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Based on Santos’ general solution for the scaled-particle differential equation [Phys. Rev. E 86, 040102(R)
(2012)], we construct a free-energy functional for the hard-sphere system. The functional is obtained by a suitable
generalization and extension of the set of scaled-particle variables using the weighted densities from Rosenfeld’s
fundamental measure theory for the hard-sphere mixture [Phys. Rev. Lett. 63, 980 (1989)]. While our general
result applies to the hard-sphere mixture, we specify remaining degrees of freedom by requiring the functional
to comply with known properties of the pure hard-sphere system. Both for mixtures and pure systems, the
functional can be systematically extended following the lines of our derivation. We test the resulting functionals
regarding their behavior upon dimensional reduction of the fluid as well as their ability to accurately describe the
hard-sphere crystal and the liquid-solid transition.

DOI: 10.1103/PhysRevE.91.052121 PACS number(s): 05.70.Ce, 61.20.Gy, 65.20.Jk

I. INTRODUCTION

The hard-sphere system is a simple yet very important
model system in classical statistical physics. Both colloidal
[1] and molecular systems [2] can give rise to interactions
that are well described by the hard-sphere model where
particles either do not interact, as long as their hard cores
do not overlap, or experience an infinite repulsion, in the case
where an overlap is attempted. For general interactions the
hard-sphere model provides an important reference system
to which more elaborate, generally attractive, forces can be
added in perturbative treatments [3]. Even the pure hard-sphere
system exhibits nontrivial phase behavior in the form of a
first-order liquid-to-crystal transition [4].

One great benefit of the hard-sphere model is that very
accurate theoretical descriptions of both the homogeneous and
inhomogeneous fluid, and of the crystal phase are available
through a variety of methods [5], including perturbative
expansions, integral equation theory, and density functional
theory (DFT). The Percus-Yevick closure of integral equations
[6,7] allows for an analytical solution yielding approximations
to the direct correlation function, the structure factor, and the
equation of state of the homogeneous fluid, which are widely
used as a reference. The extension of the integral equation
method to inhomogeneous fluids gives accurate results (see,
e.g., Refs. [8–10]) but the solutions become cumbersome from
a numerical point of view. These numerical difficulties are
part of the reason why the crystal phase (being an extreme
realization of an inhomogeneous liquid) is largely unexplored
via integral equations; see, however, Ref. [11].

In contrast to integral equations, classical DFT [12,13],
which is based on a variational principle, provides a particu-
larly powerful framework for the treatment of fluid and crystal
phases in arbitrary external potentials and shall be the focus
of the present study. Classical DFT is also the starting point
for the derivation of the phase field crystal (PFC) model, a
generic coarse-grained model of the crystal phase [14]. In this

*hendrik.hansen-goos@uni-tuebingen.de

context, accurate DFT descriptions of the hard-sphere crystal
and solid-liquid interfaces serve as benchmarks for the PFC
modeling [15].

DFT of classical fluids in general [16], and of the hard-
sphere system in particular, has been studied since the late
1970s, but only since 1989, when Rosenfeld introduced
the fundamental measure theory (FMT) of hard-sphere fluid
mixtures [17], has a theory been available that has led
to DFT descriptions of both the fluid and crystal, which
exhibit excellent agreement with numerical simulations and
experimental findings. Rosenfeld’s work has inspired a lot
of studies both on applications of DFT to a large variety of
phenomena, and on ways to further improve FMT functionals.
These improvements of the original FMT can be divided into
two sectors. One body of work is devoted to improving the
equation of state (EOS) that is underlying the FMT, while the
other focuses on regularizing spurious divergences that are
inherent to Rosenfeld’s original FMT.

Basically, two routes have been employed in previous work
in order to regularize the spurious divergences of the original
FMT, which appear when strongly peaked density distributions
are studied. The first empirical modifications were based upon
the original set of Rosenfeld’s scalar and vectorial weighted
densities [18], while later work introduced an additional
tensorial weighted density [19,20]. Both approaches allow for
a successful description of crystals within FMT.

Regarding the implementation of more accurate EOSs it
should be noted that the original FMT obeys the Percus-Yevick
EOS, which is known to be inaccurate for large packing
fractions of the fluid. In contrast, the accurate Carnahan-
Starling EOS [21] is used as an input for the so-called White
Bear versions of FMT [22–24]. In the original White Bear
FMT, the use of the CS EOS leads to an inconsistency with an
exact relation from scaled-particle theory [22]. In the White
Bear Mark II (WBII) version of FMT, this inconsistency is
removed for the pure hard-sphere fluid; however, it is still
found for the hard-sphere mixture [24].

Recently, Santos has shown how the inconsistency arising
from using the CS EOS within FMT can be eliminated, at
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least for a homogeneous bulk system, even for mixtures [25].
A simple extension toward inhomogeneous systems has been
proposed by Santos [25]; however, the approach has been
shown to lead to unphysical behavior [26]. In particular, the
direct correlation function of the hard-sphere fluid as derived
from the Santos FMT has a spurious divergence for r → 0.

In the present paper we introduce an extension of Santos
free energy to inhomogeneous systems, which generates a
well-behaved direct correlation function, i.e., the problem
reported by Lutsko [26] is cured. When applied to the pure
hard-sphere fluid, the results of our new functional are of an
accuracy similar to those from the WBII version of FMT.
For instance, the direct correlation function derived from our
new FMT is always within 1% of the WBII result for all
fluid-packing fractions.

Our present FMT, which employs the original set of Rosen-
feld’s scalar and vectorial-weighted densities, is constructed
such that it can successfully describe the hard-sphere crystal.
Currently it is unclear how a tensorial-weighted density would
be incorporated into the framework of Santos’ free energy.
When the use of the tensorial-weighted density is desired, the
modified WBII version [13,24,27] still appears to be the best
choice. However, the use of only scalar and vectorial-weighted
densities reduces the complexity of the functional, which is
important, especially for time-consuming 3D computations or
if results using analytical methods are required.

The paper is organized as follows. In Sec. II we review
Santos’ consistent free energy for the hard-sphere mixture in
bulk and we present the general formulation of our free-energy
functional for the inhomogeneous hard-sphere mixture. In
Sec. III we focus on the case of a pure hard-sphere system,
i.e., a system of equally sized hard spheres, in order to
specify remaining degrees of freedom. We consider both an
approach that is based on dimensional reduction as well as the
introduction of an empirical parameter. We demonstrate that, in
additional to being very accurate for the hard-sphere fluid, the
new functional is able to correctly describe the hard-sphere
crystal. Finally, in Sec. IV we summarize our findings and
present our conclusions.

II. GENERAL FORMULATION OF THE FREE
ENERGY FUNCTIONAL

A. Santos’ free energy for hard-sphere mixtures in bulk

Santos’ free energy for the ν-component hard-sphere
mixture in bulk is obtained as a function of the well-established
scaled-particle variables

ξ0 =
ν∑

i=1

ρi, ξ1 =
ν∑

i=1

Riρi, ξ2 =
ν∑

i=1

4πR2
i ρi, and

ξ3 =
ν∑

i=1

4π

3
R3

i ρi, (1)

where Ri and ρi are the radius and number density of species
i, respectively.

In scaled-particle theory (SPT) the simplifying assumption
is made that the free-energy density � of the system is
a function only of the scaled-particle variables ξ0, . . . ,ξ3.
Using an exact relation regarding the energy required to

reversibly introduce an infinitely large sphere into the system,
the following SPT differential equation can be obtained [17]:

∂�

∂ξ3
= ξ0 − � +

3∑
j=0

∂�

∂ξj

ξj . (2)

A solution for Eq. (2) can be obtained based on dimensional
analysis. It can be shown that the only monomials which have
the dimension of � are ξ0, ξ1ξ2, and ξ 3

2 . Using the ansatz
that � = f (ξ3)ξ0 + g(ξ3)ξ1ξ2 + h(ξ3)ξ 3

2 , where f , g, and h

are arbitrary functions of the dimensionless variable ξ3, we
find the solution

�PY = −ξ0 ln(1 − ξ3) + ξ1ξ2

1 − ξ3
+ ξ 3

2

24π (1 − ξ3)2
, (3)

where integration constants have been chosen such that for
the dilute system the correct virial coefficients are recovered.
Interestingly, �PY is identical to the free energy obtained for
the hard-sphere mixture upon solving the Ornstein-Zernike
equation with the Percus-Yevick closure and using the com-
pressibility route to compute the pressure, hence the index
PY.

Only recently, Santos derived the general solution to Eq. (2),
which can be written as [25]

�Santos = −ξ0 ln(1 − ξ3) + ξ1ξ2

1 − ξ3
+ ξ 3

2

24π (1 − ξ3)2
f0(yξ ),

(4)

where yξ = ξ 2
2

12πξ1(1−ξ3) and f0 is an arbitrary function of yξ .
The original scaled-particle expression Eq. (3) is recovered for

f PY
0 (y) = 1. (5)

One obvious advantage of Eq. (4) over Eq. (3) is that the
function f0 can be chosen such that an arbitrary EOS is
recovered from �Santos in the limit of a pure fluid. In particular,
the very accurate Carnahan-Starling EOS leads to

f CS
0 (y) = 2

3y
+ 2

3
− 2 ln(1 + y)

3y2
= 1 − 2y

9
+ y2

6
+ O(y3).

(6)

B. Functional for the inhomogeneous hard-sphere mixture

In order to make contact with FMT for the inhomogeneous
hard sphere system, we introduce the weighted densities
n0, . . . ,n3, n1, and n2, which are obtained from a convolution,

nj (r) =
ν∑

i=1

∫
dr′ρi(r′)ω(j )

i (r − r′), (7)

of the density profiles ρi(r) of the individual components of
the fluid mixtures with the weight functions

ω
(0)
i (r) = 1

4πR2
i

δ(Ri − r), ω
(1)
i (r) = 1

4πRi

δ(Ri − r),

ω
(2)
i (r) = δ(Ri − r),

ω
(3)
i (r) = 
(Ri − r), ω

(1)
i (r) = r̂

4πRi

δ(Ri − r),

ω
(2)
i (r) = r̂δ(Ri − r), (8)
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where r = |r| and r̂ = r/r . In the homogeneous fluid, the
scalar weighted densities n0, . . . ,n3 reduce to ξ0, . . . ,ξ3 and
the vectorial weighted densities n1 and n2 vanish.

The weighted densities n0, . . . ,n3, n1, and n2 were first
introduced by Rosenfeld who constructed the first FMT free
energy density

�RF = −n0 ln(1 − n3)+n1n2 − n1 · n2

1 − n3
+n3

2 − 3n2(n2 · n2)

24π (1 − n3)2
,

(9)

which reduces to Eq. (3) for a bulk mixture. The grand potential
functional that results from an FMT excess free-energy density
� = �({nj }) is given by

�[{ρi}] = Fid[{ρi}] + β−1
∫

�({nj }) dr

+
ν∑

i=1

∫
ρi(r)[Vi(r) − μi]dr, (10)

where Fid is the free-energy functional of the ideal gas, β−1 =
kBT , μi denotes the chemical potential of species i, and Vi is
the external potential acting on species i, which gives rise to
the inhomogeneity [12]. The functional � with the free energy
density � = �RF has been shown to describe many aspects
of nonuniform hard-sphere fluids very well. In particular,
�RF becomes exact in the dilute limit. The underlying direct
correlation function is identical to that obtained within integral
equations using the PY closure.

In order to generalize �Santos from Eq. (4) to the inhomo-
geneous fluid, we define two additional weighted densities

n̄1 = n1 − (n1 · n2)/n2 and n̄2 = n2 − (n2 · n2)/n2.

(11)

Using the set {n0,n1,n̄1,n2,n̄2,n3} we suggest the general (gen)
form

�gen = −n0 ln(1 − n3) + n̄1n2

1 − n3
+ n̄2

2n2

24π (1 − n3)2

×F

[
n̄2

2

12πn̄1(1 − n3)
,
n̄1

n1
,
n̄2

n2

]
, (12)

where F is a function of the three dimensionless arguments.
We require F to remain finite in the low density limit, i.e.,
as the first argument of F vanishes. The form is motivated
by the fact that �gen is the most general formal solution of
the scaled-particle differential equation [Eq. (2)] (where now
the sum is over {n0,n1,n̄1,n2,n̄2,n3}). The requirement on F

not only insures that �gen is exact for the dilute system. It also
yields the exact free energy in the strict 0D limit (see Appendix
A).

III. FUNCTIONALS FOR THE PURE HARD-SPHERE
SYSTEM

Except for the value at low density, i.e., when the first
argument vanishes, the function F in Eq. (12) is so far
unconstrained. In order to make the task of constructing a
useful functional more manageable, we limit ourselves to
a pure hard-sphere system in the following. Denoting the

radius of the spheres by R, it follows from Eqs. (8) and (11)
that n0 = n2/(4πR2), n1 = n2/(4πR), and n̄1 = n̄2/(4πR).
Therefore, the complexity of the problem is significantly
reduced and �gen can be written as

�m = −n2 ln(1 − n3)

4πR2
+ n̄2n2

4πR(1 − n3)

+ n̄2
2n2

24π (1 − n3)2
Fm

[
Rn̄2

3(1 − n3)
,
n̄2

n2

]
. (13)

In order to determine a function Fm which is useful for
practical applications we have expanded F from Eq. (12) in
the second argument about the homogeneous limit in which
n̄2
n2

= 1. Hence, we have replaced F by

Fm(y,x) = f0(y) −
m∑

k=1

fk(y)(1 − x)k, (14)

where we denote y = Rn̄2
3(1−n3) and x = n̄2

n2
. It is important to

note that the choice of y as the argument of the coefficients in
the expansion is somewhat arbitrary. Given that F is a general
function of both y and x, infinitely many other combinations
could be used, for instance y/x. Our reason for choosing y is
that it is well-behaved in the 0D limit in which y → 0 while
y/x diverges (see Appendix A).

In order to determine the coefficient functions fk , we turn
to properties that we desire the functional �m to possess. First,
we impose an EOS for the bulk fluid. By construction, in the
homogeneous fluid Fm reduces to f0(y) as in the bulk fluid we
have x ≡ 1. Hence, we can identify f0(y) with the function
introduced in Eq. (4). In particular, for the PY EOS we employ
Eq. (5) while imposing the accurate CS EOS leads to f0 from
Eq. (6).

It can be shown that the direct correlation function (DCF)

c(r = |r − r′|) = −β
δ2F[ρ]

δρ(r)δρ(r′)
, (15)

with F = β−1
∫

�mdr does not depend on the functions
fk for k � 2. Therefore, it appears to be reasonable to use
the remaining degree of freedom (i.e., f1) in order to fix
the spurious divergence of the DCF for r → 0, which has
been a problem of a previous formulation of �Santos for the
inhomogeneous fluid [25,26]. It turns out that requiring the
DCF to be finite as r → 0 leads to the condition that

f1(y) = f0(y) + 2yf ′
0(y) + 1

2y2f ′′
0 (y). (16)

Depending on the underlying EOS the explicit results read

f PY
1 (y) = 1, (17)

f CS
1 (y) = 1 + 4

3y + 2
3y2

(1 + y)2
= 1 − 2y

3
+ y2 + O(y3). (18)

Introducing the packing fraction η = 4πR3

3 ρ, the resulting
expressions for the DCF read

cPY(r) = − (1 + 2η)2

(1 − η)4
+ 3η(2 + η)2

2(1 − η)4

r

σ
− η(1 + 2η)2

2(1 − η)4

( r

σ

)3
,

(19)
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FIG. 1. Results for the direct correlation function c(r) of the pure
hard-sphere fluid at different packing fractions. In (a) the result from
this work, Eq. (20), is compared to data from simulations by Groot
et al. [28] for different packing fractions η. The relative deviations
from the result cWBII obtained with the WBII functional [24] are
plotted for (b) η = 0.31 and (c) η = 0.47. The divergence at r → 0
of the result by Santos [25] and Lutsko [26] is in contradiction with
the simulations. The result from this work, Eq. (20), is always within
1% of the WBII result.

which is identical to the Percus-Yevick result from integral
equations, and

cCS(r) = cPY(r) + η3(4 − η)

(1 − η)4
+ η2(4 − 33η + 2η3)

6(1 − η)4

r

σ

+ η4(4 − η)

2(1 − η)4

( r

σ

)3
, (20)

which is within 1% of the WBII result [24] for all packing
fractions (see Fig. 1). Most importantly, by construction of the
new functional, the unphysical divergence of c(r) for r → 0,

which occurs in the original proposal by Santos [25,26], is no
longer observed (see Fig. 1). The new expression cCS(r) from
Eq. (20), like the WBII result, describes the simulation data of
Groot et al. [28] very well for low packing fractions. Deviations
start to occur around η = 0.3, becoming more pronounced as
η is increased further. However, deviations are always less than
5%, which has to be compared to the PY results for the direct
correlation function, which deviates from the simulations by
more than 10%.

In order to keep the resulting functional simple as to allow
for efficient numerical computations, we restrict ourselves to
m � 2 in the present work. In the following we investigate
two alternative routes that allow us to determine the remaining
coefficient function f2.

A. Functionals based on dimensional crossover

Considering that �m becomes exact in the strict 0D limit
and that it is based on a given EOS in the homogeneous 3D
fluid system, it appears natural to determine f2 such that
homogeneous systems of intermediate dimensions are also
accurately described. We focus on the 1D homogeneous limit
of �m for which the free energy is known exactly. It turns out
that f2 can be chosen such that the functional yields the exact
free energy of the homogeneous 1D system (see Appendix B).
We find that

f2(y) = 1
8 (35 + 78y + 54y2)f0(y)

+ 1
8 (13 + 18y)(1 + 3y)yf ′

0(y)

+ 1
8 (1 + 3y)2y2f ′′

0 (y) − 1
4 (7 + 6y)f1(y)

− 1
4 (1 + 3y)yf ′

1(y), (21)

which for the respective EOSs reads

f PY
2 (y) = 3

8
(7 + 22y + 18y2)

f CS
2 (y) = 15+69y+221y2+438y3+459y4 + 246y5 + 54y6

12y(1 + y)3

−5 ln(1 + y)

4y2

= 3

8

(
7 + 22y + 19

2
y2

)
+ O(y3). (22)

We test the functional by applying it to a homogeneous
fluid of hard disks in 2D. The calculation is analogous to
the dimensional reduction performed by Rosenfeld et al. (see
Appendix A of Ref. [18]). In Fig. 2 we compare the pressure
resulting from the different functionals (PY/CS, m = 1,2) to
the accurate hard-disk EOS given by Solana and coworkers
[29]:

βpMCS

ρ
= 1 + η2/8 − η4/10

(1 − η)2
. (23)

We also include the pressure obtained upon dimensional
reduction of Rosenfeld’s original FMT [17] and the more
recent White Bear II version of FMT [24].

Clearly, Fig. 2 shows that the functional �CS
2 yields the

best result for the pressure upon dimensional reduction to
the homogeneous 2D hard-disk fluid with a deviation from
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FIG. 2. (Color online) Pressure of the homogeneous hard-disk
fluid in 2D as obtained via dimensional reduction of various
functionals (see text for details) compared to the accurate pressure
pMCS due to Solana and coworkers [29].

the accurate MCS result, which is always less than 10%. This
confirms the expectation that indeed the functional with the
best performance for the homogenous 3D system (via the
accurate CS EOS) and for the homogeneous 1D system [exact
free energy due to f CS

2 from Eq. (22)] is also the most accurate
in the intermediate case, namely the homogeneous 2D system.
The second best result follows from the WBII functional [24]
with a maximum deviation of less than 17% while the other
functionals give rise to larger deviations between 18% and
34% at the largest 2D packing fraction.

B. Functionals using an empirical parameter

It turns out that the functionals �PY/CS
2 with f PY/CS

2 from
Eq. (22) are unsuited for the application to hard-sphere
crystals. This can be understood by realizing that even though
y vanishes in the strict 0D limit, it can become very large for
more general density profiles that involve sharp peaks. For
instance in a configuration of two narrow cavities at a distance
d ≈ 2R a divergence occurs at the contact point of the δ shells
(see Appendix A). Hence the fact that for large y we have
f2 ∝ y2 makes the resulting functional diverge for crystals.
This behavior is not entirely unexpected, considering that the
homogeneous 1D system for which f PY/CS

2 from Eq. (22) is
designed differs a great deal from a crystalline configuration.
In the following, we therefore introduce a simple alternative
choice of f2, which does not produce divergences for peaked
density distributions.

The alternative that we suggest consists in choosing f PY/CS
0

and f PY/CS
1 as above while simply setting f2 to a constant

λ. We denote the resulting free-energy density by �PY/CS
2,λ .

A free minimization (see Ref. [27] for a description of the
corresponding numerical methods) of the resulting functional
shows that the expressions �PY/CS

2,λ give indeed rise to a hard-
sphere crystal phase. In particular, we can study parameters
such as the liquid and crystal packing fractions ηli and ηcr,
free energies per particle (βF/N)li and (βF/N)cr, as well as
the chemical potential βμcoex at the point of phase coexistence
(see Table I). While neither of the functionals �PY/CS

2,λ agrees as
well with simulation data [30] as the tensorial WBII functional
[24,27], the functionals �PY

2,λ=0 and �CS
2,λ= 1

2
exhibit reasonable

agreement with the simulations. In terms of computational

TABLE I. Properties of the coexistence point of the liquid and
crystal phases in the pure hard-sphere system as obtained from a
free minimization of the various functionals �PY/CS

2,λ (see text) and
the tensorial WBII functional [24,27] compared to results from
simulations [30]. Note that simulation values of (βF/N )li, (βF/N )cr,
and βμcoex have been obtained by using ηli and ηcr from Ref. [30] in
the appropriate equations of state (see Ref. [15] for details).

�PY
2,λ=0 �PY

2,λ= 1
2

�PY
2,λ=1 �CS

2,λ=0 �CS
2,λ= 1

2
�CS

2,λ=1 WBII SIM

ηli 0.484 0.475 0.467 0.513 0.503 0.490 0.495 0.492
ηcr 0.521 0.509 0.505 0.555 0.536 0.525 0.544 0.545
(βF/N )li 3.45 3.17 2.95 4.21 3.86 3.47 3.82 3.75
(βF/N )cr 4.58 4.16 3.98 5.68 4.98 4.52 4.96 4.96
βμcoex 16.24 15.07 14.08 18.43 17.29 15.89 16.38 16.09

complexity the latter functionals are advantageous as they do
not make use of a tensorial weighted density.

Another rigorous test of a density functional is the
computation of the (relative) vacancy concentration nvac of
the hard-sphere crystal in equilibrium (defined as the ratio
of the number of vacant lattice sites to the total number
of lattice sites). In order to obtain the equilibrium vacancy
concentration, the free energy per particle must be minimized
(at fixed bulk density) with respect to the density distribution
in the face-centered cubic (fcc) unit cell as well as the side
length of the unit cell, and the presence of vacancies is
manifest by an average occupation of the fcc unit cell of
less than 4. At present, only FMT-type functionals can deliver
values for nvac, which are of the correct order of magnitude
(∼10−4, see Ref. [31] for a theoretical explanation of this order
of magnitude). Other functionals (such as Taylor expanded
functionals or the PFC model) give |nvac| ∼ O(0.1), with even
possibly negative signs (corresponding to a presence of excess
interstitials which is unphysical for the hard sphere system)
[15]. Crucial for the correct order of magnitude of nvac is
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FIG. 3. (Color online) Vacancy concentration nvac of the hard-
sphere crystal as a function of the packing fraction η. The results for
the functionals �PY/CS

2,λ=0 and �PY/CS
2,λ= 1

2
were obtained using unconstrained

minimization of the functional while results for the tensorial WBII
functional were obtained using both unconstrained and Gaussian
minimization [27]. For comparison, we show simulation results from
Kwak et al. [32] as well as from Bennett and Alder [33].
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FIG. 4. (Color online) Sections through the density distribution
around fcc lattice sites along the lattice directions [100], [110],
and [111] for the bulk density ρσ 3 = 1.04. The x axis denotes the
squared distance from the lattice site and the y axis corresponds to
the logarithmic density such that a Gaussian distribution would be a
straight line. Full symbols with error bars are Monte Carlo simulation
data from Ref. [27] and the lines are results from �PY

2,λ=0. The cartoon
indicates the lattice directions in the standard fcc unit cell.

the correct 0D-limit of the functionals [27], which is not
respected at all by the other approximations. The ability to
find a stable crystal with a well-defined value of nvac as a
free energy minimum is essential for further applications as it
guarantees that the free interface between the liquid and the
crystal phase can be computed from the DFT [15]. Previous
work has shown that of the tensorial versions of FMT only
the WBII functional does give rise to a well-defined vacancy
concentration [27]. Interestingly, both the functionals �PY

2,λ and
�CS

2,λ give a stable crystal with vacancy concentrations nvac that
compare reasonably well with simulations [32,33], provided
that the value of λ is not too large (see Fig. 3). For λ = 1, no
stable crystal at a finite vacancy concentration is obtained. Note
that the agreement of the vacancy concentrations derived from
the new functionals �PY/CS

2,λ with the simulations is even better
than that of the tensorial WBII functional. Giving an example:
at solid-liquid coexistence (η ≈ 0.545) nvac is approximately
2 × 10−4 (simulation), 1.2 × 10−4 (PY, λ = 0), 0.8 × 10−4

(CS, λ = 1
2 ), and 0.2 × 10−4 (tensorial WBII).

We also investigated the density distributions in the
hard-sphere crystal. From simulations, it is known that the
distribution is only weakly anisotropic and can be well
approximated by a Gaussian function; see Fig. 4 (symbols).
The tensorial WBII functional shows a density distribution
in very good agreement with the simulation results [27]. The
class of functionals investigated here shows a somewhat more
pronounced anisotropy in the [110] direction and stronger
deviations from a Gaussian [see Fig. 4 (lines) for the example
�PY

2,λ=0]. Close to the lattice site the density distribution is more
strongly peaked. The deviations from isotropy and Gaussian
shape become stronger with increasing λ, indicating that
the approximation f2 = λ should be refined for an accurate
description of the full density distribution.

IV. CONCLUSION

Based on Santos’ consistent free energy for the uniform
hard-sphere mixture we have derived a density functional

F = β−1
∫

�dr in the spirit of Rosenfeld’s fundamental
measure theory, which has the following properties: The excess
free energy density � is a solution of the scaled-particle
differential equation, Eq. (2), using the weighted densities
n3, n2, n1, and n0 augmented by suitable variables n̄2 and
n̄1 that are specific to inhomogeneous systems, Eq. (11).
When applied to the bulk fluid, the functional F reduces
to Santos’ free energy [25]. Moreover, the direct correlation
function c(r) obtained fromF compares well with the previous
WBII result and simulation data. In particular, c(r) remains
regular for r → 0 unlike the previous result by Santos and
Lutsko [25,26]; see Fig. 1. Higher-order terms in F (f2

etc.) can be used to make the functional compatible with
dimensional reduction; see Fig. 2 for the pressure in a 2D
system of hard discs obtained from spatial confinement of
the 3D functional. Alternatively, f2 can be chosen such
that the functional F is suited to describe a hard-sphere
crystal, which implies a reasonable characterization of the
transition point between the fluid and crystal phases as well
as accurate values for the vacancy density of the crystal;
see Fig. 3.

The latter point is particularly appealing, considering that
so far only the tensorial version of the WBII functional
had been shown to give well-defined vacancy densities.
Unlike the former, the FMT introduced in the present work
only employs scalar and vectorial weighted densities, which
makes it computationally more amenable than the tensorial
functionals.

Several interesting routes remain open for the future
development of FMTs based on Santos’ consistent free energy.
First of all, a benefit of our theory is that it can be systematically
extended. Here we use only the functions f0, f1, and f2 in
order to build our functionals while higher orders might be
explored in order to potentially reconcile the two avenues
of construction employed in this work. This is dimensional
reduction on the one hand (see Sec. III A) and avoidance of
divergences for peaked density distributions on the other (see
Sec. III B). Higher-order terms fk , with k > 2, might allow
one to construct a functional that reduces correctly also for
some inhomogeneous 1D density distributions while not being
plagued by divergences that prohibit it from being used for
the crystal. However, this approach would most likely require
some rather lengthy algebra so that in view of the powerful
tensorial WBII functional it is not clear if the effort is actually
worthwhile.

Finally, we emphasize that, while the general solution
of the augmented scaled-particle equation, see �gen in Eq.
(12), does apply to mixtures, we were forced to reduce the
functional to the one-component system for most of this work
in order to be able to specify the remaining degrees of freedom
in Eq. (12), i.e., the unknown function F therein. There is
surely a lot of territory to be explored in the direction of
deriving a mixture FMT based on Santos’ free energy. Exact
results for the virial coefficients of binary mixtures [34,35]
might serve as a starting point. We conclude that the FMT
functional introduced in this work, which is based on the most
general solution of the augmented scaled-particle differential
equation, is likely to provide the foundation for many further
developments.
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APPENDIX A: 0D LIMIT

In the strict 0D limit the density distribution is given by
ρ(r) = ηδ(r), where 0 � η � 1 is the 0D packing fraction
and r is the distance from the origin, where the density is
concentrated. The weighted densities n3, n2, and n2 are readily
calculated from Eqs. (7) and (8) to be n3(r) = η
(R − r),
n2(r) = ηδ(R − r), and n2(r) = ηδ(R − r)r̂. Hence, from
Eq. (11) we have n̄2 ≡ 0. Noting that for a fluid of spheres
of only one size the weighted density n̄1 is equal to n̄2 up
to a constant factor we find that both n̄1 and y = Rn̄2

3(1−n3) also
vanish in the strict 0D limit. Given the fact that F in Eq. (12)
is finite for y → 0 it follows that in the strict 0D limit only the
first term −n0 ln(1 − n3) of �gen contributes, which is indeed
known to yield the exact free energy of a 0D cavity [18].

Consider now a situation where two 0D cavities with
packing fractions η1 and η2 are at a distance d ≈ 2R. It
can be shown that the first two terms of �gen from Eq. (12)
yield the exact free energy. However, unlike in the case of
just one isolated 0D cavity considered above, the third term
of �gen does generally not vanish. This can be seen by
examining the leading order behavior of the weighted densities
at the contact point of the δ shells, i.e., midway between the
two cavities. Denoting the width of the δ shells by �, we
have n2 ∝ (η1 + η2)�−1 and n2 ∝ (η1 − η2)�−1r̂, where the
difference of the packing fractions is a result of the opposing
orientations of the vectors entering the calculation of n2. From
this we find that n̄2 ∝ 4η1η2

η1+η2
�−1. As a result, n̄2 and therefore

y no longer vanish in the case of two 0D cavities that are in
proximity. The dependence on the inverse of the cavity size
shows that y can in fact assume large values when evaluated
for peaked density distributions such as they occur for the
hard-sphere crystal. The limit of large y can be easily worked
out for the present functionals. Since f PY

0 = 1 and f PY
1 = 1

the third term of the PY functional reads n̄3
2/24π (1 − n3)2,

which has been shown to remain finite when integrated over
configurations of hard-sphere crystals [18]. Interestingly, for
large y we find f CS

0 → 2
3 and f CS

1 → 2
3 . Again, the values

coincide and we can borrow the arguments from the PY
functional to show that also the CS functional is suited for the
hard-sphere crystal. The picture changes as we include f PY/CS

2
from Eq. (22). For large y we have f PY/CS

2 ∝ y2, which, as it
turns out, makes the resulting functional unstable when applied
to hard-sphere crystals. Choosing f2 as a constant, however,
allows us to properly treat crystalline density distributions.

APPENDIX B: 1D HOMOGENEOUS FLUID

We consider a homogeneous hard-sphere fluid in 1D with
number density ρ (in units of 1/length). We choose cylinder

coordinates (r, ϕ, z) such that the fluid is located along the
z axis. The weighted density n3 is readily calculated to be
n3(r) = 2ρ

√
R2 − r2 
(R − r), where R is the hard-sphere

radius. The remaining weighted densities are obtained using
that n2(r) = ∂

∂R
n3(r) and n2(r) = − ∂

∂r
n3(r)er . One finds that

n2(r) = 2ρR√
R2−r2 
(R − r) and n2(r) = 2ρr√

R2−r2 
(R − r)er . It

follows from Eq. (11) that n̄2(r) = 2ρ

R

√
R2 − r2
(R − r) and

hence x = n̄2
n2

= 1 − r2

R2 
(R − r). We now make use of the
fact that the first two terms of �m from Eq. (13), namely
−n2 ln(1−n3)

4πR2 + n̄2n2
4πR(1−n3) , yield the exact free energy of the

homogeneous 1D fluid. In fact, it can be shown that the two
terms yield the exact density functional even in the inhomo-
geneous case. Consequently, in order to obtain the exact free
energy for the homogeneous 1D fluid we must require the third
term in Eq. (13) to vanish in the homogeneous limit. Using the
above expressions for the weighted densities and setting R to
unity this translates to the condition that

∫ 1

0
r y (1 + 3y)

[
f0(y) −

m∑
k=1

fk(y)r2k

]
dr

!= 0, (B1)

where y = η
√

1−r2

3(1−η
√

1−r2)
with the 1D packing fraction η = 2Rρ.

In the following we consider only the case where m = 2.
Changing the integration variable from r to y and multiplying
with a constant leads to

∫ η

3(1−η)

0
u2{η4f0(y) − η2f1(y)(η2 − u2) − f2(y)(η2 − u2)2}

× dy
!= 0, (B2)

where u = 3y

1+3y
.

The condition expressed in Eq. (B2) is equivalent to
requiring that the left-hand side of Eq. (B2) at η = 0 and
all derivatives with respect to η at η = 0 vanish. Since the
integrand is a quartic polynomial in η differentiating Eq. (B2)
five times with respect to η makes the integral disappear and
a second-order linear differential equation for f2 is obtained,
which can be solved to yield Eq. (21). Integration constants
are determined from the condition that f2 has to be finite
for y → 0. The result can be cross-checked by inserting it
into Eq. (B2) and eliminating derivatives of f0 and f1 using
integration by parts.
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