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Fractional Edgeworth expansion: Corrections to the Gaussian-Lévy central-limit theorem
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In this article we generalize the classical Edgeworth expansion for the probability density function (PDF) of
sums of a finite number of symmetric independent identically distributed random variables with a finite variance
to PDFs with a diverging variance, which converge to a Lévy α-stable density function. Our correction may
be written by means of a series of fractional derivatives of the Lévy and the conjugate Lévy PDFs. This series
expansion is general and applies also to the Gaussian regime. To describe the terms in the series expansion, we
introduce a new family of special functions and briefly discuss their properties. We implement our generalization
to the distribution of the momentum for atoms undergoing Sisyphus cooling, and show the improvement of our
leading order approximation compared to previous approximations. In vicinity of the transition between Lévy
and Gauss behaviors, convergence to asymptotic results slows down.
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I. INTRODUCTION

Statistical physics deals with systems consisting of large
numbers of particles. The state of these systems is generally
described by their probability density function (PDF), which
enables us to determine the possible states of the system and
to calculate macroscopic quantities such as physical average
observables. Usually, Gaussian PDFs appear whenever one
deals with systems composed of a large number of particles.
These PDFs describe well systems with dynamics that is
characterized by a large number of random small events,
e.g., particle motion in a liquid (Brownian motion). However,
not all systems are described by the Gaussian PDF. Many
systems are characterized by (rare) large fluctuations. These
large fluctuations give rise to a long, power-law tail in the
PDF. The long tail in many cases leads to the divergence of
the second moment.

Indeed, for the two kinds of systems described above, there
exist limit theorems which give the asymptotic PDFs of the
sum of random variables. The Gaussian central-limit theorem
(CLT) applies in the case of summation of independent,
identically distributed (iid) random variables with common
PDFs characterized by a finite variance, while a generalized
CLT [1,2] applies for long tailed PDFs, in which case the
limiting distribution is a Lévy distribution. However these
limit theorems are valid only in the limit where the number of
random variables, n, goes to infinity. Hence, for many physical
systems composed of a relatively small number of particles one
cannot use the CLTs for approximating the PDF of the sum.
Better approximations for finite n were developed for PDFs
that approach a Gaussian in the limit. Among these is the
classical Edgeworth expansion [3] which provides asymptotic
correction terms to the CLT. Recently an improvement of
the classical Edgeworth expansion was given by Lam et al.
[4]. This expansion generalizes the Edgeworth result to cases
in which each of the random variables are distributed with
heavy-tailed (power-law decaying) PDFs with finite variance,
but diverging higher moments.

*These two authors contributed equally.

In this article we further generalize the Edgeworth correc-
tion for cases of random variables with diverging variance. We
present correction terms for finite n for PDFs approaching the
Lévy distribution. We show that our correction is general in
the sense that, for PDFs for which all the moments exist, it
converges to the classical Edgeworth result, and when higher
moments diverge, it converges to the generalization of Lam
et al.

In Sec. II we review the CLT and the derivation of the clas-
sical Edgeworth series. In Sec. III we derive our generalized
series and investigate the behavior of the correction terms.
In addition we present the leading term approximation and
discuss the two regimes (Gaussian and Lévy). In Sec. IV we
implement our approximation to the sum of the momenta of
cold atoms in an optical lattice and show its convergence to
the exact solution (calculated numerically), and compare it
to previous approximation methods. In Sec. V we summarize
our results, and highlight the importance of the family of the
special functions introduced in the correction terms of our
series.

II. THE CLT AND THE CLASSICAL
EDGEWORTH EXPANSION

For a set of n identically independent distributed (iid)
random variables {xj }, with a common symmetric probability
density function (PDF) w(x), with zero mean (μ = 0) and
finite variance, σ 2, the central-limit theorem (CLT) states
that for n → ∞ the PDF wS(x) of the normalized sum
Sn ≡ ∑n

j=1 xj/n1/2 is given by the Gaussian density function

lim
n→∞ wS(x) = Zσ (x) = 1√

2πσ 2
e−x2/2σ 2

. (1)

Since for finite n there are deviations from the normal density,
one might want to approximate these deviations quantitatively.
A few series expansions for non-Gaussian densities have been
suggested for this purpose, such as the Gram-Charlier series
[5,6] and the Gauss-Hermite expansion [7]. The most accurate
among those is the Edgeworth expansion, since it is a true
asymptotic one [7,8].

In order to derive the Edgeworth expansion for the density
function of the probability of the normalized sum Sn, we
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shall introduce the characteristic function for the single
variable, w̃(k) = 〈exp(ikx)〉 = ∫∞

−∞ w(x) exp(ikx)dx, and its
logarithm, ψ(k) = ln w̃(k), so that the obtained characteristic
function for Sn can be written as w̃S(k) = w̃(k/

√
n)n yielding

wS(x) via an inverse Fourier transform. Alternatively, one
may define ψS(k) = ln w̃S(k) = nψ(k/

√
n) and use the inverse

Fourier transform of exp[ψS(k)].
In what follows we consider symmetric PDFs (w(x) =

w(−x)). We begin by expanding w̃(k) in a power series:

w̃(k) = 1 +
∞∑

j=1

mj

j !
(ik)j = 1 − σ 2k2

2
+ m4k

4

4!
+ · · · , (2)

where the coefficients of this series are given in terms of the
moments mj = 〈xj 〉 of w(x). In the same way, one can expand
ψ(k) in a power series in terms of the cumulants of w(x):

ψ(k) =
∞∑

j=1

κj

j !
(ik)j = −σ 2k2

2
+ 1

4!
(m4 − 3σ 4)k4 + · · · ,

(3)

where the j th cumulant, κj , is related to the first j moments
by the following relation [7]:

κj = j !
∑
{kα}

(−1)r−1(r − 1)!
j∏

α=1

1

kα!

(
mα

α!

)kα

. (4)

Here, the summation is over all sets {kα} satisfying k1 + 2k2 +
· · · + jkj = j , and r = ∑j

α=1 kα . Hence, κ1 = 0 [since for a
symmetric w(x) the first moment vanishes], κ2 = m2, etc. In
the last three equations all odd terms in the series expansions
vanish, since w(x) is symmetric.

For the normalized sum Sn, an equivalent expansion exists:

ψS(k) = n ln(w̃(k/
√

n)) =
∞∑

j=1

κj

j !

(ik)j

nj/2−1
. (5)

Substituting m1 = 0 (all odd j terms vanish), κ2 = σ 2, and
s = j − 2, we can rewrite w̃S(k) as

w̃S(k) = eψS (k) = e−σ 2k2/2 exp

[ ∞∑
s=1

κs+2

(s + 2)!
(ik)s+2n−s/2

]
.

(6)

Expanding the exponent in a power series in n−1/2 we get (all
odd ν terms vanish because of the symmetry)

w̃S(k) = e−σ 2k2/2

[
1 +

∞∑
ν=1

P2ν(ik)n−ν

]
, (7)

where

Pν(ik) =
∑
{kα}

ν∏
α=1

1

kα!

[
κα+2(ik)α+2

(α + 2)!

]kα

. (8)

Here the summation over the set {kα} for a given ν

is defined as above. For example, P2(ik) = κ4k
4/4! and

P4(ik) = −κ6k
6/6!.

Taking the inverse Fourier transform of w̃S(k) we get

wS(x) = Zσ (x)

[
1 +

∞∑
ν=1

q2ν(x)

nν

]

= Zσ (x)

[
1 + κ4

4!n

1

σ 4
H4

(
x

σ

)

+ κ6

6!n2

1

σ 6
H6

(
x

σ

)
+ · · ·

]
, (9)

where

qν(x) =
∑
{kα}

1

σ ν+2r
Hν+2r (x/σ )

ν∏
α=1

1

kα!

(
κα+2

(α + 2)!

)kα

,

(10)

where r is defined as above, and Hn(x) is the nth order Hermite
polynomial [9]. For example q2 = κ4/4!σ 4H4(x/σ ) and q4 =
κ6/6!σ 6H6(x/σ ) in agreement with Eq. (9). This result, known
as the classical Edgeworth expansion [3], was first obtained by
Petrov as an infinite series [7,10].

The Edgeworth expansion is a true asymptotic expansion of
wS(x) only when all of the moments of w(x) exist. However,
for a heavy-tailed w(x) with a finite variance (so that the
CLT holds), higher moments diverge, and this series expansion
cannot reproduce the behavior of wS(x). Yet, one may consider
a truncated series ignoring the higher order diverging terms.
This ad hoc truncated series may work well in the central part
of wS(x). However, it completely fails to predict the rare events
as we shall show later.

III. GENERALIZATION OF THE EDGEWORTH
EXPANSION

A. The fractional generalized series

The Edgeworth and the truncated Edgeworth expansions
deal only with probability densities w(x) with finite variance.
For a normalizable symmetric PDF with a diverging variance,
where w(x) ∼ A|x|−(1+α) for large x and 0 < α < 2 with
w(x) = w(−x), the generalized CLT states [11] that in the
limit n → ∞, the PDF of the sum

Sn =
n∑

i=1

xj/n1/α (11)

approaches the symmetric Lévy α-stable density function,
Lα,Ã(x) [12]:

lim
n→∞ wS(x) = Lα,Ã(x) ≡ 1

π

∫ ∞

0
cos(kx) exp(−Ãkα)dk,

(12)
where

Ã = Aπ

�(α + 1) sin(πα/2)
. (13)

Hence for the family of PDFs approaching the Lévy α-
stable density function (as n → ∞), we cannot use the
Edgeworth series expansions, since the latter’s asymptotic
behavior is Gaussian. Long-tailed PDFs can be found in many
stochastic processes, e.g., in polymer physics, fluid dynamics,
cold atoms, biophysics, optics, engineering, economics. etc.
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[13–18]. Later on we will analyze the case of cold atoms in an
optical lattice in detail.

Our approach to these PDFs uses a series expansion of
w̃S(k) which asymptotically goes to the Fourier transform of
Lévy α-stable density function. Given a normalized symmetric
w(x) with a diverging variance, one may expand w̃(k) in a
generalized Taylor series [15]:

w̃(k) = 1 +
∞∑
i=1

ai |k|αi , (14)

where αi > 0 could be either integer or noninteger powers
of |k|. In general the sum can also include terms such as
ln(|k|)|k|αi .

Using the same scheme as before, now for the Sn given
in Eq. (11) (here α ≡ α1 = min{αi} is the asymptotic Lévy
exponent), we get

w̃S(k) = exp[n ln(w̃(k/n1/α))]

= exp(−a|k|α)

[
1 +

∞∑
r=1

br

n(γr/α)−1
|k|γr

]
, (15)

where a ≡ −a1 (since a1 < 0), br are coefficients depending
on the explicit form of w(x), and γr are the powers of |k|
when expanding the exponential. In principle, the γr , br are
determined by αi and ai , which are in turn obtained from
Fourier transform of w(x). An example for this relation will
be given later, when we will deal with the application of these
equations to the special case of cold atoms. In what follows,
terms of the form exp(−a|k|α)|k|γ where γ is not even or
where α < 2 will be called nonanalytic terms due to their
small-k nonanalytic behavior.

Scaling out a by substituting k̃ = a1/αk and x̃ = a−1/αx,
the inverse Fourier transform of the first term of w̃S(k̃) gives
[1,19]

1

π

∫ ∞

0
cos(k̃x̃) exp(−k̃α)dk̃ = Lα(x̃), (16)

where Lα(x̃) ≡ Lα,1(x̃), and
∫∞
−∞ Lα(x̃)dx̃ = 1. Thus the first

term gives the Lévy CLT as expected.
Each additional term in Eq. (15), when transformed back

to x̃ space includes an integral of the form

Tα,γ (x̃) = 1

π

∫ ∞

0
cos(k̃x̃) exp(−k̃α)k̃γ dk̃. (17)

These expressions where introduced also in the context of
Lévy Ornstein-Uhlenbeck process [20–22].

A term of this form can be written as a derivative of order
γ (not necessarily integer) of Lα and of what we call the
conjugate Lévy function:

Rα(x̃) = 1

π

∫ ∞

0
sin(k̃x̃) exp(−k̃α)dk̃, (18)

such that

Tα,γ (x̃) = ν1(x̃Dγ
∞ [Lα(x̃)] ) − ν2(x̃Dγ

∞ [Rα(x̃)] ), (19)

where ν1 = cos( γπ

2 ) and ν2 = sin( γπ

2 ). In Eq. (19) we have
used the Weyl-Reimann-Liouville [23,24] definition for the
fractional derivative x̃D

γ
∞ (for more details, see Appendix B).

This expression holds both for integer (odd and even) and for

noninteger γ . When γ is an even integer (in which case we
replace γ with 2j ), the second term vanishes and the first term
reduces to (−1)j d2j /dx̃2jLα(x̃). For odd integer γ = 2j + 1,
on the other hand, the first term vanishes and the second term
reduces to (−1)j d2j+1/dx̃2j+1Rα(x̃).

The inverse Fourier transform of Eq. (15) written in terms
of Tα,γ (x̃) gives

wS(x̃) =
[
Lα(x̃) +

∞∑
r=1

br

aγr/αnγr/α−1
Tα,γr

(x̃)

]
. (20)

Indeed, this expansion is general in the sense that it covers
both the Lévy regime (where the variance diverges) and the
Gaussian regime. This expansion in the Gaussian regime
includes two cases: (i) the case where all moments exist
(the classical Edgeworth expansion); and (ii) the case where
only a finite number of higher moments exist (i.e., the
fractional Gauss Edgeworth expansion). In the Lévy regime,
α < 2, we call the expression in Eq. (20) the fractional Lévy
Edgeworth expansion. In the Gaussian regime, α = 2, one
gets L2(x̃) = Zσ (x̃) (where x̃ = x/a1/α is related to σ by
a = σ 2/2) and I2(x̃) = (1/π )D(x̃/2) (D(·) is the Dawson
function [9]), and the following T2,γr

(x̃) terms could be either
regular integer-order or fractional derivatives of L2(x̃) and
I2(x̃).1 As a result, when not all the moments exist, the density
function in Eq. (20) reduces to the fractional Gauss Edgeworth
expansion. In the Gaussian regime, there exists an exception,
i.e., for PDFs of the form w(x) ∼ x−(1+α) for large x, when α

is an even integer. In this particular case, w̃(k) contains terms
such as exp(−a|k|α)|k|γ ln |k|, and one has to define the special
T ln

α,γ function:

T ln
α,γ (x̃) = 1

π

∫ ∞

0
cos(k̃x̃) exp(−k̃α) ln(k̃)k̃γ dk̃. (21)

For the analysis of this particular case, see, e.g., Ref. [4].

B. Further investigation of Tα,γ

In order to reveal the behavior of these series in the
limits of large and small x̃, it is instructive to express
Tα,γ (x̃) in terms of H -Fox functions [24]. Moreover, since
Tα,γ (x̃) is the sum of fractional derivatives of Lα(x̃) and
Rα(x̃), it is convenient to express them in terms of H -Fox
functions, because a fractional derivative of an H function
is another H function with shifted indices [24]. We dis-
cuss these functions in detail in Appendix A, and show
their relation to the fractional derivatives in Appendix B.
Since Tα,γ (x̃) = Re[

∫∞
0 exp(−ik̃x̃) exp(−k̃α)k̃γ dk̃], and using

the Mellin transform, exp(−ik̃x̃) = 1/(2πi)
∫
L

�(s)(ik̃x̃)−sds

and integrating over k̃ (for more details, see Appendix A 2),
one may express Tα,γ (x̃) as the Mellin-Barnes integral [25]:

Tα,γ (x̃) = 1

2πiα

∫
L

�(s)�
( 1+γ−s

α

)
�
(

1−s
2

)
�
(

1+s
2

)x−sds. (22)

1The fractional derivatives of L2(x̃) and I2(x̃) can be written in
terms of the parabolic-cylindric functions (see e.g., [9]) as presented
in Eq. (49).
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By definition, this integral is an H -Fox function [24,26]:

Tα,γ (x̃) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
α
H

1,1
2,2

[
1
x̃

∣∣∣ (1,1),
(

1
2 , 1

2

)
( 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

) ], 0 < α < 1,

1
α
H

1,1
2,2

[
x̃

∣∣∣
(
1 − 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

) ]
, 1 < α � 2.

(23)

For γ = 0, Eq. (23) reduces to the H -Fox function represent-
ing the symmetric Lévy α-stable density function, and also for
γ = 0 and α = 2 to the Gaussian density function [26,27].

For α = 2 and even γ , one returns to the appropriate Gauss-
Hermite function (see, e.g., Fig. 3)

T2,γ (x̃) = 1

2
H

1,1
2,2

[
x̃

∣∣∣∣
(
1 − 1+γ

2 , 1
2

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
]

= 1

2γ /2

1

2
√

π
e− x̃2

4 Hγ

(
x̃√
2

)

= 1

2γ /2
Z√

2(x̃)Hγ

(
x̃√
2

)
, (24)

which is the regular term generated by the Edgeworth
expansion in Eq. (9).

One may extract the behavior of Tα,γ (x̃) for large and small
x̃ values. In Appendix A we derive the following series for
Tα,γ (x̃). For the small x̃ regime, when α > 1 we get

Tα,γ (x̃) = 1

απ

∞∑
n=0

(−1)n

�(1 + 2n)
�

(
1 + γ + 2n

α

)
x̃2n, (25)

while for large x̃ when 0 < α < 1 we get

Tα,γ (x̃) = 1

π

∞∑
n=0

[
(−1)n� (1 + γ + nα)

�(1 + n)

× cos

(
1 + γ + nα

2
π

)
x̃−(1+γ+nα)

]
, (26)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

x̃

T
α

,γ
(x̃

)

γ = 0.6
γ = 0.9
γ = 1.1
γ = 1.2
γ = 1.3

FIG. 1. (Color online) Tα,γ (x̃) for α = 0.5, and for various γ

values. The Tα,γ (x̃) values were calculated both by numerical inverse
Fourier transform of the expression in Eq. (17) (markers) and by
calculating the series expansion in Eq. (26) with 2 × 105 terms
(dashed lines). Note that we only illustrate the regime γ > α, since
these are the terms that appear in our series expansion.

0 1 2 3 4

−0.2

0

0.2

0.4

0.6

0.8

x̃

T
α

,γ
(x̃

)

γ = 1.4
γ = 2.1
γ = 2.6
γ = 3
γ = 3.5

FIG. 2. (Color online) Tα,γ (x̃) for α = 1.3, and for various γ

values. The Tα,γ (x̃) values were calculated as in Fig. 1.

Using MATHEMATICA for selected values of rational pairs of
α and γ , this series could be represented by combinations
of special functions. Each of these series expansions for Tα,γ

is a converging series for the suitable α range as mentioned
above. However, one may still use the small x̃ expansion for
0 < α < 1 and vice versa, while remembering that in that
range of αs the series is an asymptotic one.

In order to better understand the dependence of Tα,γ (x̃)
on α and γ , we plot Tα,γ (x̃) for different values of α and
γ . In Fig. 1 we plot Tα,γ (x̃) for α = 0.5 and different γ . In
Fig. 2 we plot Tα,γ (x̃) for α = 1.3 and different γ . As one can
observe, these terms are positive at the center, and decreasing
until they become negative, and then increasing again so that
asymptotically they tend to zero.

γ affects the amplitude of Tα,γ (x̃), i.e., the maximal (at x̃ =
0) and minimal (negative) values of Tα,γ (x̃). One has to keep in
mind that for γ → 0 we get Tα,γ (x̃) → Lα(x̃), which is always
positive. This implies that as γ decreases the negative area also
decreases, and since

∫∞
0 Tα,γ (x̃)dx̃ = 0 (for all γ except for

γ = 0) since γ = 0 yields a “pure” Lévy α-stable density
function which is normalized and the additional terms in the
series must preserve the normalization, so that the integral
over them must vanish. As can be seen in Figs. 1 and 2, when
γ decreases, both the positive and negative parts of Tα,γ (x̃)
decrease, and in addition the value of x̃ where Tα,γ (x̃) crosses
the x̃ axis increases so that for γ → 0 this value should go to
infinity, to recover the positive definite Lα(x̃) PDF.

0 1 2 3 4 5

−20

0

20

40

x̃

T
α

,γ
(x̃

)

γ = 4
γ = 8
γ = 10
γ = 12

FIG. 3. (Color online) Tα,γ (x̃) for α = 2 and even γ . These
functions corresponds to the Gauss-Hermite functions. The Tα,γ (x̃)
values were calculated as in Fig. 1.

052124-4



FRACTIONAL EDGEWORTH EXPANSION: CORRECTIONS . . . PHYSICAL REVIEW E 91, 052124 (2015)

0 1 2 3 4 5

−0.1

0

0.1

0.2

x̃

T
α

,γ
(x̃

)
α = 1.6
α = 1.9
α = 2.2
α = 2.5
α = 2.9

FIG. 4. (Color online) Tα,γ (x̃) for γ = 3 and various α values.
The Tα,γ (x̃) values were calculated as in Fig. 1.

When trying to characterize the effect of increasing α on
Tα,γ , we first refer to the well studied special case of γ = 0.
In this case, for α < 2 we get Tα,γ (x̃) = Lα(x̃). Increasing α

lowers the central peak and widens the central region of the
density function until for α = 2 this term becomes a Gaussian.
The same behavior also holds for γ > 0 where increasing α

makes the central peak lower, but the central region becomes
wider. The value of x̃ where Tα,γ (x̃) crosses the axis (which
for the positive definite Lévy and Gaussian is going to infinity)
increases as can be seen in Fig. 4.

C. Leading order fractional Edgeworth expansion

Our approach for analyzing wS(x) both in the Gaussian
and Lévy regimes is based on the fact that higher terms in the
series expansion in Eq. (20) decrease more rapidly with n. We
first consider a case where the Gaussian CLT applies, however,
w(x) ∼ x−(α+1), where α > 2, so that sufficiently high order
moments diverge. The truncated Edgeworth expansion will
not give a good estimate of the tail of the PDF. The tail is
described by nonanalytical terms in the k expansion, while the
Gaussian CLT and the truncated Edgeworth expansion rely on
analytical terms of the type k2n exp(−k2) when n is an integer.
For example, the function w(x) = 3/2π (1 + x6) is expanded
in the Fourier space to

w̃(k) = 1 − k2

4
+ k4

24
− |k|5

80
+ · · · , (27)

where the three terms (up to the k4 term) are analytic, and the
terms from the |k|5 belong to the nonanalytical part.

In the leading order fractional Edgeworth expansion we
neglect all terms in the series that are higher than the first
nonanalytic term. In the Lévy regime, all the terms are
nonanalytic (α < 2), since even the second moment diverges
and in this regime we take only the first term of the series. In the
Gaussian regime (finite variance, α = 2), however, we need
to take all the analytic terms first (the truncated Edgeworth
series), but since these terms do not capture the behavior of
the heavy-tailed nature of the w(x) (its diverging moments) we
still need to add the first nonanalytic term in order to capture
the power-law decay of the tails.

In the latter case (Gaussian regime), for PDFs that decay as
Ax−(1+α) (α > 2) for large x, this approach yields

w̃S(k) = e−σ 2k2/2

[
1 +

ν<α∑
ν=1

P2ν(ik)n−ν + 1

nα/2−1
ξ (k)

]
, (28)

where Pν is defined in Eq. (8) and the summation of the
Edgeworth part (second term in the brackets) is only over
even values of ν [because of the symmetric nature of w(x)]
and is over values of ν up to but not including α. The last term
is given by

ξ (k) =
{− Aπ

�(α+1) sin(απ/2) |k|α, α 	= 2n,

2Aπ(−1)α/2

�(α+1) |k|α ln |k|, α = 2n.
(29)

The corresponding wS(x) is then

wS(x) = Zσ (x)+
ν<α∑
ν=1

ζ2ν

(√
2x
σ

)
nν

+ 2(1+α)/2bα

nα/2−1σ 1+α
T2,α

(√
2x

σ

)
.

(30)

where ζν is defined using the Tα,γ terms

ζν

(√2x

σ

)
=
(√

2

σ

)ν+2r+1 ∑
{km}

T2,ν+2r

(√
2x

σ

)

×
ν∏

m=1

1

km!

(
κm+2

(m + 2)!

)km

, (31)

where r and the sets {km} are the same as in Eq. (4), from
Eq. (29):

bα =
⎧⎨
⎩

− Aπ
�(α+1) sin(απ/2) , α 	= 2n,

2Aπ(−1)α/2

�(α+1) , α = 2n,
(32)

where for the case of even α, the T2,α is defined as in Eq. (24).
In the Lévy regime (0 < α < 2), as mentioned, all the

cumulants diverge. As a consequence there are no terms in the
Edgeworth expansion, and only the nonanalytic terms exists.
We used the same scheme as in Eqs. (14)–(20). In Eq. (15)
we expand w̃S(k) in a power series in two stages: first, we
use the expansion w̃(k) = 1 + a1|k|α1 + a2|k|α2 + O(|k|α2 ),
where α ≡ α1, a ≡ −a1 is a positive constant depending only
on α, a = π/[�(α + 1) sin(απ/2)] [28], α2 > α, and a2 is a
constant depending on the explicit form of w(x). Then we
expand the ln(1 + x) 
 x − x2/2 and truncate the series after
its second term:

w̃S(k) 
 e−a|k|α [1 + Cn|k|γ ], (33)

where

γ =
{

α2, α2 < 2α,

2α, α2 � 2α,
(34)

and

Cn = 1

nγ/α−1

⎧⎨
⎩

a2, α2 < 2α,

−a2/2, α2 > 2α,

a2 − a2/2, α2 = 2α,

(35)

and the leading order fractional Lévy Edgeworth takes the
form

wS(x) 
 1

a1/α

[
Lα(a−1/αx) + Cn

aγ/α
Tα,γ (a−1/αx)

]
, (36)

where γ and Cn depend on the explicit form of w(x) as in
Eqs. (34) and (35). The possible values of γ for a given α
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FIG. 5. The strip of possible γ values for the first correction term,
Tα,γ (x̃), as a function of α shown as the shaded area in the figure.

value taken from Eq. (34) are shown in Fig. 5. As discussed in
the previous section, Tα,γ (x) is positive in its central part, and
negative in the edges. The effect of the leading order fractional
Lévy Edgeworth term on the PDF depends on the coefficient
Cn in Eq. (36). If Cn is positive, this correction will increase the
probability for the small x values, and decrease the probability
of large values. If Cn is negative, the effect will be opposite.

IV. EXAMPLE: COLD ATOMS IN AN OPTICAL LATTICE

An important physical application of the above methods is
in the field of atoms in an optical lattice undergoing diffusion
in momentum space. [29,30]. It has been shown that the atoms
are subjected to a cooling force (in dimensionless units [31])
of the form

F (p) = − p

1 + p2
, (37)

where p is the dimensionless momentum of the atom. This
cooling force acts to decrease the momentum of the atom to
zero while the fluctuations in momentum can be treated as
a diffusive process (in momentum space) causing heating. In
the semiclassical picture, one may describe the PDF of the
momentum of an atom as the solution of a Fokker-Planck
equation (given, e.g., in Ref. [31]). The equilibrium solution
of this equation, Weq(p), is given by

Weq(p) = N (1 + p2)−1/(2D). (38)

Here, N = �( 1
2D

)/[
√

π�( 1−D
2D

)] is a normalization constant,
and D, the dimensionless diffusion constant, is defined by
D = cER/U0, where U0 is the depth of the optical potential
and ER the recoil energy depends on the atomic transition
involved [29,32]. Laser cooling experiments indeed show this
kind of steady state solution, where D can be tuned during the
experiment to achieve different steady state behavior [33]. The
transition between normal (Gaussian) and anomalous (Lévy)
diffusion in space is also observed [34].

In what follows, we derive the approximate density function
for the sum of the momenta of n such atoms scaled by the
appropriate n1/α where α depends on the value of D, as
will be explained later. For different values of D there are
three different types of Weq(p). For D > 1 this function is
not normalizable, and we will not analyze this case further.

For D < 1, however, there are still two possibilities, the
Gaussian regime 0 < D < 1/3 where the variance is finite,
σ 2 = D/(1 − 3D), and the Lévy regime 1/3 < D < 1, where
the variance diverges. The characteristic function of Weq(p) is

w̃(k) = 23/2−1/2D

�(1/2D − 1/2)
|k| 1

2D
− 1

2 K 1
2D

− 1
2
(|k|), (39)

where K is the modified Bessel function of the second kind,
defined as

Kν(k) = π

2

I−ν(k) − Iν(k)

sin(νπ )
, (40)

and Iν(k) is the modified Bessel function of the first kind, with
the Froebenius expansion:

Iν(k) =
∞∑

m=0

1

m!�(m + ν + 1)

(
k

2

)2m+ν

. (41)

This series expansion is valid only for noninteger values of
ν. The integral ν case can be treated as the limit of the
nonintegral one using the methods in Ref. [9]. Integer values
of ν appear when D = 1/(2n + 1) (n is a positive integer),
i.e, in the Gaussian regime. For these specific D values the
series expansion of the modified Bessel K contains logarithmic
terms. For example, for D = 1/5 we get

w̃(k) = 1

4
k2K2(|k|)

= 1 − k2

4
+ 1

64
(3−4γE +4 log(2)−4 log(|k|))k4+· · · ,

(42)

where γE 
 0.5772 is the Euler-Mascheroni constant. As
mentioned above, these cases will not be treated here.

For this kind of power-law decaying PDF, even in the
Gaussian regime that will be presented below, the Edgeworth
series does not converge, since higher moments do not exist.
Using Eq. (41) and defining ν = 1/2D − 1/2 we get

w̃(k) =
∞∑

m=0

[
�(1 − ν)

m!�(m − ν + 1)

( |k|
2

)2m

− �(1 − ν)

m!�(m + ν + 1)

( |k|
2

)2(m+ν) ]

= 1 − �(1 − ν)

�(1 + ν)22ν
|k|2ν + �(1 − ν)

�(2 − ν)22
|k|2 + · · · .

(43)

To analyze this further, we need to break it down to
two cases. When 2ν > 2 (which occurs when 0 < D < 1/3)
we are in the Gaussian regime, with the leading order term
exp(−σ 2k2/2) where σ 2 = D/(1 − 3D):

w̃S(k) 
 e−σ 2k2/2

[
1+

n<2ν∑
n=1

P2n(ik)− �(1−ν)

�(1+ν)22νnν−1
|k|2ν

]
,

(44)

where P2n(ik) is defined by Eq. (8) and the sum runs over all the
even powers of k from 4 to the maximal even integer smaller
than 2ν. This truncated Edgeworth correction will vanish (so
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FIG. 6. (Color online) wS(P) for D = 1/6 and n = 20 drawn in
a semi-log scale. A comparison between the CLT, the exact solution,
the truncated Edgeworth expansion, and the (leading order) fractional
Gauss Edgeworth expansion.

that there are no analytic terms) at the point where the fourth
moment of w(x) diverges (i.e., for D > 1/5). It is easy to
show that the last term in this equation (the correction term) is
a special case of Eq. (29).

When 2ν < 2 (when 1/3 < D < 1) we are in the Lévy
regime, and α = 2ν = 1/D − 1, so that the leading order
fractional Lévy Edgeworth expansion of w̃S(k) takes the form

w̃S(k) 
 e−aα |k|α

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1+ �(1−α/2)

�(2−α/2)22n2/α−1 |k|2], α > 1,[
1− �2(1−α/2)

�2(1+α/2)22α+1n
|k|2α

]
, α < 1,

1, α = 1,

(45)

where aα ≡ �(1 − α/2)/�(1 + α/2)2α and the leading term
here agrees with Eqs. (33)–(35). In the last case, corresponding
to D = 1/2, there is no correction term, since in this case the
single atom momentum distribution [in Eq. (38)] already gives
the Cauchy distribution, i.e., the L1(x) which is stable.

A. Gaussian regime

In order to find Weq(P), the PDF of the random variableP ≡∑n
j=1 pj/n1/2, we calculate numerically the inverse Fourier

transform of w̃(k/n1/2)n using Eq. (39). In what follows we
refer to this result as the exact solution, Weq(P).

In the Gaussian regime, (even) moments exist only up to
the highest integer that is smaller than 1

D
− 1. For example,

for 1/5 < D < 1/3 where even the fourth moment does not
exist, the truncated Edgeworth reduces to the CLT. In Figs. 6
and 7 we compare the CLT Zσ (P) = 1√

2πσ 2
exp(−σ 2P2/2),

the exact solution Weq(P), the truncated Edgeworth series
W (te)(P), and the fractional Gauss Edgeworth expansion,
W (fge)(P), for D = 1/6 (corresponding to σ 2 = 1/3) and
D = 0.3 (corresponding to σ 2 = 3). Using Eq. (44) without
the nonanalytic term (and transforming back to P space), the
truncated Edgeworth expansion in this case takes the form

W (te)(P) = Z1/
√

3(P) + 2(
√

6)5

3 × 4!n
T2,4(

√
6P)

=
√

3

2π
e−3P2/2

[
1 + 3

4n
(1 − 6P2 + 3P4)

]
. (46)

0 2 4 6 80

0.05

0.1

0.15

0.2

0.25 CLT
exact
truncated Edgeworth
fractional Edgeworth

FIG. 7. (Color online) wS(P) for D = 0.3 and n = 200. A com-
parison between the CLT, the exact solution, the truncated Edgeworth
expansion (coincides with the CLT for D = 0.3), and the (leading
order) fractional Gauss Edgeworth expansion.

Adding the first nonanalytic term in Eq. (44) (and transforming
back to P space) gives

W (fge)(P) = W (te)(P) − 2333

45n3/2
T2,5(

√
6P)

= W (te)(P) − 3

5πn3/2

[
8 + 9P2(−3 + P2)

− 3
√

6P
(

5 − 10P2 + 3P4

)
Daw

(√
3

2
P
)]

.

(47)

By asymptotic expansion of the Dawson function for large P
values, we find that W (fge)(P) decays as ∼1/P6 as expected
for D = 1/6, since Weq(p) ∼ p−1/D in Eq. (38). As can be
seen in Fig. 6, the truncated Edgeworth expansion fits the exact
solution better than the CLT, but for the tails of the density
function this approximation breaks down. Adding the non-
analytic term to the Edgeworth series corrects this and the
two curves coincide even for the moderate n = 20. As D ap-
proaches 1/3, the fractional Gauss Edgeworth approximation
converges to the exact solution for higher n values, while
the truncated Edgeworth correction cannot recover the exact
solution behavior even for much higher n values, and even
the central part of the truncated Edgeworth density function is
significantly different from the exact solution as can be seen,
for example, in Fig. 7 for n = 200.

Since for n → ∞ all the above PDFs coincide, and the
higher n is, the closer the PDFs will be to each other, a good
measure for evaluating the quality of these approximations is to
calculate n∗ for which the approximated PDF is close enough
to the exact solution. We calculate n∗ as the n for which∫ ∞

−∞
(Wap(P) − Weq(P))2dP � εcut, (48)

where Wap(P) corresponds to W (te)(P) or W (fge)(P), and εcut

is a tunable threshold.
In Fig. 8 we examine the convergence of the approximate

PDFs to the exact solution for different D values. As can be
seen, whereas the convergence of the truncated Edgeworth
expansion becomes very slow as D → 1/3 (high values of
n∗), the (first-term) fractional Gauss Edgeworth approximation
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FIG. 8. (Color online) n∗ for different D values in the Gaus-
sian regime, where n∗ measures the convergence of the truncated
Edgeworth expansion (blue) and the (leading order) fractional Gauss
Edgeworth expansion (orange) to the exact solution. εcut = 3 × 10−4.
The figure illustrates that the truncated Edgeworth does not work
so well compared to the fractional Gauss Edgeworth expansion. In
the inset we show that the leading order fractional Gauss Edgeworth
indeed has a slight increment in n∗ when D approaches 1/3.

yields much faster convergence (smaller values of n∗). The
reason for this slow convergence of the truncated Edgeworth
series is that the Edgeworth series is an expansion around
a Gaussian. The inverse Fourier transform of the Edgeworth
terms has the form of Hn(P/σ )Zσ (P) where Hn is the Hermite
polynomial, and for large values of P the tails behavior is
controlled by the exponential decay which does not mimic
the power-law decay of the exact solution. The nonanalytic
expansion indeed decays according to the exact solution’s
power law, as we will now show. The inverse Fourier transform
of the nonanalytic term is given by the integral∫ ∞

0
dk kγ e−σ 2k2/(2) cos(kP)

= 1

2σ (γ+1)/2
�(γ + 1)e−P2/4σ 2

× [D−(γ+1)(−iP/σ ) + D−(γ+1)(iP/σ )], (49)

where γ = 1/D − 1 and Da(z) is the parabolic-cylindric func-
tion [9], which for large z goes to exp(−z2/4)za . Substituting
in this large P asymptotic behavior, the Gaussian term cancels
and we are left with a power-law decay where T2,γ (P) ∼
1/σ γ+1�(γ + 1)P−(γ+1). As can be seen in Fig. 7 this addition
of the nonanalytic term gives a pretty good approximation to
the exact solution, suggesting that the power-law decay of the
exact solution decays as the expected P−(γ+1).

The Edgeworth and the nonanalytic corrections are still
expansions around the Gaussian, but as D approaches 1/3 we
move from the Gaussian regime towards the Lévy regime. As
D → 1/3 the convergence to the exact solution becomes very
slow, and only for extremely high n do the PDFs approach the
exact solution. For all values of D, the (first-term) nonanalytic
approximation yields faster convergence (smaller value of n∗)
than the truncated Edgeworth one due to the transition from
exponential to power-law decay.

For D → 1/3 from below, even though the variance of
Weq(p) is finite, the convergence of the exact solution to

0.36 0.38 0.4 0.42 0.44

50

100

150

D

n
∗

FIG. 9. (Color online) n∗ values for different D values in the
Lévy regime, where n∗ measures the convergence of the leading
order fractional Edgeworth expansion to the exact solution. εcut =
3 × 10−4.

a Gaussian is seen only for extremely high n values (see
Fig. 8), because the variance grows as σ 2 = D/(1 − 3D)
which diverges at D = 1/3.

B. Lévy regime

For 1/3 < D < 1, where the variance diverges, the basin
of attraction of the PDF is the Lévy α-stable density function,
where for cold atoms, α = 1

D
− 1. We will derive, therefore,

the PDF of the random variable P ≡ ∑n
j=1 pj/n1/α . As we

have discussed, unlike the expansion in the Gaussian regime,
the series in this regime is entirely nonanalytic in nature.
Although for large n the exact solution tends to the Lévy
density function, when D approaches 1/3 (from above in
the Lévy regime), the n needed for this convergence grows
asymptotically. This is clearly shown in Fig. 9 where we
have plotted n∗ (defined as above), comparing the leading
order fractional Lévy Edgeworth and the exact solution. Even
though for large n the PDF goes to the pure Lévy α-stable
density function, when D → 1/3 this convergence becomes
very slow.

We will now show this slow convergence effect through
the following example cases. When D = 3/7, corresponding
to α = 4/3, γ = 2, a 
 1.178, and Cn = 3/(4n1/2) and using
Eqs. (33)–(36),

wS(P) 
 1

a3/4

[
L 4

3
(a−3/4P) + Cn

a3/2
T 4

3 ,2(a−3/4P)

]
. (50)

For D = 11/30 which is much closer to 1/3, we get
the corresponding α = 19/11, γ = 2, a 
 2.186, and Cn =
11/(6n3/19) yielding

wS(P) 
 1

a11/19

[
L 19

11
(a−11/19P) + Cn

a22/19
T 19

11 ,2(a−11/19P)

]
.

(51)

In Fig. 10 we plot wS(P) for the above examples for
different n values (n = 10,100,1000) in order to compare
the convergence to the exact solution as D approaches 1/3.
It can be observed that for D = 3/7, even for the moderate
n = 10 the correction gives much better convergence to the
exact solution, compared to the α-Lévy stable PDF. Increasing
n, both the exact solution and the leading term fractional
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FIG. 10. (Color online) wS(P) for D = 3/7, corresponding to α = 4/3 (left-hand side) and D = 11/30, corresponding to α = 19/11
(right-hand side) for n = 10 (first row), n = 100 (second row), and n = 1000 (third row). A comparison between Lα(x), the exact solution,
and the leading order fractional Lévy Edgeworth expansion.

Edgeworth approximation converge to the α-Lévy stable PDF.
Nevertheless, the fractional Lévy Edgeworth approximation
still approximates the exact solution better than the α-Lévy
stable PDF. For D = 11/30, however, the convergence is
much slower. In the range of n presented here, both the Lévy
density function and the corrected solution do not coincide
with the exact solution, even though the fractional Edgeworth
expansion gives a better approximation to the exact solution
than the Lévy density function. For much higher n values,
however, the approximation Eq. (51) indeed coincides (up to
our numeric accuracy) with the exact solution, as shown in
Fig. 9.

In contrast to the Gaussian regime where the nonanalytic
term corrects the tail’s behavior from exponential decay to
a power-law one, in the Lévy regime, for high P values the
density function already decays with the same power law as
the Lévy, and the leading order fractional Lévy Edgeworth
correction term takes care mostly of the center of the density
function. This behavior of the tails is clearly shown in Fig. 11,

100 101

10−5

10−4

10−3

10−2

10−1

Lévy

exact

fractional Edgworth

FIG. 11. (Color online) wS(P) for D = 11/30 and n = 100. A
comparison between Lα(x), the exact solution, and the leading order
fractional Lévy Edgeworth expansion in a log-log plot, in order to
highlight the power-low decaying behavior of the tails. The black
dashed line has the expected slope of α + 1 
 3 for D = 11/30, and
all of these curves converge to this slope for large P .
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FIG. 12. (Color online) ∂ log[wS (P=0)]
∂ log(n) as a function of log (n) for

different D values. Each curve converges asymptotically to its
suitable α. The curves corresponding to D = 0.1 and D = 0.3 tend
asymptotically to −0.5 as expected in the Gaussian regime, while the
curve corresponding to D = 0.3 converges for much higher n values.
For D equals 0.4, 0.5, and 0.6 the curves tend asymptotically to −1/α,
i.e., to −2/3, −1, and −3/2 respectively. In the Lévy regime, D = 0.5
gives a pure Lévy density function already for n = 1. For higher and
lower D values in this regime the convergence becomes slower, and
higher values of n are needed for the asymptotic convergence.

where we plotted wS(P) for D = 11/30 and n = 100 in a
semi-log plot,

A way to show the convergence of the central part of
these PDFs to their basin of attraction is to calculate the
dependence of wS(P) on n at P = 0 [35]. It will be more
instructive for this purpose (in order to show the different
attractors of the Gaussian and Lévy regimes) to use the PDF
of the sum P = ∑n

i=1 pi instead of normalizing it by n to
the appropriate power. For pure Zσ (P) and Lα(P) functions,
wS(P = 0) ∝ n−1/α [where for Zσ (P) we use α = 2]. By
plotting the dependence of wS(P = 0) on n one can see
how fast the density function converges to the stable density
function. In Fig. 12 we plot ∂ log (wS(P = 0))/∂ log (n) as a
function of log (n) which for large n goes to −1/α. As can
be seen, for 0 < D < 1/3 the curves converge asymptotically
to −1/2 while for 1/3 < D < 1 each curve converges to its
appropriate −1/α = D/(D − 1). Also, one may observe that
as D approaches 1/3 from both sides, the convergence of the
curves become much slower.

V. SUMMARY

In this article we have generalized the classical Edgeworth
expansion for finite n to PDFs which converge to the α-
stable Lévy density functions. In order to do this we used
a generalized Fourier series including fractional powers of k

and showed that the inverse Fourier transform of this series
may be written by means of a series of fractional derivatives
of the Lévy PDF and its conjugate, Rα(x) [Eq. (18)]. This
generalization is shown to be universal since it also gives
the classical Edgeworth series for PDFs in the Gaussian
regime when all the moments exist, and the fractional Gauss
Edgeworth expansion developed by Lam et al. [4] for PDFs
with finite variance but diverging moments.

For the correction terms we introduced a new family of
special functions, Tα,γ (x) Eq. (17), for which the Gaussian,

the Lévy, and the Hermite-Gauss functions are special cases.
We also represented these functions as H -Fox functions via the
Mellin-Barnes integral. We investigated the behavior of these
functions in the context of our correction terms (for specific
values of α and γ ).

We have applied our results to the sum of momenta of cold
atoms, and showed that taking even only the first correction
term of our fractional series (leading term approximation)
already gives much better matching to the exact solution
for small values of n. At the transition between Gauss to
Lévy behaviors, we have found very slow convergence to the
asymptotic result.
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APPENDIX A: Tα,γ (x) AS THE H-FOX FUNCTION

1. The H-Fox function

Fox [25,36] defined the H function by

Hm,n
p,q (z) = 1

2πi

∫
L

χ (s)zsds, (A1)

where L is a path in the complex plane C to be described
later, z = exp(log |z| + i arg z) and the integral density χ (s)
is given by

χ (s) = A(s)B(s)

C(s)D(s)

=
∏m

j=1 �(bj − Bjs)
∏n

j=1 �(1 − aj + Ajs)∏q

j=m+1 �(1 − bj + Bjs)
∏p

j=n+1 �(aj − Ajs)
,

(A2)

n, m, p, and q are integers satisfying

0 � n � p, 1 � m � q,

Aj ,Bj are positive numbers, and aj ,bj are in general complex
numbers. When no elements appear in one of the multiplica-
tions in Eq. (A2) one gets an empty product which is taken to
equal unity:

m = 0 → A(s) = 1, n = 0 → B(s) = 1,

m = q → C(s) = 1, n = p → D(s) = 1.

Since Hm,n
p,q (z) depends on the sets {ai,Ai} and {bi,Bi}, a

common notation for Hm,n
p,q (z) is

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z

∣∣∣∣(aj ,Aj )j=1,...,p

(bj ,Bj )j=1,...,q

]
. (A3)

This representation of the H -Fox function via an integral
involving products and ratios of Gamma functions is known as
the Mellin-Barnes integral [37,38]. The singular points of the
kernel χ (s) are the poles of the Gamma functions in A(s) and
B(s), which are assumed to not coincide. Denoting the sets
of poles by P (A) and Q(B) respectively, P (A) ∩ Q(B) = ∅.
The conditions for the existence of the H -Fox function can be
determined by examination of the convergence of the integral
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in Eq. (A1), which depends on the selection of the contour L

and on certain relations between the parameters {ai,Ai} where
i = 1, . . . ,p and {bj ,Bj } where j = 1, . . . ,q. The contour L

in Eq. (A1) can be chosen as the contour in which all poles of
P (A) lie to its right and all poles of Q(B) lie to its left while
further L runs from c − i∞ to c + i∞. Other kinds of Barnes
contours are also possible (see e.g., [24,25]).

It was shown by Braaksma [25] that the Mellin-Barnes
integral in Eq. (A1) makes sense and defines an analytic
function of z in the following two cases:

(i)

μ =
q∑

i=1

Bi −
p∑

j=1

Aj > 0, ∀z 	= 0. (A4)

(ii)

μ = 0 and 0 � |z| � δ where

δ =
q∏

i=1

(Bi)
Bi

p∏
j=1

(Aj )−Aj . (A5)

The convergence and asymptotic expansions (for z → 0
and z → ∞) are determined by applying the residue theorem
at the poles (which are by assumption simple poles) of the
Gamma functions in A(s) and B(s).

The H -Fox function has a few properties which are
important to our purposes [24]:

(i) The H -Fox function is symmetric in the pairs
(a1,A1), . . . ,(an,An), likewise (an+1,An+1), . . . ,(ap,Ap), in
(b1,B1), . . . ,(bm,Bm) and in (bm+1,Bm+1), . . . ,(bq,Bq).

(ii) If one of the (aj ,Aj ) j = 1, . . . ,n, is equal to one of
the (bj ,Bj ), j = m + 1, . . . ,q or one of the pairs (aj ,Aj ),
j = n + 1, . . . ,p is equal to one of the (bj ,Bj ), j = 1, . . . ,m

then the H -Fox function reduces to a lower order H function,
namely, p and q, and n (or m) decrease by unity. Provided that
n � 1 and q > m we have

Hm,n
p,q

[
z

∣∣∣∣ (aj ,Aj )1,p

(bj ,Bj )1,q−1(a1,A1)

]

= H
m,n−1
p−1,q−1

[
z

∣∣∣∣ (aj ,Aj )2,p

(bj ,Bj )1,q−1

]
, (A6)

Hm,n
p,q

[
z

∣∣∣∣(aj ,Aj )1,p−1(b1,B1)

(b1,B1)(bj ,Bj )2,q

]

= H
m−1,n
p−1,q−1

[
z

∣∣∣∣(aj ,Aj )1,p−1

(bj ,Bj )2,q

]
; (A7)

(iii)

zσHm,n
p,q

[
z

∣∣∣∣(aj ,Aj )1,p

(bj ,Bj )1,q

]

= Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣(aj + σAj ,Aj )1,p

(bj + σBj ,Bj )1,q

]
; (A8)

(iv)

1

c
Hm,n

p,q

[
z

∣∣∣∣(aj ,Aj )1,p

(bj ,Bj )1,q

]

= Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣(aj ,cAj )1,p

(bj ,cBj )1,q

]
, c > 0. (A9)

(v) Another useful and important formula for the H -Fox
function is

H
1,1
2,2

[
z

∣∣∣∣(aj ,Aj )1,p

(bj ,Bj )1,q

]
= H

1,1
2,2

[
1

z

∣∣∣∣(1 − bj ,Bj )1,q

(1 − aj ,Aj )1,p

]
,

(A10)

This last relation enables us to transform an H -Fox function
with μ < 0 and argument z to one with μ > 0 and argument
1/z.

2. Representation of Tα,γ (x)

In order to represent Tα,γ (x) by the H -Fox function first we
express Tα,γ (x) as a Mellin-Barnes integral. Tα,γ (x) is defined
as the following inverse Fourier transform:

1

π

∫ ∞

0
cos(kx) exp(−kα)kγ dk

= Re

{
1

π

∫ ∞

0
cos(kx) exp(−ikx − kα)kγ dk

}
. (A11)

Using the Mellin-Barnes representation of exp(−ikx):

exp(−ikx) = 1

2πi

∫
L

�(s)(ikx)−sds (A12)

[where L is a loop in the complex s plane that encircles the
poles of �(s) in the positive sense with end-points at infinity
at Re(s) < 0], we get

Tα,γ (x)

= Re

{
1

π

∫ ∞

0
exp(−kα)kγ

[
1

2πi

∫
L

�(s)(ikx)−sds

]
dk

}

= 1

π

1

2πi

∫
L

�(s) Re

{∫ ∞

0
exp(−kα)kγ (ik)−sdk

}
x−sds.

(A13)

The term in the brackets can be written as

Re

{∫ ∞

0
exp(−kα)kγ (ik)−sdk

}

= Re

{
i−s 1

α
�

(
1 + γ − s

α

)}

= 1

α
cos

(
πs

2

)
�

(
1 + γ − s

α

)

= 1

α
sin

(
π

2
(s + 1)

)
�

(
1 + γ − s

α

)

= π

α

�
( 1+γ−s

α

)
�
(

1−s
2

)
�
(

1+s
2

) , (A14)
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which finally gives:

Tα,γ (x) = 1

α

1

2πi

∫
L

�(s)�
( 1+γ−s

α

)
�
(

1−s
2

)
�
(

1+s
2

)x−sds. (A15)

This Mellin-Barnes integral can be written in terms of a H -Fox
function, following Eqs. (A1) and (A2):

Tα,γ (x) = 1

α
H

1,1
2,2

[
x

∣∣∣∣
(
1 − 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
]

. (A16)

3. Asymptotic expansion of Tα,γ (x)

The simple poles of �(s) and �( 1+γ−s

α
) in Eq. (A15) are

given by the disjoint sets of points

P (s) = {sν = 1 + γ + αν, ν = 0,1, . . . },
Q(s) = {sν = −ν, ν = 0,1, . . . }.

We distinguish between the following two cases:
(i) x → ∞: Choosing the contour L in Eq. (A15) as L =

L−i∞,+i∞ and closing the contour to the right by a semicircle
of radius R → ∞, we obtain the large x series asymptotic
expansion:

H
1,1
2,2

[
x

∣∣∣∣
(
1 − 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
]

=
∞∑

m=1

Res{χ (s)xs ; sm ∈ P (s)}

=
∞∑

m=0

lim
s→1+γ+mα

[s − (1 + γ + mα)] �(s)�
( 1+γ−s

α

)
�
(

1+s
2

)
�
(

1−s
2

) x−s

= α

π

∞∑
m=0

[
(−1)m� (1 + γ + mα)

�(1 + m)

× cos

(
1 + γ + mα

2
π

)
x−(1+γ+mα)

]
, (A17)

where we used the limit

lim
s→1+γ+mα

[s − (1 + γ + mα)] �

(
1 + γ − s

α

)
= α(−1)m

�(1 + m)

(A18)

and the property of �(z),

�(1 − z)�(z) = π

sin(πz)
, (A19)

where here z = 1/2 + (1 + γ + mα)/2.
Applying the ratio test to this series expansion, we get

ρ1 = lim
m→∞

∣∣∣∣∣�(1+γ +(m + 1)α)�(m + 1) cos
(
π

1+γ+(m+1)α
2

)
�(2 + m)�(1+γ + mα) cos

(
π

1+γ+mα

2

)
∣∣∣∣∣

� lim
m→∞

∣∣∣∣�(1 + γ + (m + 1)α)�(m + 1)

�(2 + m)�(1 + γ + mα)

∣∣∣∣
= lim

m→∞

∣∣∣∣ (γ + (m + 1)α)�(γ + (m + 1)α)

(m + 1)(γ + mα)�(γ + mα)

∣∣∣∣
=
⎧⎨
⎩

0, 0 < α < 1,

1, α = 1,

∞, α > 1.

(A20)

This series expansion converges absolutely for every value of
x 	= 0 in the interval 0 < α < 1. In this regime of α it is more
convenient to write the H -Fox function as a function of 1/x.
Using Eq. (A10) we find

H
1,1
2,2

⎡
⎣x

∣∣∣∣∣∣
(
1 − 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
⎤
⎦

= H
1,1
2,2

⎡
⎣ 1

x

∣∣∣∣∣∣
(1,1),

(
1
2 , 1

2

)
( 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
⎤
⎦ . (A21)

.
(ii) Near x = 0: The H -function is analytic for α ∈ (1,∞)

since then μ = 1 − 1/α > 0, ∀x 	= 0. Also for α = 1, μ = 0,
which implies an analytic H -Fox function for −1 < x < 1.
Choosing the same kind of contour as above, this time closing
it to the left by a semicircle of radius R → ∞, we find

H
1,1
2,2

[
x

∣∣∣∣
(
1 − 1+γ

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
]

= −
∞∑

m=1

Res{χ (s)xs ; sm ∈ Q(s)}

=
∞∑

m=0

lim
s→−m

(s + m)�(s)�
( 1+γ−s

α

)
�
(

1+s
2

)
�
(

1−s
2

) x−s

= 1

π

∞∑
m=0

(−1)m

�(1 + m)
�

(
1 + γ + m

α

)
cos

(
m

2
π

)
xm

= 1

π

∞∑
m=0

(−1)m

�(1 + 2m)
�

(
1 + γ + 2m

α

)
x2m. (A22)

where we used the limit

lim
s→−m

(s + m) �(s) = (−1)m

�(1 + m)
, (A23)

and the property of � in Eq. (A19) for z = 1/2 − m/2.
In this case the ratio test gives

ρ2 = lim
m→∞

∣∣∣∣ �
( 1+γ+2(m+1)

α

)
�(2m + 1)

�(1 + 2(m + 1))�
( 1+γ+2m

α

) ∣∣∣∣
= lim

m→∞

∣∣∣∣ �
( 1+γ+2(m+1)

α

)
(2m + 1)(2m + 2)�

( 1+γ+2m

α

) ∣∣∣∣
=
⎧⎨
⎩

∞, 0 < α < 1,

1, α = 1,

0, α > 1,

(A24)

and the series converges absolutely for every value of x in the
intervals

(−R1,R2) =
{

(−1,1) if α = 1,

(−∞,∞) if α > 1.
(A25)
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APPENDIX B: Tα,γ (x) BY WEYL FRACTIONAL
DERIVATIVES

1. The Weyl fractional derivative

The Weyl fractional derivative of order γ of a function f (x),
designated by xD

γ
∞, is defined by [24]

(xD
γ
∞f )(x) = (−1)m

(
d

dx

)m

(xW
m−γ
∞ f )(x)

= (−1)m
1

�(m − γ )

∫ ∞

x

f (t)dt

(t − x)1+γ−m
,

∞ < x < ∞, (B1)

where m − 1 � γ < m, m ∈ N , γ ∈ C, and xW
γ
∞ is the Weyl

fractional integral of order γ defined by

(xW
γ
∞f )(x) = 1

�(γ )

∫ ∞

x

f (t)dt

(t − x)1+γ−m
. (B2)

2. Tα,γ by fractional derivatives of Lα and Rα

According to Eq. (B1) the fractional derivative of exp(ikx)
is

(xDγ
∞[exp(ikx)]) = (−1)m

(
d

dx

)m

xWm−γ
∞ exp(ikx)

= (−1)m
(

d

dx

)m

(−ik)γ−m exp(ikx)

= (−ik)γ exp(ikx). (B3)

In the same fashion the Weyl fractional derivative of exp(−ikx)
is

xD
γ
∞[exp(−ikx)] = (−ik)γ . (B4)

As a consequence, the Weyl fractional derivative of cos(kx)
and sin(kx) will be given by

xD
γ
∞[cos(kx)] = cos

(
kx − γπ

2

)
(B5)

and

xD
γ
∞[sin(kx)] = sin

(
kx − γπ

2

)
. (B6)

Using the above definitions we can define the fractional
derivative of order γ of Lα and Rα by

xD
γ
∞[Lα(x)] = xD

γ
∞

[
1

π

∫ ∞

0
cos(kx) exp(−kα)dk

]

= 1

π

∫ ∞

0
(xDα∞[cos(kx)])(x) exp(−kα)dk

= 1

π

∫ ∞

0
cos

(
kx − γπ

2

)
exp(−kα)kγ dk,

(B7)

and

xD
γ
∞[Rα(x)] = xD

γ
∞

[
1

π

∫ ∞

0
sin(kx) exp(−kα)dk]

]

= 1

π

∫ ∞

0
(xDα∞[sin(kx)])(x) exp(−kα)kγ dk

= 1

π

∫ ∞

0
sin

(
kx − γπ

2

)
exp(−kα)dk. (B8)

By the identities

cos

(
kx − γπ

2

)
= cos(kx) cos

(
γπ

2

)
+ sin(kx) sin

(
γπ

2

)

and

sin

(
kx − γπ

2

)
= sin(kx) cos

(
γπ

2

)
− cos(kx) sin

(
γπ

2

)
,

and denoting ν1 = cos( γπ

2 ) and ν2 = sin( γπ

2 ), we achieve the
set of equations

xD
γ
∞[Lα(x)] = ν1

1

π

∫ ∞

0
cos(kx) exp(−kα)kγ dk

+ ν2
1

π

∫ ∞

0
sin(kx) exp(−kα)kγ dk,

xD
γ
∞[Lα(x)] = ν1

1

π

∫ ∞

0
sin(kx) exp(−kα)kγ dk

− ν2
1

π

∫ ∞

0
cos(kx) exp(−kα)kγ dk. (B9)

Multiplying the first term by 1/ν2 and the second term by 1/ν1

and subtracting the first from the second we get

1

ν2
Lα(x) − 1

ν1
Rα(x) =

(
ν1

ν2
+ ν2

ν1

)
Tα,γ (x), (B10)

which yields

Tα,γ = ν1xD
γ
∞ [Lα(x)] − ν2xD

γ
∞ [Rα(x)] . (B11)

Moreover it can be shown that Tα,γ (x) is a combination of
fractional derivatives of H -Fox functions, since we can repre-
sent the Lα(x) and Rα by their appropriate H -Fox functions.
A well-known result (presented originally by Schneider [27])
gave this representation for the Lévy α-stable distribution. One
can derive it from Eqs. (A16) and (A21) by taking γ = 0. For
0 < α < 1,

Lα(x) = 1

α
H

1,1
2,2

[
x

1

z

∣∣∣∣ (1,1),
(

1
2 , 1

2

)
(

1
α
, 1
α

)
,
(

1
2 , 1

2

)
]

, (B12)

and for 1 < α � 2,

Lα(x) = 1

α
H

1,1
2,2

[
x

∣∣∣∣
(
1 − 1

α
, 1
α

)
,
(

1
2 , 1

2

)
(0,1),

(
1
2 , 1

2

)
]

. (B13)

To represent Rα(x) as an H -Fox function, we first have to
write Rα(x) as a Mellin-Barnes integral:

Rα(x) = 1

π

∫ ∞

0
sin(kx) exp(−kα)dk

= − 1

π
Im

{∫ ∞

0
exp(−ikx) exp(−kα)dk

}
. (B14)

Setting exp(−ikx) as given in Eq. (A12) and integrating over
k, we get Rα(x):

Rα(x) = 1

2πiα

∫
L

�(s)�
(

1−s
α

)
�
(
1 − s

2

)
�
(

s
2

)x−sds, (B15)
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which coincides with the definition of the following H -Fox
functions. For 0 < α < 1,

Rα(x) = 1

α
H

1,1
2,2

[
x

1

z

∣∣∣∣ (1,1),
(
1, 1

2

)
(

1
α
, 1
α

)
,
(
1, 1

2

)
]

, (B16)

and for 1 < α � 2,

Rα(x) = 1

α
H

1,1
2,2

[
x

∣∣∣∣
(
1 − 1

α
, 1
α

)
,
(
0, 1

2

)
(0,1),

(
0, 1

2

)
]

. (B17)

Representing Tα,γ (x) as fractional derivatives of H -Fox func-
tions gives us a convenient way to calculate Weyl fractional
derivatives of H -Fox functions, since a Weyl fractional

derivative of a H -Fox is another H -Fox function with shifted
indices, given by the relation

xD
α
∞

(
xλ−1Hm,n

p,q

[
xσ

∣∣∣∣(ai,Ai)1,p

(bi,Bi)1,q

])

= (−1)Re(α)+1xλ−α−1H
m+1,n
p+1,q+1

×
[
xσ

∣∣∣∣ (ai,Ai)1,p,(1 − λ,σ )

(1 − λ + α,σ ),(bi,Bi)1,q

]
, (B18)

where α,λ ∈ C and Re(α),σ > 0 [24].
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