to zero
at the critical end point and stays at zero until the GI critical
point at Tc 
 1.520 is reached. Similarly, the plot of P1 for
x ′′

2 = 0.85 goes to zero at the tricritical temperature. In this
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FIG. 2. (Color online) As Fig. 1 but for (a) x ′′
2 = 0.85 where one

has GP ( , ), GI ( , ), and IP ( , ) phase coexistence;
(b) x ′′

2 = 0.95 where a nonpolar fluid phase (ρ � 0.50) coexists with
a P phase ( , ). Also shown is the beginning of a critical line
( , ) starting at a tricritical point.

latter case, notice a small dent in the plot of P1 versus T

corresponding to the GIP triple point in Fig. 2(a).
This recovery of the three generic phase diagrams known

for the pure Heisenberg fluid makes sense if one recalls
that, in essence, in a mean-field treatment one considers the
overall attractive field exerted on a reference molecule by its
neighbors. Because in our model only the magnetic particles
carry a spin, the overall attraction between a reference spin and
its neighbors increases monotonically with the concentration
of magnetic particles even though the Heisenberg coupling
constant εH stays fixed. From this line of argument it is then

1.35

1.40

1.45

1.50

1.55

0.1 0.3 0.5 0.7 0.9

T c

x ’’2

FIG. 3. (Color online) Variation of the gas- (isotropic) liquid
critical temperature Tc with the concentration of magnetic particles
in the liquid phase x ′′

2 . Data have been obtained for εH = 0.12 and
ε12 = 1.40. The point ( ) does not correspond to a true critical point
but rather represents the inflection point visible at about ρ 
 0.25 in
Fig. 2(b).
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FIG. 4. (Color online) The order parameter P1 as a function of
temperature T along the phase boundaries of P and I phases. Both
curves have been obtained for εH = 0.12 and ε12 = 1.40 but for
x ′′

2 = 0.55 ( , ) [see Fig. 1(b)] and x ′′
2 = 0.85 ( , ) [see

Fig. 2(a)].

to be expected that at constant εH types I–III phase diagrams
are observed in our binary mixture with increasing x ′′

2 in very
much the same fashion as these topologically distinct phase
diagrams arise in a pure Heisenberg fluid with increasing εH .

The above phase diagrams have been obtained for a
situation where blending of the two mixture components is
energetically favored, that is, for ε12 > 1.00. For reasons of
comparison, a typical phase diagram, where decomposition of
the binary mixture is energetically favored, is shown in Fig. 5.
The topology of the phase diagram is of type I as its counterpart
depicted in Fig. 1(b). A comparison of Figs. 1(b) and 5 also
reveals that Tc for ε12 = 0.80 is lowered substantially for
reasons already explained.

However, the plot in Fig. 5 exhibits a peculiarity of
the phase boundary of the G phase and temperatures up
to the temperature of the critical end point. Compared with
the previously discussed phase diagrams the curvature of the
G-phase boundary differs. This different curvature, which
seems unusual, may be a consequence of the constraint x ′′

2 =
const subject to which the phase diagram has been obtained.
We have tested that this feature of the phase diagram is not
an artifact by starting the minimization of � from different
initial conditions without any appreciable effect on the final
results. For temperatures above that of the critical end point
the curvature of the phase boundary of the G phase becomes
the same as for all other phase diagrams discussed so far. In
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FIG. 5. (Color online) As Fig. 1(b) but for ε12 = 0.80.
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0.995

1.000

1.30 1.35

FIG. 6. (Color online) “Reduced” concentration of magnetic par-
ticles x ′

2/x
′′
2 as functions of temperature T along the coexistence

lines. (a) ( , ) x ′′
2 = 0.25 [see Fig. 1(a)], ( , ) x ′′

2 = 0.55
[see Fig. 1(b)], and ( , ) x ′′

2 = 0.95 [see Fig. 2(b)]; (b) as in
part (a) but for x ′′

2 = 0.85 and GP ( , ), GI ( , ), and IP
phase coexistence ( , ) [see Fig. 2(a)]. Solid lines in both parts
of the figure are intended to guide the eye. In all cases εH = 0.12 and
ε12 = 1.40.

other words, the G phase boundary seems to have an inflection
point at the temperature of the critical end point.

Also shown in Figs. 1(b), 2(a), 2(b), and 5 is the line
of critical points separating stable I from P phases. The
critical lines are constructed through a Landau expansion as
detailed elsewhere [8,13,16,22]. In the present case, where
only magnetic particles are capable of being ordered, one
obtains

ρ2c = −2

3

1

u1
(4.3)

for the partial number density ρ2c along the critical line.
Because phase diagrams presented in this work are plotted
in T –ρ representation at constant x ′′

2 the total density along
the critical line is obtained from the relation ρc = ρ2c/x

′′
2 . This

latter quantity is, in fact, the one plotted in Figs. 1(b), 2(a), 2(b),
and 5. For phase diagrams of type I [see Figs. 1(b) and 5] the
critical line terminates at a critical end point, whereas it ends in
a tricritical point in phase diagrams of type II or III [8,13]. This
is again a feature that is observed in phase diagrams for the
pure Heisenberg fluid as the coupling strength of the spin-spin
interaction increases [8,13].

An interesting aspect that takes the present binary pseu-
domixture beyond the realm of features that have already been
observed for pure Heisenberg fluids concerns the variation of
concentration in both phases ′ and ′′. Plots of the “reduced”
concentration x ′

2/x
′′
2 along the coexistence curve in Fig. 6(a)

reveal a rather complex variation of x ′
2/x

′′
2 with T depending
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on the (fixed) mole fraction x ′′
2 (i.e., the topology of the phase

diagram).
For example, for x ′′

2 = 0.25 the corresponding plot in
Fig. 6(a) shows that at the lowest T the G phase is pure
and consists of solvent molecules only (x ′

2 
 0.00). Their
concentration decreases monotonically with increasing T (i.e.,
x ′

2 increases with T ), that is, the G phase becomes more
enriched with magnetic particles relative to the I phase the
higher the T is. However, x ′

2/x
′′
2 � 1.00 regardless of T where

the equal sign applies at T = Tc. This is because at Tc, the G
and I phases become indistinguishable.

At a higher concentration of magnetic particles x ′′
2 = 0.55

and starting from low T , x ′
2/x

′′
2 increases monotonically at first.

In other words, the G phase initially becomes richer in mag-
netic particles qualitatively similar to the previously discussed
case. If T is sufficiently high, x ′

2/x
′′
2 > 1.00 indicating that now

the G phase is richer in magnetic particles than the P phase. The
maximum of x ′

2/x
′′
2 is reached at the critical end point. Beyond

that point we have GI phase equilibrium [see Fig. 1(b)] and
now x ′

2/x
′′
2 decreases with increasing T , indicating that it is

increasingly less favorable to have magnetic particles in the G
phase relative to the I phase. This trend continues as T → Tc;
for T = Tc, x ′

2/x
′′
2 = 1.00 for reasons already explained.

In the case x ′′
2 = 0.95, x ′

2/x
′′
2 is approximately constant

and slightly larger than one until one reaches a temperature
T 
 1.318 at which the coexistence curve plotted in Fig. 2(b)
reaches its plateau. For all larger T , x ′

2/x
′′
2 
 1.00 up to the

temperature at the tricritical point where the coexistence curve
in Fig. 2(b) terminates.

An interesting situation is encountered for x ′′
2 = 0.85 as the

plot in Fig. 6(b) indicates. If ′ is the G phase the concentration
of magnetic particles in that phase is always larger than the
one in either the P or I phases. With increasing T , x ′

2/x
′′
2 first

increases up to a temperature T 
 1.146; for larger T , x ′
2/x

′′
2

declines monotonically towards the GI critical temperature at
which x ′

2/x
′′
2 again becomes unity.

Moreover, from the corresponding phase diagram in
Fig. 2(a) it is clear that one also has IP phase coexistence
between the triple point at Ttr 
 1.318 and the tricritical point.
In other words, one has phase equilibrium between two liquid
phases, one disordered and the other one ordered. From the
inset in Fig. 6(b) one sees that x ′

2/x
′′
2 < 1.00, albeit the effect

is small. Hence, magnetic particles prefer to stay in the ordered
phase.

However, whether or not magnetic particles prefer to stay
in the liquid phase depends crucially on whether an ordered
liquid phase is available. For example, plots in Fig. 7(a) show
that for very low concentrations x ′′

2 = 0.05 and low T almost
all the magnetic particles prefer the G phase. As T increases
x ′

2/x
′′
2 decreases monotonically towards its limiting value of

1.00 at the GI critical point. Even though a few magnetic
particles are present in the liquid phase, their concentration
is too low to be able to form an ordered liquid phase as the
corresponding plot of P1 in Fig. 7(b) clearly shows. If, on the
contrary, the concentration of magnetic particles in the liquid
phase is higher, the plot for x ′′

2 = 0.55 in Fig. 7(a) exhibits the
opposite trend. Now only very few magnetic particles prefer
the G phase at sufficiently low T because an ordered P phase
coexists that accommodates magnetic particles conveniently.
That an ordered phase forms for x ′′

2 = 0.55 is clear from
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FIG. 7. (Color online) (a) As in Fig. 6 but for x ′′
2 = 0.05 ( ,

) (right ordinate) and x ′′
2 = 0.55 ( , ) (left ordinate). (b) As

in Fig. 4 but for the same “reduced” concentrations as in part (a) of
the figure. In both parts data have been generated for ε12 = 0.80 and
εH = 0.12.

the plot of the order parameter in Fig. 7(b). For this higher
concentration of magnetic particles x ′

2/x
′′
2 increases steadily

with T up to Tc [see Fig. 7(a)]. Notice also in Fig. 7(a) that
both sets of data show a strong tendency of the mixture to
decompose at low T on account of our choice of ε12 = 0.80.

After having discussed details of the various types of phase
diagrams it is perhaps instructive to get a broader overview
of the types of phase diagrams that one anticipates for certain
combinations of the model parameters εH , ε12, and x ′′

2 . Gen-
erally speaking, phase diagrams of type 0 (no participation of
ordered phases) exist if the concentration of magnetic particles
in phase ′′ is relatively low. These concentrations may be a bit
higher if the solvent and the magnetic particles have a larger
tendency to blend (i.e., for values of ε12 > 1.00; see Fig. 8).

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

0.8 1.0 1.2 1.4

x
’’ 2

ε12

FIG. 8. (Color) Overview of types of phase diagrams encoun-
tered depending on the strength of spin-spin coupling εH , the strength
of interaction between unlike molecules ε12, and the mole fraction
of magnetic particles in the denser phase x ′′

2 . Squares: εH = 0.06;
circles: εH = 0.09; diamonds: εH = 0.12. Color is used to identify
specific types of phase diagrams. Black symbols: type 0; red symbols:
type I; green symbols: type II; blue symbols: type III. In regions in
which symbols are missing no stable solutions of Eqs. (4.1) and (4.2)
could be obtained.
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FIG. 9. (Color online) As in Fig. 1 but for εH = 0.12, ε12 = 1.20,
and H = 0.00 ( , ), H = 0.10 ( , ), H = 1.00 ( , ),
and H = 10.00 ( , ); (a) x ′′

2 = 0.95, (b) x ′′
2 = 0.75. For data sets

corresponding to H = 0.00 critical lines have been omitted for the
sake of clarity of the plots in both parts of the figure.

The scheme in Fig. 8 turns out to be dominated by phase
diagrams of type I which appear to be stable for a broad range
of mole fractions x ′′

2 , strength of spin-spin coupling εH , and
interaction strength between unlike molecules ε12.

Compared with phase diagrams of type I, those of type II are
much more restricted to areas in parameter space in which εH

is sufficiently high but also x ′′
2 is large as well. Phase diagrams

of type II are observed only if the two components do not
demix.

Last but not least, phase diagrams of type III are only rarely
observed. They are restricted to the highest concentrations,
spin-spin coupling strengths, and mixtures in which the two
components exhibit a strong tendency to blend.

C. Phase behavior for nonvanishing external fields

Next we turn to a discussion of the impact of the external
homogeneous magnetic field on the phase behavior of the
suspension of magnetic particles in a nonmagnetic solvent.
Because of the relatively high dimension of the parameter
space of our model system we restrict the discussion to those
cases that turned out to be the most interesting ones. Thus, we
concentrate on phase diagrams that are of types II and III in
the absence of the external field. As we showed in Sec. IV B
these topologies are obtained at relatively high concentrations
of magnetic particles x ′′

2 in the liquid phase. Intuitively, one
would expect these suspensions to be most sensitive to the
presence and strengths of the external field because the binary
mixture contains enough particles to respond to such a field.

We begin our presentation of results in Fig. 9(a) with a
phase diagram that is of type III in the absence of the external

TABLE I. Critical temperature Tc and density ρc for various con-
centrations of magnetic particles x ′′

2 and different external magnetic
fields H .

H x ′′
2 Tc ρc Phase diagram

1.00 0.75 1.439 0.267 Type II
10.00 0.75 1.657 0.261 Type II
1.00 0.95 1.450 0.312 Type III
10.00 0.95 1.731 0.253 Type III

field. For this topology the concentration of magnetic particles
in the liquid phase is sufficiently large so a GI critical point is
suppressed. However, there is a tricritical point clearly visible
in the phase diagram where the phase boundary between a
high-density, isotropic fluid phase and a P phase join.

As soon as H is nonzero, the tricritical point vanishes. This
is true even for infinitesimally small H . However, a vestige of
the former tricritical point remains as one can see by comparing
in Fig. 9(a) plots for H = 0.00 and H = 0.10. The triangular-
shaped region around the tricritical point visible in the plot for
H = 0.00 has given way to a rather broad maximum in the
phase diagram for H = 0.10.

For larger external fields even that broad maximum even-
tually disappears as one can see in Fig. 9(a) from the plots for
H = 1.00 and H = 10.00. Instead, a GI critical point reap-
pears. The higher the H the more elevated is the critical tem-
perature Tc. At the same time, the critical density ρc turns out
to be shifted to lower values as one can clearly see in Fig. 9(a).

A much smaller shift is observed upon varying εH in a
pure fluid composed of only magnetic particles [13]. On the
contrary, the shift of the critical density in the present case is
fairly pronounced as entries in Table I indicate. Hence, as H

increases there is a topological change in the phase diagram
from type III in the absence of an external field to something
reminiscent of a type 0 topology in the presence of such an
external field.

Comparing plots in Fig. 9(a) with those in Fig. 9(b) one
notices qualitatively similar features as H varies. However,
here we are confronted with a phase diagram of type II in the
absence of the external field. These phase diagrams have a
GI critical point. Phase coexistence between I and P phases
terminates again at a tricritical point at the end of the tiny
triangular shaped region in the plot for H = 0.00 in Fig. 9(b).

Again, any nonzero external potential suppresses tricritical-
ity (and with it the critical line) [see, for example, Fig. 2(a)].
In fact, as one sees from the plot for H = 0.10 in Fig. 9(b), IP
phase coexistence has disappeared and has left as its remnant
the broad shoulder visible at densities slightly below 0.60. This
shoulder vanishes at higher external potentials H = 1.00 and
H = 10.00 similar to the disappearance of the broad maximum
in the curve for H = 0.10 in Fig. 9(a).

A comparison of plots in Fig. 9(a) with their counterparts in
Fig. 9(b) reveal that the two phase region is wider at the higher
concentration of magnetic particles x ′′

2 . At the same time the
upward shift of the critical temperature Tc with H , on the one
hand, is somewhat more substantial for x ′′

2 = 0.95 compared
with x ′′

2 = 0.75 as respective entries in Table I indicate. The
shift to lower critical densities ρc observed for x ′′

2 = 0.95, on
the other hand, is negligibly small for x ′′

2 = 0.75.
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FIG. 10. (Color online) As in Fig. 6 but for H = 0.000 ( , ),
H = 0.001 ( , ), H = 0.005 ( , ), and H = 0.010 ( ,

). For all curves εH = 0.12, ε12 = 1.20, and x ′′
2 = 0.75 [cf.

Fig. 9(b)]. Inset: An enhancement showing only the short branch
corresponding to IP phase coexistence (see text).

Plots in both parts of Fig. 9 reveal that the most pronounced
impact of the external field on the phase behavior occurs for
small H . As far as the corresponding composition of phases ′
and ′′ is concerned we notice from Fig. 10 that the plots consist
of two branches, a longer one where ′ is the G phase and a much
shorter one along where ′ is the I phase and x ′/x ′′ � 1.00
[Fig. 9(b)]. For the longer branch apparently the weak external
field is largely irrelevant.

For the shorter branch the inset in Fig. 10 exhibits two
features. In agreement with Fig. 9(b) the short branch vanishes
somewhere in the range 0.005 < H < 0.010. Over the range
0.000 � H � 0.005 the tricritical temperature (i.e., the locus
of x ′

2/x
′′
2 = 1.00) shifts monotonically to smaller values with

increasing H . At the same time the I phase becomes slightly
more enriched with magnetic particles (i.e., x ′

2/x
′′
2 increases),

which is particularly noteworthy by comparing plots for H =
0.001 and H = 0.005 for the same T .

It is also instructive to amend the analysis of phase diagrams
in Fig. 9 by plots of the order parameter P1 along the
coexistence curve in Fig. 11. Starting again with the higher
concentration of magnetic particles x ′′

2 = 0.95 in the absence
of an external fields in Fig. 11(a) one notices that, beginning
with states of largeP1 and low T (P phase), the order parameter
declines continuously until it vanishes at the tricritical point
visible in the corresponding plot in Fig. 9(a). As T is then
reduced again along the phase boundary of the I phase, P1 = 0
irrespective of T as it should.

If one increases the external field to H = 0.10 the plot of
P1 turns out to be nearly indistinguishable from the one for
H = 0.00. Both curves begin to deviate from each other for
P1 � 0.60. For H = 0.10 the curve in Fig. 11(a) decays with
an eventually positive slope until it assumes a small value in
the range of 0.03 � P1 � 0.04. Hence, no matter how small H
is, only more or less ordered states exist along the coexistence
curve.

Order of states in the lower-density phase increases
markedly with H as Fig. 11(a) reveals for H = 1.00 and
H = 10.00. In both curves P1 first decreases with increasing
T until the critical point is reached [see Fig. 9(a)]. On the
low-density side of the corresponding phase diagrams P1

eventually increases again with decreasing T as the magnetic
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FIG. 11. (Color online) Variation of the order parameter P1 with
temperature T along the entire coexistence curve and for εH = 0.12,
ε12 = 1.20, and H = 0.00 ( , ), H = 0.10 ( , ), H = 1.00
( , ), and H = 10.00 ( , ); (a) x ′′

2 = 0.95, (b) x ′′
2 = 0.75.

particles are losing thermal energy. Notice also from Fig. 11(a)
that for a sufficiently high external field H = 10.00, P1 along
the low-density phase boundary stays almost as high as P1

along its high-density counterpart.
Comparing plots in Fig. 11(a) with those in Fig. 11(b)

reveals only rather subtle differences. For example, P1 for
H = 0.00 drops to zero with increasing T at the tricritical
point as before. However, because the phase diagram exhibits
a GI critical point in Fig. 9(b) that part of the corresponding
plot in Fig. 11(b) characterized by P1 = 0 ends at Tc, which
slightly exceeds the temperature at the tricritical point [see
Fig. 9(b)].

V. DISCUSSION AND CONCLUSIONS

In this work we apply DFT to suspensions of magnetic
particles in a nonmagnetic solvent where the former carry a
classical, three-dimensional spin that allows them to interact
with an external magnetic field. The solvent is composed
of spherically symmetric Lennard-Jones-type molecules that
have no orientational degrees of freedom. In the absence
of an external field, the only relevant parameters are the
interaction strength between unlike particles ε12 and the
spin-spin coupling constant εH .

As far as the thermodynamic state is concerned and because
we explicitly assume phase coexistence, the grand potential �

depends explicitly only on temperature T and implicitly on the
external field H as the only two thermodynamic parameters.
The implicit dependence on H arises via the orientation
distribution function α (ω).
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From a numerical perspective and from a somewhat naive
point of view, we are confronted with a situation where
we have to solve a set of five coupled nonlinear equations
for six variables. Seemingly, this poses a problem in that a
unique solution cannot be obtained. However, this ostensible
problem can be circumvented by realizing that if one fixes the
concentration of one of the two components in either of the
two phases a sixth equation naturally links the partial number
densities of the two components in that phase. Therefore, our
numerical problem is no longer underdetermined.

We have deliberately chosen the mole fraction of the
magnetic particles in the liquid phase x ′′

2 as this new ther-
modynamic state parameter (besides T and H ). Indeed, from
an experimental perspective it seems easier to control the net
weight of both components in the liquid phase (x ′′

1 + x ′′
2 = 1)

rather than that in the gas phase.
Depending on choices of model and thermodynamic state

parameters rather complex phase behavior is observed. It turns
out that four generic types of phase diagrams exist depending
on the amount of magnetic particles present in the liquid phase
at fixed coupling strength εH of the spin-spin interaction. In a
pure fluid composed of the same magnetic particles the same
four generic phase diagram topologies are observed [8,13].

To explain this similarity we argue that, at mean-field
level, it is only the net attraction of the spin-spin coupling
that matters for the formation of ordered phases. This net
attraction is determined by the concentration of the magnetic
particles in the present two-component suspension or the
coupling strength itself in the case of a pure fluid of such
particles. Whereas this result may have been anticipated from
the very beginning, it is nonetheless gratifying that it is indeed
observed here because it validates our current approach of
making x ′′

2 one of the input variables.
More interesting and not predictable from the outset is

the variation of the concentration of magnetic particles in the
lower-density phase relative to that in the higher-density one.
Perhaps most notable in this regard is that one may observe
liquid-liquid phase coexistence between isotropic and polar
liquid phases. Here one of the phases is rich in magnetic
particles and the other one turns out to be rich in solvent
molecules. Solvent molecules prefer the I phase, whereas the
presence of magnetic particles is enhanced in the P phase.
However, the effect is admittedly small because the length of
the phase boundaries separating isotropic from polar liquids
is tiny in the current model suspension. This could be quite
different if the current magnetic compound would be replaced
by a liquid crystal phase [44].

For liquid crystals one of the simplest phase equilibria
between liquidlike phases is that between an isotropic and
a nematic liquid. For the model used in an earlier study [44] it
was found that for temperatures slightly above that of a triple
point, at which a gaseous phase coexists simultaneously with
an isotropic and a nematic liquid phase, the density difference
between coexisting isotropic and nematic phases is much more
pronounced than that characteristic of coexisting I and P phases
in the current model. Hence, if the liquid crystal is dissolved
in a solvent similar to the one used here it might be conceiv-
able that a more pronounced difference in concentration of
both mixture compounds in the coexisting liquidlike phases
arises.

As far as a nonvanishing external magnetic field is con-
cerned, the effects are threefold. First, the critical line sepa-
rating isotropic from polar phases is completely suppressed
for any nonvanishing H . Second, for any nonvanishing H one
always observes coexistence between phases that are always
ordered to a certain degree. The one at lower density is usually
less ordered than the one at higher density. This difference in
the degree of order along the coexistence curve diminishes as
H becomes larger. At intermediate H one may have situations
in which order decreases monotonically along the phase
boundary of the higher-density phase as T increases towards
the gas-liquid critical point. At the same time, the degree of
order in the low-density phase behaves nonmonotonically with
T . Third, at sufficiently low H details of the dependence of
order on T are determined by the type of phase diagram that
one is confronted with in the limit of vanishing H .

In summary, our study reveals that mixtures of Heisenberg
spheres, which may be considered as elementary models for
magnetic particles, and neutral spheres (representing a solvent)
display a rich phase behavior, which is moreover tunable
by an external field. Our results complete earlier theoretical
and computer simulation investigations of pure Heisenberg
fluids, as well as studies of mixtures of other (i.e., Ising, XY )
spin fluids. Comparing the phase behaviors of the Heisenberg
mixtures obtained in our present study with those in dipolar
mixtures, one finds that the general topologies of the phase di-
agrams are similar (see, for example, Refs. [23,24]). However,
there are also differences, an example being the dependence
of the critical demixing temperature on an external field.
While in the Heisenberg case, this temperature just increases
with H (due to the above mean-field argument targeting the
increase of attraction), dipolar mixtures reveal a nonmonotonic
dependence [25] reflecting the more complicated character of
the interaction which disfavors side-by-side configurations of
parallel dipoles. Clearly, such features may become important
if one attempts to model real mixtures involving ferromagnetic
(nano-) particles at high densities. However, as stated initially,
one main advantage of the classical Heisenberg model is that,
at least in the one-component case, MMF-DFT calculations
are quite accurate. Naturally, it would be very important to do
the same test for the present theoretical results. We therefore
hope that our results stimulate future simulations.
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APPENDIX: NONLINEAR EQUATIONS DESCRIBING
COEXISTING PHASES AT THERMODYNAMIC

EQUILIBRIUM

Here we summarize the equations that we need to solve
numerically to determine the phase boundary separating
coexisting phases ′ and ′′. At coexistence and at fixed T the
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associated pressures P ′ and P ′′ have to be the same. From Eq. (3.24) pressure equality in the two phases corresponds to

s1 = −ρ ′ + ρ ′′ + ρ ′ 2η′ − 4η′

(1 − η′)3
− ρ ′′ 2η′′ − 4η′′

(1 − η′′)3
− u0

4

(
ρ ′

1
2 − ρ ′′

1
2) − u0

4

(
ρ ′

2
2 − ρ ′′

2
2) − u

(12)
0

2
(ρ ′

1ρ
′
2 − ρ ′′

1 ρ ′′
2 ) − u1

(
ρ ′

2
2
α′

1
2 − ρ ′′

2
2
α′′

1
2)

= 0. (A1)

Similarly, the conditions for minima of the grand potential Eqs. (3.20) and (3.23) allow one to introduce the
functions

s2 = ln

(
ρ ′

1

ρ ′′
1

)
+ 8η′ − 9η′2 + 3η′3

(1 − η′)3 − 8η′′ − 9η′′2 + 3η′′3

(1 − η′′)3 + u0

2
(ρ ′

1 − ρ ′′
1 ) + u0

2
(ρ ′

2 − ρ ′′
2 ) = 0 (A2)

and

s3 = ln

(
ρ ′

2

ρ ′′
2

)
+ 8η′ − 9η′2 + 3η′3

(1 − η′)3 − 8η′′ − 9η′′2 + 3η′′3

(1 − η′′)3 + u0

2
(ρ ′

2 − ρ ′′
2 ) + u

(12)
0

2
(ρ ′

1 − ρ ′′
1 ) − ln

sinh(a′)
a′ + ln

sinh(a′′)
a′′

= 0, (A3)

where a′,′′ ≡ 9ρ
′,′′
2 u1P ′,′′

1 /2 − βH . Notice that in writing
Eqs. (A2) and (A3) we have again been assuming equilibrium
conditions, that is, μ′

i = μ′′
i (i = 1,2). From Eq. (3.25) two

more equations can be derived, namely

s4,5 = α
′,′′
1 − 3

2

tanh(a′,′′) − a′,′′

a′,′′ tanh (a′,′′)
= 0 (A4)

for the order parameters of the magnetic particles in the gas
and in the liquid phase, respectively (see also Appendix B

of Ref. [13]). So far we established five equations for six
unknowns identified at the end of Sec. III. However, a sixth
such equation may be introduced by realizing that for a given
input mole fraction of the magnetic particles x ′′

2

s6 = x ′′
2

1 − x ′′
2

ρ ′′
1 − ρ ′′

2 = 0, (A5)

which follows directly from the definition of the mole fraction
of the magnetic particles in the liquid phase.
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