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Robustness of optimal random searches in fragmented environments
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The random search problem is a challenging and interdisciplinary topic of research in statistical physics.
Realistic searches usually take place in nonuniform heterogeneous distributions of targets, e.g., patchy
environments and fragmented habitats in ecological systems. Here we present a comprehensive numerical study
of search efficiency in arbitrarily fragmented landscapes with unlimited visits to targets that can only be found
within patches. We assume a random walker selecting uniformly distributed turning angles and step lengths
from an inverse power-law tailed distribution with exponent μ. Our main finding is that for a large class of
fragmented environments the optimal strategy corresponds approximately to the same value μopt ≈ 2. Moreover,
this exponent is indistinguishable from the well-known exact optimal value μopt = 2 for the low-density limit of
homogeneously distributed revisitable targets. Surprisingly, the best search strategies do not depend (or depend
only weakly) on the specific details of the fragmentation. Finally, we discuss the mechanisms behind this observed
robustness and comment on the relevance of our results to both the random search theory in general, as well as
specifically to the foraging problem in the biological context.
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I. INTRODUCTION

Statistical physics (SP) is well suited to study complex
systems [1,2]. So, given the tight interrelation of the latter with
diverse biological phenomena—especially concerning move-
ment and dispersal [3–5]—SP methods have become important
tools in analyzing various aspects of ecological systems [6–8].
In particular, in the 1990s there was a surge of interest in
quantifying the role of diffusion as bottlenecks in the reaction
rates of biological processes [2,6,8]. A predator, for instance,
must somehow find (and consume) the prey, and the type of
diffusion (e.g., normal versus anomalous) can either enhance
or reduce the corresponding encounter probabilities and rates.
Considerable progress was made in pinpointing how diffusion
influences the search efficiency in homogeneous landscapes
[2,6,8]. However, relatively less is understood about how the
degree and type of heterogeneity determine efficiency of search
in more realistic disordered environments [8].

Though homogeneous search landscapes are not uncom-
mon, the existence of some degree of heterogeneity or frag-
mentation in the spatial distribution of targets (the “objects”
to be found) is reportedly much more frequent [9–23], either
in the form of patchy aggregates with characteristic scales
or hierarchical structures consistent with scale-free fractal
patterns. For this very reason, comprehending the interplay
between the disordered patchy nature of environments and
the relative chances of locating these patches is relevant in a
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variety of scenarios [8]. For instance, in ecological phenomena
the survival of individuals (or even species) searching for
targets, such as food or mates, strongly depends on their
abilities to choose a suitable search strategy among a large
set of possibilities (many of them leading to rather inefficient
returns). As a specific example, the biodiversity on islands
might depend on the patches’ colonization skills of the
originally emigrated species [24]. Also, rates of migrations
among patchy habitats determines geographic [25] and genetic
[26,27] similarities and dissimilarities of populations, e.g.,
whether or not an original group can go through speciation
while dispersing [28]. Finally, ensuring that reserves are
accessible to as large as possible a number of species is a
major goal in conservation efforts [29,30].

In this work we present a comprehensive numerical
analysis of searches taking place in different fragmented
landscapes. We consider a superdiffusive Lévy random walk
model, embodying the Brownian case in a proper limit.
The rules of movement and detection are very simple and
independent on the local density of targets. We address the
statistical efficiency of the search and its relation to the
dynamics of the encounter rates in a large set of spatially
heterogeneous distributions. A surprising robustness of the
optimal strategy—which moreover is similar to that for a
homogeneous environment—is observed to pervade distinct
classes of multifragmented landscapes with several degrees of
heterogeneity. The implications of our results are discussed in
the context of the animal foraging problem [2–4,6,8].

A few comments regarding the adopted framework here
are in order. First, our model based on a single (truncated
Lévy) strategy differs from the composite Brownian [31],
adaptive [32], and intermittent [33] approaches previously
assumed for patchy environments. In the former two [31,32],
the forager employs distinct “modes” of searching depending
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if the space region is or is not plentiful of targets. In the
latter, the walker pursues a Lévy-modulated dynamics [33],
which incorporates a time-discrete reorientation mechanism
(with Lévy statistics) into a continuous scanning process
given by a correlated random walk. All these models are
more complex and eventually more biologically adjusted than
the present one (but see Sec. IV). In fact, they address
a “sophisticated” searcher, in the sense it possesses inner
(although basic) degrees of freedom to properly control the
switches of behavior [34,35]. In this way, ours can be faced
as a generic procedure, using dynamical rules which are
straightforward, single moded, and plastic (in opposition to
standing on habitats with specific features). So, the main
purpose is to check if a minimal strategy, entirely stochastic
(with no extra information), can capture the essence of the
process, furthermore allowing efficient searching in distinct
fragmented landscapes.

Second, the above goal moreover bears a second relevant
aspect in the general theory of random search. Our fragmented
media with well-defined characteristic scales contrast with the
scale-free fractal environments considered in [36], as well as
with the heterogeneous search generated by a distribution of
initial distances to the last target found [37]. The question is
then if the specific scales and the discontinuities of patchy
landscapes will change the typical outcomes of the Lévy
strategy in other backgrounds. Our findings here point to
a universal optimization, leading to a fair unique optimal
exponent irrespective of the target’s distribution, provided their
densities are not too high [38] and they always can be revisited
(the so-called nondestructive search [39]).

This work is organized as follows. In Sec. II we introduce
the dynamical rules of the random walk search model and the
general features of the fragmented search space. In Sec. III
we present the detailed numerical studies of the different
properties of random search in these landscapes. Furthermore,
we make comparisons between the results for the distinct
analyzed landscapes. Finally, in Sec. IV we present final
remarks and the conclusion.

II. MODEL

To study the random search problem in fragmented environ-
ments we first specify the landscape features and the dynamical
rules of movement as described below.

The search takes place in a landscape with total area A =
M × M and periodic boundary conditions. Pointlike targets
are available only within the NP patches randomly distributed
in A, as shown in Fig. 1. Each patch n (= 1,2, . . . ,Np) is
a circular region of radius R(n) containing a homogeneous
distribution of N (n) nondestructive (unrestrictedly revisitable)
targets. Thus, in each patch, neighbor targets are separated on
average by the distance (with ρ(n) the targets density)

l
(n)
t = 1√

ρ(n)
, ρ(n) = N (n)

πR(n)2 . (1)

A random walker with no memory or other information
about the landscape performs the search for targets in this
environment. The rules of movement are illustrated in Fig. 2,
defined as follows [39].

M

M

R

(n)N

(n)

l t
(n)

FIG. 1. Fragmented search space of area A = M × M with
Np circular patches (Np = 3 in this example). The patch n (n =
1,2, . . . ,Np) contains N (n) targets homogeneously distributed in an

area πR(n)2. The average separation between neighbor targets in patch
n is denoted by l

(n)
t .

(i) If there are targets located within a “radius of vision”
distance rv , the searcher moves on a straight line to the closest
one.

(ii) If there are no targets within rv , the searcher chooses a
direction at random and a distance � from a probability density
function (pdf) P (�). Then, it moves in a straight line, always
looking for targets within the radius of vision rv along the
way. If it does not detect a target, it stops after traversing � and
chooses a new direction and distance to move. Otherwise, it
proceeds to the target as in rule (i).

We are most interested in the regimes of low and interme-
diate target density within the patches. So, the search rule (ii)
becomes comparatively much more frequent than the detection
rule (i), resulting in a richer structure for the trajectories
pattern.

For P (�), we assume a truncated Lévy distribution of step
lengths [40]

P (�) = μ − 1

r
1−μ
v − M1−μ

×
{
�−μ, if rv < � � M,

0, otherwise. (2)

Above, the range rv < � � M is justified by the following.
First, by direct inspection a target located within the distance

target within the radius
of vision along the way

targets outside the 
  radius of vision

step truncation

FIG. 2. Illustration of a sequence of random steps evolving
according to the search dynamical rules (i) and (ii), Sec. II.
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rv is always detected by the searcher [rule (i)]. Hence the
searching process should involve only step lengths larger than
rv . Second, the power-law Lévy distributed step lengths are
effectively truncated at the distance M , corresponding to the
limit scale of the environment. Of course, unbounded (infinite)
displacements are naturally forbidden in realistic searches.

To understand how the power-law exponent μ in Eq. (2)
influences the search strategies, we recall that for large times
t the mean-square displacement of the Lévy random walker
goes as t2H , with H the Hurst exponent [8]. Thus, in the limit
M → ∞: (a) Eq. (2) represents the long-range asymptotic
behavior of the family of Lévy stable distributions [2]; (b) the
self-affine property P (γ �) = γ −μP (�) holds true, yielding a
path with spatial scale invariance; and (c) the exponent μ > 1
fixes the diffusivity properties of the walker (notice in this limit
a value μ � 1 implies a non-normalizable pdf). For 1 < μ � 3
the step length distribution variance diverges and the search
consists of rare but statistically relevant long steps alternating
between many small displacements. Moreover, for a Lévy walk
one has that H = 1 for 1 < μ � 2, H = (4 − μ)/2 for 2 �
μ � 3, and H = 1/2 for μ � 3 [8]. Then, the values μ → 1+,
1 < μ < 3, and μ � 3 correspond, respectively, to the extreme
ballistic, superdiffusive, and normal (Brownian) dynamics.

In the low-density regime, with lt � rv , we observe that the
above properties (a)–(c) typical of nontruncated Lévy walks
are retained to a considerable extent during the search process
[40–42]. Thus, by changing μ for a large enough value of
M , we are actually “tuning” the rate in which the searcher
visits new (faraway) regions. So, the particular distribution and
availability of targets strongly influences the balance between
spending more time in a local “scanning” for targets or moving
to previously unvisited faraway spots in order to enhance the
search efficiency. As a consequence, we should expect an
optimal strategy characterized by a particular value of the
exponent μ = μopt, established from the best compromise
between these two mechanisms [8,42].

As for the target’s revisitability, we consider the nonde-
structive case [39], in which the targets are always available
and can be visited any time by the searcher. Though this is a
simplifying assumption [43], it is rather appropriate in usual
fragmented landscapes [44], supported by empirical data (see,
e.g., Ref. [45]). Indeed, the very idea of a patchy distribution
is that the density is vanishingly low everywhere, except in
particular regions. But, within such areas, the relatively high
amount of resources makes local depletion at short-time scales
irrelevant [46].

For each set of parameters that define a fragmented search
space we perform N simulation runs over which averages are
performed. In each run the searcher starts at a random point in
the empty region outside the patches, stopping when a total of
T targets are found. The statistical efficiency of the search, η,
is defined [41] as the ratio between T and the total distance L

traversed along the search, i.e.,

η = T

L
. (3)

Since L is a function of the search strategy parametrized by
the exponent μ, the optimal strategy is found for the value
μ = μopt which maximizes η, i.e., minimizes L for T fixed.
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FIG. 3. Average distance traversed L and the number of steps ν

necessary to detect for the first time the single patch (R = 0.2M) as a
function of μ in log-linear plots. The ballistic dynamics μ → 1+

emerges as the search strategy that minimizes both quantities,
representing the most efficient way to find the patch (but not the
targets). Here L(μ = 2)/L(μ = 1.1) = 2.87 and ν(μ = 2)/ν(μ =
1.1) = 187.

Lastly, we mention two technical points. Once a target
is found, it is set undetectable during the first step after the
encounter. This is to avoid the searcher becoming trapped by
the last target found. From the second step on, however, this last
target again becomes visitable. In some statistically irrelevant
situations in the high-density regime, it may happen that the
distance between two targets in a patch is smaller than rv . In
this case, to prevent a dynamical trap of the walker between
these two targets, we apply a small translation to the searcher
(taking these targets out of its radius of vision) each time the
walker finds one of them.

In the next sections we discuss the random searches in
heterogeneous environments with single and many patches.
Unless otherwise explicitly mentioned, we set rv = 1, M =
104, N = 2.5 × 103, and T = 104.

III. RESULTS AND DISCUSSION

A. Single-patch case

Here we study the searches performed in a landscape with
just a single patch, Np = 1. Though this may actually represent
a less realistic (or less commom) limit situation, it is certainly
useful for comparisons with the much more frequent mul-
tifragmented case of many distinct patches heterogeneously
distributed in the search space (studied in the next section).
Nevertheless, we can mention some concrete examples of
single-patch random search (foraging) activity by solitary bees
[47] and birds living in small islands [48].

Essentially, the search dynamics in a single-patch landscape
can be subdivided into two processes, namely, the detection of
the sole patch and the task of finding T targets in its interior.
For the former, Fig. 3 shows for R = 0.2M (other R′s give
the same results) that the distance traversed L and the number
of steps ν necessary to find the patch for the first time are
both minimized for the ballistic strategy, μ → 1+. Indeed, the
ballistic walker is the one that heads most efficiently to new
(previously unvisited) regions, being in this sense just the op-
posite of the Brownian searcher. Hence it would yield the most
efficient way to find the single patch (if this was the only task).
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FIG. 4. Average distances traversed (a) inside Lin and (b) outside
Lout a single patch (with R = 0.2M and lt = 10rv) as function of μ.
The search task is to find T = 104 targets. (c) Average total distance
traversed, L = Lin + Lout.

To characterize the full process, i.e., of finding T = 104

targets in a search run, we write L = Lin + Lout, with Lin

(Lout) denoting the distance traversed by the searcher inside
(outside) the single patch. Notice that Lin is associated with the
scanning of targets within the patch, whereas Lout corresponds
to the first time detection of the patch and subsequent events
where the searcher leaves the patch and then returns to it.

A typical example is shown in Fig. 4, with R = 0.2M and
lt = 10rv . For Lin versus μ, Fig. 4(a), there is a minimum
when μ ≈ 2. From this point on, as the dynamics goes
either ballistic (μ → 1+) or Brownian (μ → 3), Lin increases
monotonically, moreover with Lin(μ → 1+) > Lin(μ → 3).
This faster increasing rate of Lin for μ → 1+ is due to the
small but non-negligible number of long individual steps taken
within the patch (especially in the patch target density, ρ,
low limit), starting to occur as the search strategy tends to a
ballistic behavior. Indeed, the summed individual steps in the
case of μ small make Lin larger than Lin from the sum of a
large number of small displacements when μ → 3 (Brownian).
Hence the minimum Lin is reached for an intermediate value,
μ ≈ 2, which represents the best compromise between not
taking excessively large individual steps, nor performing a
large number of small displacements. Actually, the location
of such a minimum should be expected. Within the patch (of
a not too high ρ) the scenario is similar to a nondestructive
random search in a homogeneous distribution of targets, for
which μ ≈ 2 [39] leads to the highest efficiency.

Interestingly, the distance Lout traversed in the empty
region, i.e., outside the single patch, also displays a global
minimum at μ ≈ 2, Fig. 4(b). This should be confronted with
the result in Fig. 3, in which the distance traversed to find the
patch for the first time is minimized for the ballistic strategy.
So, we can conclude that the subsequent events of revisiting
(i.e., finding again) the patch after having departed from it
alters the optimization trend. Indeed, in the case of Fig. 4,
if the searcher has just left the patch, a large step (more
likely for μ → 1+) taken in the wrong direction leads to
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FIG. 5. Average efficiency η (multiplied by l2
t to put all curves

in a same scale) to find T = 104 targets vs μ, with R = 0.2M and
different lt . Inset: the same plot for R = 0.05M and lt = 10rv . In
each case, the μopt value is indicated.

empty faraway regions, so that the return to the patch becomes
more difficult. This reasoning is confirmed by computing the
average number of revisits to the single patch, which shows a
dependence on μ qualitatively very similar to that of Fig. 4(b)
(so not shown here). Also, Lout(μ → 1+)/Lout(μ → 3) < 1
for the parameters used in Fig. 4. However, we observe
that these quantities become comparable in scarcer regimes,
say, lt = 100rv . Therefore, again the minimum Lout(μ ≈ 2)
originates from the compromise between taking long steps,
which can drive the searcher too faraway in the empty space
(μ → 1+), and performing a large number of small steps
(μ → 3), which maintains the searcher close to the patch,
but with considerable inefficient oversampling of the search
space.

As the exponent μ ≈ 2 minimizes both Lin and Lout, it also
minimizes the total distance L traversed in the search, Fig.
4(c), and thus maximizes η of Eq. (3), Fig. 5. The effects on
the optimal value μopt of both the density of targets inside
the single patch and the patch relative size can be appreciated
in Fig. 5. First, for a fixed R, a scarcer patch, i.e., a patch
with larger lt , leads to μopt closer to 2, which is the value for
nondestructive searches in homogeneous landscapes [39]. For
instance, for R = 0.2M in the main plot of Fig. 5, we obtain
μopt ≈ 1.9 for lt = 10rv , whereas μ becomes practically 2 for
lt = 100rv . Note that within the patch, the steps j sweep the
search space in the form of strips of width 2rv , but in higher
densities often they are shorter than �j due to the truncations,
Fig. 6(a). On the other hand, for lower ρ ′s and in the ballistic
limit, some of these strips are long corridors which may even
cross (or almost cross) the whole patch without detecting a
target, Fig. 6(b). Second, by fixing lt = 10rv and comparing the
search efficiency for radii R = 0.2M and R = 0.05M (inset
of Fig. 5), we observe that a smaller patch generally leads to a
smaller η for each μ, also giving rise to a lower relative gain
of the ballistic strategy respect to the Brownian one. As the
searcher hits the border of a smaller patch more often [confront
the two cases in Fig. 6(a)], a larger distance is traversed in the
empty region outside the patch, implying a lower efficiency.

The direct inspection of the search trajectories is also very
helpful to understand the mechanisms of efficient searches,
since it reveals interesting aspects manifested in the averaged
statistical quantities discussed above. Figure 7 shows search
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corridor

(a)

(b)

potential corridor

(nt)

(t)

FIG. 6. (a) Comparison between patches of same targets ρ but
with different radii R. Clearly, for smaller values of R the searcher
leaves the patch more often. (b) Patches of same R but with different
ρ. For higher densities, the truncation of a step j due to an encounter
[rule (ii) of Sec. II] is more frequent, leading to a swept area in
the form of a truncated (shorter than �j ) strip [step (t)]. In lower
densities, long “corridors” crossing the whole (or almost the whole)
patch without a detection event [step (nt)] can take place, especially
in the ballistic limit.

paths to find T = 100 targets, with R = 0.2M , lt = 10rv , in
the following cases: the μ = 1.1 ballistic limit (a),(b); the
exponent μ = 2 around the optimal value (c),(d); and the μ =
3 Brownian behavior (e),(f).

For Figs. 7(a) and 7(b), the existence of long steps allows
an efficient first detection of the patch, in agreement with
Fig. 3. Once inside the patch, the searcher leaves it frequently,
and, if a wrong direction is taken, the existence of long steps
can eventually drive the searcher far away from the targets
region, as previously discussed. Inside the patch some steps
are truncated due to the encounter of targets. We notice in
Fig. 7(b) that for a density of targets not so low there are
no long corridors (see also discussion about Fig. 6), and the
searcher does not go too deep inside the patch. Actually, long
corridors (depicted in Fig. 6) are common in scarcer landscapes
such as for lt = 100rv .

When compared to Fig. 7(a), the first encounter of the patch
occurs after a longer trajectory if μ = 2, Fig. 7(c), again a
result consistent with Fig. 3. The relevant fact is that once
entering the patch, the searcher is already able to encounter
the T = 100 targets in a single visit. This contrasts with the
ballistic strategy, in which the same task is achieved only after
many (re)visits to the single patch [e.g., three in Fig. 7(a)]. As
a consequence, although the first finding of the patch demands
a longer path for μ = 2, the whole distance traversed in the
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s. p.

FIG. 7. Search paths to find T = 100 targets in a single patch,
R = 0.2M and lt = 10rv . (a),(b) In the ballistic limit, μ = 1.1, from
the starting position (s.p.) in the empty region the searcher readily
finds the patch (gray region). Subsequently, the searcher leaves the
patch and returns to it frequently. The encounters of targets within
the patch are indicated in (b) by small circles. (c),(d) For the optimal
strategy, μ = 2, the search is completed with only one visit to the
patch. Detail of the patch in (d) shows that the targets found are
grouped in a small area. (e),(f) In the Brownian case, μ = 3, typical
short steps make the first finding of the patch more difficult. The
search process inside the patch, shown in (f), takes place in a rather
small area, if compared to the scales in (b) and (d).

empty region outside the patch, Lout, ends up being smaller
than for the ballistic strategy, in agreement with Fig. 4.

From the trajectory in Fig. 7(e) we see that the small step
lengths typical of Brownian motion render the first detection
of the patch more difficult. When the patch is found, the
searcher tends to remain looking for targets close to the border,
doing local scanning with considerable overlap over an area
comparatively smaller than that in both μ = 1.1 and μ = 2
cases [observe the scales in Figs. 7(b), 7(d), and 7(f)]. This
implies a large number of small displacements to find T = 100
targets, which makes the distance Lin traversed inside the patch
larger than in the optimal strategy μ = 2.

Lastly, we display in Fig. 8 the exact location of T = 104

found targets after one search run, considering μ = 1.1, 2,
3 and lt = 10rv and 100rv . For all values of μ, a deeper
exploration into the patch region is naturally facilitated in more
scarce regimes, lt = 100rv . In this case, the large number of
revisits to the patch leads to a nearly homogeneous pattern. In
the denser regime, lt = 10rv , these revisits are less frequent,
and the patch is well explored only for low μ. Indeed, the
finding of unpreviously visited targets is favored in the ballistic
limit as μ → 1+, whereas revisits of targets increase in the
Brownian regime μ = 3. The optimal strategy thus balances
between finding a relatively high number of new targets, while
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(a) Dense configuration: l
t
=10r

v

(b) Sparse configuration: l
t
=100r

v

μ=1.1 μ=2.0 μ=3.0

FIG. 8. Locations of the T = 104 targets found (black dots) along
a search with R = 0.2M for μ = 1.1, 2, 3, and average separations
between targets (a) lt = 10rv and (b) lt = 100rv .

still scanning locally for already visited close targets in an
efficient way.

B. Multiple patches case

We now turn to the much richer and more relevant case
of fragmented environments with multiple patches. Of course,
various aspects can be explored, such as the number, size,
form, and density of the patches. But given that (e.g., in the
ecological context) patchy landscapes are ubiquitous [49,50]
and that the degree of homogeneity among the patches
[51] is a fundamental, yet not a completely understood,
factor determining population dynamics, in the following
we essentially contrast the results for the cases of identical
(i.e., for all n, R(n) = R and l

(n)
t = lt ) and heterogeneous Np

patches randomly placed in the search environment. Typical
configurations are depicted in Figs. 9 and 10. Comparison
with the single patch case (Sec. III) is also performed. The
simulation details and search rules are the same described in
Sec. II.

In Fig. 11 we show the average distances traversed inside
(Lin), outside (Lout), and in total L = Lin + Lout, for a search
in a landscape with Np = 10 identical patches of R = 0.1M

and lt = 10rv . Inside the patches, the search dynamics is
essentially that within a single patch (Sec. III, Fig. 4). Hence,
in Fig. 11, also Lin(μ ≈ 2) emerges as a minimum due to
the same compromise mechanisms. But differently from the
single-patch case, once the border of a patch is reached, there
exist randomly distributed patches to be encountered in the
otherwise outer empty region. Interestingly, then a similar
competition of mechanisms is established, however, in a larger
scale: the searcher can either return to the patch just explored
or take longer steps to visit other patches (see below). Thus
the same reasoning applies to Lout and again the strategy with
μ ≈ 2 is the one that minimizes Lout and, consequently, the
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FIG. 9. Typical trajectories (along which the searcher finds T =
103 targets) for a fragmented landscape with Np = 10 identical
patches (gray regions). Here, R = 0.1M and lt = 10rv . (a) In the
ballistic regime μ = 1.1, the searcher visits seven patches. This
number gradually decreases as the Brownian limit approaches:
(b) three visited patches in the optimal strategy with μ = 2 and (c)
only one patch visited for μ = 3.

μ = 1.1 μ = 2.0 μ = 3.0

(a)

(b)

(c)

FIG. 10. Trajectories in a fragmented landscape with Np = 10
heterogeneous patches (gray regions). The searcher finds T = 10
targets using ballistic (μ = 1.1), optimal (μ = 2), and Brownian
(μ = 3) strategies. The darker the patch, the higher its target density.
(a) Patches with same density, lt = 10rv , and radii uniformly
distributed in the range 0.03M � R(n) � 0.3M . (b) Patches with
same radius, R(n) = 0.1M , and densities uniformly distributed in the
interval 5rv � lt � 350rv . (c) Patches with distinct sizes, but fixed
number of targets inside (103), so that the smallest (largest) patches
are also the densest (scarcest) ones. In this case, neighbor targets
distances vary uniformly in the range 17rv � lt � 170rv .
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FIG. 11. Average distances (along a search for T = 104 targets)
traversed (a) inside [Lin] and (b) outside [Lout] Np = 10 identical
patches (R = 0.1M , lt = 10rv) as function of μ. (c) L = Lin + Lout.

total distance L. Through many simulations we have verified
this to be equally true in scarcer environments.

Along the search, the fraction Nv/Np (%) versus μ for Nv

the number of distinct visited patches in the cases of identical
patches, Np = 5 and 10, and lt = 10rv , 25rv , and 100rv , is
shown in Fig. 12. In the scarce scenario, lt = 100rv , for any
μ we can expect the necessity of many distinct visits to the
patches to finally complete the task of finding T = 104 targets.
Hence all the patches should be accessed (Nv = Np), exactly
as seen in Fig. 12. Moreover, as we have numerically verified,
there are many revisits to all the Np patches, especially in
the ballistic search, when events of leaving the patch without a
target detection are not so rare at low target concentrations. On
the other hand, in denser regimes (lt = 25 and more notably
lt = 10) the searcher remains longer inside a patch, thus
tending to decrease Nv . For a Brownian strategy (μ = 3), the
small step lengths make it rather improbable for the searcher,
once leaving a patch, to reach distant targets. So, to return
to the previously visited patch is the common (although not
the exclusive) dynamics. For instance, for μ = 3, in average
only about 6 (2) out of Np = 10 available patches are visited
when lt = 25rv (lt = 10rv), Fig. 12. The difficulty to visit
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FIG. 12. Percentage of distinct visited patches vs μ along a search
for T = 104 targets in a landscape with Np = 10 and Np = 5 (inside)
identical patches. Here R = 0.1M .
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FIG. 13. Scaled average search efficiency η l2
t along a search for

T = 104 targets as a function of μ in a fragmented landscape with
Np = 10 and Np = 5 (inset) identical patches of R = 0.1M . The μopt

values are also indicated.

new patches is gradually surpassed as superdiffusive strategies
with lower values of μ are considered. Indeed, as observed
for Np = 10 in Fig. 12, for lt = 25rv most of the strategies
(1 < μ � 2.5) still can visit all patches. This is also true for
lt = 10rv , but then in the smaller interval of 1 < μ < 0.7.
Finally, smaller values of Np usually favor the increasing of
Nv/Np, inset of Fig. 12. All these results are corroborated by
the patterns illustrated in Fig. 9.

The average search efficiencies for Np = 10 and Np = 5
(inset) identical patches of radius R = 0.1M and lt = 10rv ,
50rv,100rv are shown in Fig. 13. The efficiency enhances
with Np since then naturally more targets are available. This
increase, however, is not linear: changing the number of
patches Np−say, doubling it—does not keep the visitation
rate constant (cf. Fig. 12). Furthermore, tantamount to the
single-patch landscape in Fig. 5, we observe a same optimal
strategy μopt ≈ 2 in basically all cases (but see below). It
is important to mention that similar η profiles, reflecting
analogous mechanisms of balance in efficient searches, emerge
from adaptive [32] and intermittent [33] models in landscapes
with identical patches or in fractal environments [36]. Finally,
some comment on why we have a slightly smaller μopt =
1.9 < 2 for Np = 10, R = 0.1M , and lt = 10rv in Fig. 13
is in order. For these parameters, both the target density
inside each patch and the global density of patches in the
environment are relatively high. Thus truncations [rule (ii)
in Sec. II] either to find a target (within a fragment) or to
locate a patch (in the whole environment) are also relatively
more frequent. Because of these truncations, the original steps
taken inside (with μ = 1.9) effectively become akin to the
advantageous power-law distribution with μ = 2, whereas a
modest diffusivity increase (a bit smaller μ) outside can be
useful in looking for patches.

Lastly, we consider the more general case of fragmented
landscapes with a random distribution of multiple heteroge-
neous patches (which, as it concerns conservation measures
and biodiversity maintenance, seems to be more adequate than
habitats with homogeneous patches [29]). Three configura-
tions illustrated in Fig. 10 are addressed: (a) patches with
the same target density but different sizes, (b) patches with
the same size but different target densities, and (c) the most
complex case of patches with distinct sizes and densities,
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FIG. 14. Percentage of distinct visited patches vs μ along a
search for T = 104 targets in a landscape with Np = 10 and Np = 5
(inside) heterogeneous patches. (a) Patches of a same lt , but radii
uniformly drawn from 0.03M � R � 0.3M . (b) Patches of radius
R = 0.1M , but neighbor targets distances uniformly drawn from
5rv � lt � 350rv . Due to the discussed mechanisms (main text), the
% variation of visited patches in the entire range 1 < μ � 3 in (b) is
much smaller than in (a).

but fixed number of targets inside. The distributions of
heterogeneities in the patches’ radius and density are generated
by uniformly selecting random values from a specified range
(see Fig. 10).

In landscapes where the patches have different R(n)′s but a
same density (or equivalently a same lt ), Fig. 10(a), generally
the searcher finds larger patches more easily, also spending
more time in their interior. In spite of this, Nv/Np as a function
of μ in a long search for T = 104 targets, Fig. 14(a), follows
a pattern similar to that of identical patches, Fig. 12. When
the sizes are all the same but the l′t s vary, Fig. 10(b), the
patches contributing the most to the search efficiency are just
the denser ones. So, a wide distribution of target densities
(5rv � lt � 350rv) for patches of a fixed radius (R = 0.1M)
can significantly affect the number of distinct visited patches,
Fig. 14(b). For instance, the existence of a considerable number
of rather dense patches makes a 100% of visitation very hard
to achieve, even for a ballistic regime. On the other hand, as the
very scarce patches found add almost no targets to the search
counting, then even a Brownian searcher can visit around
70% (Np = 10) and 85% (Np = 5) of the total landscape
patches [compare Figs. 12 and 14(b)]. This can be realized
by inspecting the trajectories for the μ = 1.1 ballistic case
in Fig. 10(b). Indeed, the searcher sometimes entirely crosses
low-density patches through a long corridor (Fig. 6) without a
detection.

We also have analyzed the case in which the number of
targets inside each patch is fixed, but R can vary, Fig. 10(c).
It yields a heterogeneous distribution in which the smallest
(largest) patches are also the densest (scarcest) ones. The

1 1.5 2 2.5 3
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0.0001

0.0002

0.0003

η Np=10
Np=5

FIG. 15. Search efficiency η vs μ along a search for T =
104 targets in a fragmented landscape with Np = 10 and Np = 5
heterogeneous patches [parameters as in Fig. 10(c)]. For both N ′

ps,
μopt ≈ 2.

small dense regions, which contribute the most to the search
efficiency, are now the hardest to find. Conversely, the more
easily detected larger patches are scarce, so the searcher
leaves them quickly, sometimes with no target detection. As
a consequence, a subtle balance between opposite trends is
established, resulting in a much longer search total traversed
distance L for a given task (finding T = 104 targets), along
which essentially all patches gets visited at least once [e.g., for
the parameters in Fig. 10(c), even the Brownian searcher visits
around 97% of the patches if NP = 10 and 100% if Np = 5].

Finally, we consider the search efficiency behavior for
landscapes with heterogeneous patches. Remarkably, for the
three types of situations depicted in Fig. 10, the profile of the
average η is found to be similar to that for the distribution
of fully identical patches, Fig. 13 [for instance, in Fig. 15
we show η as a function of μ using the parameters of Fig.
10(c)]. Furthermore, in the many examples tested, essentially
μopt ≈ 2. We thus conclude that the robustness of the optimal
strategy with unlimited revisits of targets actually holds across
homogeneous landscapes as well as fragmented environments
with several degrees of heterogeneity.

IV. FINAL REMARKS AND CONCLUSION

In this work we have extensively studied random search
walks in fragmented environments, considering truncated
(at the landscape maximum size M) Lévy searches. These
encompass extreme ballistic (μ → 1+), superdiffusive (1 <

μ < 3), and Brownian (μ = 3) long-term search dynamics.
We have assumed both environments with only a single patch
and multifragmented landscapes with randomly distributed
identical and heterogeneous patches. We have investigated the
features of the search paths with distinct dynamics (controlled
by μ) and affected by the environment characteristics. Fur-
thermore, average quantities such as the distances traversed
within and outside the patches, the number of distinct visited
patches, and search efficiency have been analyzed. Especially,
for the heterogeneous patches case we have studied the effect
on the search efficiency of the heterogeneity in the patches
sizes and/or in the target densities within the patches.

In patchy landscapes the search consists essentially in
finding the individual patches and looking for targets in
their interior. When target revisits are unlimited, an efficient
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search must suitably balance these two processes occurring
in distinct scales. (1) On one side, in a “local scale” within
the patches, the finding of a relative high number of new
targets (typically spanning distances of the order of R and
favored by strategies with a higher degree of superdiffusivity
and long steps: smaller μ′s) must counterbalance diffusive
strategies which render more extensive and detailed local
scanning for targets (covering few rv units and demanding
much shorter displacements: μ → 3). (2) On the other side,
in an interpatch “global scale,” the frequent departures from
a patch in the low-density regime also demand an efficient
compromise between looking in the empty region for distant
patches possibly containing unvisited targets, carried out by
a ballistic searcher, and returning to the patch just explored,
favored in a Brownian strategy.

Interestingly, the advantage that ballistic searchers have
to encounter the first patch does not prevail in the long
run, as visits to many patches also offer benefits. Therefore,
at the extent self-affine invariance holds true [up to M;
see the discussion after Eq. (2)], to deal with the above
(1),(2) trends, a same μopt ≈ 2 (intermediate) superdiffusive
solution for the optimal search strategy emerges, properly
handling the landscape multiple (but finite) scales. We thus can
conclude that the robustness of μopt ≈ 2, when target revisits
are unlimited, actually takes place not only in homogeneous
landscapes, as previously reported [39] (see also [52]), but
too in fragmented environments with diverse degrees of
heterogeneity.

As already mentioned, there are very interesting theoretical
descriptions [31–33] for foraging in patchy habitats based
on mode behavior (interchangeable depending on the local
availability of targets). In a concrete ecological system, the
forager then should be able to detect the presence of regions

richer or scarcer in targets to switch to a proper mode. There
is a vast literature discussing when an animal is or is not able
to detect patches and which mechanisms are used for such,
for instance, either by “sensing” a short-term change in the
encounter rates [53,54] or using other cues, e.g., smelling a
different local environment [55]. The fact is that this awareness
process is rather complex [56], with many individuals being (or
not) capable of directly identifying a patch from an otherwise
empty matrix [56,57]. Our framework assumes the second type
of forager. Certainly, the possibility of information gathering
during the search might lead to higher efficiencies by using
mode-drive strategies instead of the present one. In fact, along
this line a nice approach, based on Lévy processes, has been
developed in [33]. We shall mention that presently we are
working on a model based on mode behavior, but in which
each mode is entirely based on a Lévy process (results to
appear in the near future).

Finally, we observe that our findings are relevant to a better
understanding of the stochastic mechanisms [58] of efficient
searches in multifragmented heterogeneous environments in
several practical contexts. In particular, the searches performed
by animals for food resources and even mates (animal
foraging) is a highly significant problem with potentially
drastic ecological implications [8,42]. Indeed, the choice of a
suitable foraging strategy may render the difference between a
successful adaptation to a specific environment and the death
of an individual or the extinction of a species due to, e.g.,
starvation [59].
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