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Three-terminal quantum-dot refrigerators
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Based on two capacitively coupled quantum dots in the Coulomb-blockade regime, a model of three-terminal
quantum-dot refrigerators is proposed. With the help of the master equation, the transport properties of steady-state
charge current and energy flow between two quantum dots and thermal reservoirs are revealed. It is expounded
that such a structure can be used to construct a refrigerator by controlling the voltage bias and temperature ratio.
The thermodynamic performance characteristics of the refrigerator are analyzed, including the cooling power,
coefficient of performance (COP), maximum cooling power, and maximum COP. Moreover, the optimal regions
of main performance parameters are determined. The influence of dissipative tunnel processes on the optimal
performance is discussed in detail. Finally, the performance characteristics of the refrigerators operated in two
different cases are compared.
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I. INTRODUCTION

Thermoelectric materials can convert unused waste heat to
electricity based on the Seebeck effect or use electricity to
refrigeration based on the Peltier effect. Due to the discovery
of new thermoelectric materials with significantly higher
thermoelectric figures of merit (ZT), the thermoelectric field
went through a revival in the early 1990s [1,2]. In particular,
investigations on the thermoelectric effects of nanothermo-
electric devices have attracted considerable interest due to
their importance in developing miniaturized devices, which
help to utilize energy resources at the microscopic scale [3,4].
Such nanothermoelectric devices based on thermoelectric
phenomena can be used for several applications, including the
power generation, refrigeration, and temperature measurement
[3]. It was pointed out that compared to bulk structures made
from same materials, structures of reduced dimension can give
rise to an increased thermoelectric figure of merit ZT [5,6] and
that sharp spectral features can improve thermoelectric perfor-
mances characterized by a high value of ZT in materials with
a delta-like density of states [7]. Furthermore, it was reported
that the Carnot efficiency can be reached for reversible electron
transport between two reservoirs at different temperatures and
chemical potentials by using a sharply tuned energy filter for
which the electron density is the same in both reservoirs [8,9].

In particular, zero-dimensional (0D) systems, such as quan-
tum dots that naturally provide these sharp spectral features,
are weakly coupled to electron reservoirs and can be designed
as ideal energy filters [9]. Hence, there are many investigations
of the quantum dot thermoelectric devices because quantum
dots can be applied to the high-potential solid-state energy
conversion devices [10–15]. Experimentally, thermoelectric
effect has been studied for both open quantum dots [16,17]
and Coulomb-blockade dots [18–20]. In 1993, Edwards et al.
presented a quantum dot refrigerator, which utilizes the dis-
crete energy levels of quantum dots [21,22]. The refrigeration
in quantum dot is realized by using tunneling structures with
sharp energy features and filtering the energy of the current-
carrying electrons [23]. The thermoelectric properties of two
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capacitively coupled quantum dots in the Coulomb-blockade
regime in a three-terminal nanosized structure thermoelectric
system were first analyzed by Sánchez et al. [24]. They
showed that such a system can be used to transform a part
of the heat flowing from a hot reservoir into electric current.
Furthermore, they demonstrated that a three-terminal heat
engine can act as an ideal thermal-to-electric energy converter
that can reach the Carnot efficiency. Recently, Pekola et al.
proposed a remarkably simple electronic refrigerator based
on the Coulomb barrier for single-electron tunneling and
provided an interesting possibility for realizing a Coulomb
blockade enabled refrigerator [25]. On the basis of the
previous works, we propose a three-terminal quantum-dot
refrigerator based on two capacitively coupled quantum dots
in the Coulomb-blockade regime. It should be pointed out that
when the irreversibility is taken into account, the refrigeration
model proposed here is not the simple reverse operation of
the heat engine model described in Ref. [24]; it includes
the contribution of some undesired processes neglected in
Ref. [24] and may be directly used to discuss the optimal
design problem of parameters, which was not considered in
Ref. [24]. Thus, the main focus in this paper is to analyze
the thermodynamic performance characteristics and optimal
performance of three-terminal quantum-dot refrigerators. The
influence of the main parameters, include the dissipation factor,
voltage bias, and temperature ratio on the performance are
discussed in detail.

This paper is organized as follows. In Sec. II, we briefly
describe the model and basic physical theory of a three-
terminal quantum-dot nanostructure. In Sec. III, we investigate
the charge and energy transport properties. In Sec. IV, the
general performance characteristics and optimization of the
three-terminal quantum-dot refrigerator are discussed in detail.
And the performance characteristics of refrigerators operated
in the cases of Ts > Tg and Tg > Ts are compared, where Ts

and Tg are the temperature of two heat reservoirs. Finally, the
important results of this work are summarized in Sec. V.

II. MODEL AND THEORY

A model of three-terminal quantum-dot refrigerators is
illustrated in Fig. 1(a), where the system consists of three
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FIG. 1. (Color online) (a) The schematic diagram of a three-
terminal quantum-dot refrigerator. (b) Available transition for the
situation described in (a).

independent heat reservoirs and two quantum dots. The
conductor dot s is embedded between two conductor reservoirs
via two tunnel contacts, which permit particle and energy
exchange between the left reservoir at temperature Tl and

chemical potential μl and the right reservoir at temperature
Tr and chemical potential μr . The gate dot g is coupled
to a single-gate reservoir with temperature Tg and chemical
potential μg . U is the long-range Coulomb interaction between
the electrons of the conductor dot s and the gate dot g. The
transition rates �l , �r , and �g describe the tunneling of the
electrons between the reservoirs and two quantum dots. If
the two quantum dots are far from each other, they can be
bridged to obtain a strong coupling and at the same time
ensure good thermal isolation between the conductor reservoir
and the gate reservoir [26,27]. Thus, quantum dots s and g are
capacitively coupled to each other and interact only though the
long-range Coulomb force such that they can only exchange
energy but no particles. Quantum dots s and g have their
respective single energy levels εs and εg . Because Coulomb
interactions prevent two electrons to be present at one energy
level at the same time, so the single energy level εs or εg

can be occupied only by zero or one electron. The dynamical
evolution of such a system is characterized by four quantum
states |nsng〉 with respective probabilities pnsng

, where the
electron occupation numbers {ns,ng} of quantum dots s and g

are equal to {0,0}, {0,1} {1,0}, and {1,1}, respectively, as shown
in Fig. 1(b), where transition rates �±

αn describe the tunneling of
electrons into (+) or out (−) one quantum dot through barrier
α (α = s,g) when the other quantum dot has n (n = 0,1)
electrons.

In sequential tunneling approximation (�� � kBT ), the
broadening of energy levels can be neglected and the transmis-
sion through tunnel barriers is defined by sequential tunneling
of a single electron. Thus, the evolution of the occupation
probabilities of quantum states is described by master equation
[28–30]
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where �±
sn = �±

ln + �±
rn, (s = l,r). The transition rates �±

αn are,
respectively, given by

�+
αn = γαnf (εα + Uαn) , (2)

and

�−
αn = γαn[1 − f (εα + Uαn)], (3)

where f (x) = {exp[(x − μα)/(kBTα)] + 1}−1 is the Fermi
distribution, kB is the Boltzmann constant, and γαn are the
bare tunneling rate between the quantum dots and each of
the reservoirs. The capacitances associated with each tunnel
junction are defined by the charging energies Uαn of quantum
dot α (α = s,g), depending on whether the other quantum dot
is empty (n = 0) or occupied (n = 1). The charging energies
are, respectively, given by [24]

Us0 = q

CC̃

(
q

2
C�g + C�g

∑
s=l,r

CsVs + CCgVg

)
, (4)

Ug0 = q

CC̃

(
q

2
C�s + C�sCgVg + C

∑
s=l,r

CsVs

)
, (5)

Us1 = Us0 + U, (6)

and

Ug1 = Ug0 + U, (7)

where U = Uα1 − Uα0 = 2q2/C̃ is the exchanged energy
between the two systems when an electron tunnels into the
empty system but leaves it only after a second electron has
occupied the other quantum dot, q is the elementary charge,
and Vs/g = μs/g/q is the electric potential of the reservoirs
s/g. The total capacitance of each quantum dot is defined
by C�s = Cl + Cr + C or C�g = Cg + C, and the effective
capacitance C̃ = (C�sC�g − C2)/C.
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In the steady-state, i.e., ṗnsng
= 0, the solutions of the

occupation probability are as follows:
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where � is the normalization factor that ensures the sum of
probabilities to be equal to unity.

According to Eqs. (8)–(11), the charge currents from the
quantum dot system to the left- (l) and right-side (r) reservoirs
are, respectively, given by

Il = q(�−
l0p10 − �+

l0p00 + �−
l1p11 − �+

l1p01) (12)

and

Ir = q(�−
r0p10 − �+

r0p00 + �−
r1p11 − �+

r1p01). (13)

In the steady state, the magnitude of charge currents Ir and Il is
the same but their directions are opposite, i.e., Il = −Ir ≡ I .
The total absorbing heat flow from the reservoir g is given by

Q̇g = (εg + Ug0 − μg)(�+
g0p00 − �−

g0p01)

+ (εg + Ug1 − μg)(�+
g1p10 − �−

g1p11). (14)

III. CHARGE CURRENTS AND HEAT FLOWS

Based on Eqs. (12) and (13), the charge current I (= Il =
−Ir ) from the right- (r) to left-side (l) reservoir may recast an
expression as

I = Iabs + Irej

2
, (15)

where Iabs and Irej denote the contribution to the charge
currents for the absorbing heat process from the reservoir g

and the rejecting heat process to the reservoir g, respectively,
and are given by

Iabs = q(�+
r0p00 − �−

r0p10 + �−
l1p11 − �+

l1p01) (16)

and

Irej = q(�−
l0p10 − �+

l0p00 + �+
r1p01 − �−

r1p11). (17)

There is no energy exchange between the reservoir s and
the reservoir g for the processes �±

r0 or �±
l0, but the processes

�±
l1 or �±

r1 to transfer a particle from the right to left side
must absorb or reject an energy U from or to the reservoir

FIG. 2. (Color online) Charge currents I and heat flows Q̇ as a
function of the voltage bias for λ = 0.1. Inset (a): the partial enlarged
detail.

g. Thus, the heat flow absorbed from the reservoir g is
given by

Q̇abs = U (�−
l1p11 − �+

l1p01) (18)

and the heat flow rejected to the reservoir g is given by

Q̇rej = U (�+
r1p01 − �−

r1p11), (19)

so that

Q̇g = Q̇abs − Q̇rej. (20)

In what follows, it is assumed that Tl = Tr ≡ Ts . A set of
physically reasonable parameters are adopted in following cal-
culations, i.e., kBTl = kBTr = kBTs = 2kBTg , kBTg = 5�γ ,
q2/Cα = 20�γ , q2/C = 50�γ , εα = εg = 0, and γαn = γ ,
except γl0 = γr1 = λγ (0 � λ � 1), where � is the reduced
Planck constant and λ is defined as the dissipation factor.

The curves of charge currents I (I , Iabs, and Irej) and heat
flows Q̇ (Q̇c, Q̇abs, and Q̇rej) as a function of the voltage bias
	V for λ = 0.1 are plotted, as shown in Figs. 2(a) and 2(b). We
note that Iabs = Irej and Q̇abs = Q̇rej are obtained for 	V =
	V0. At this point, the charge current Iabs (the absorbing heat
process), mainly driven by the voltage bias, and the charge
current Irej (the rejecting heat process), mainly powered by
the temperature gradient, compensate each other. In the case
of 	V > 	V0, the charge currents always keep Iabs > Irej,
and the heat flow Q̇abs > Q̇rej. But in the limit of 	V � 0,
charge currents Iabs and Irejtend to be equal and will maintain
a constant, so that Q̇g(= Q̇abs − Q̇rej) → 0. Thus, there is a
maximum for every of heat flows Q̇ (Q̇c, Q̇abs, and Q̇rej) at
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the voltage bias 	VQ̇. This is because that the charge current
I consists of two parts Iabs and Irej, and the processes �±

r0 and
�±

l1 or �±
l0 and �±

r1 contributes to the currents Iabs or Irej at the
same time. But the processes �±

r0 or �±
l0 have no contribution

for energy transmission, as shown in Eqs. (15)–(19), so that
the processes �±

l1 or �±
r1 play a main role to transfer energy

between the reservoirs when 	V < 	VQ̇. But in the case of
	V > 	VQ̇, the processes �±

r0 or �±
l0 of no energy exchange

are more and more significant, so heat flows Q̇ (Q̇c, Q̇abs,
and Q̇rej) gradually decreases as the voltage bias increases.
Especially, for very small bias voltage 	V < 	V0, Iabs < Irej,
and Q̇abs < Q̇rej, so that the total heat flow Q̇g absorbed from
the reservoir g is negative. This is mainly because the heat
flow of the absorbing heat process driven by the voltage bias is
not enough to offset that of the rejecting heat process powered
by temperature gradient.

In Fig. 3, we show the calculation results of charge currents
(a) and heat flows (b) as a function of the dissipation factor
λ. There exists a special point λs , leading to Iabs = Irej and
Q̇abs = Q̇rej, so that the total absorbing heat flow Q̇g = 0. In
the case of λ < λs , Iabs > Irej, and Q̇abs > Q̇rej, so that Q̇g >

0. This kind of circumstance can realize refrigeration for the
reservoir g. But in the case of λ > λs , it leads to Iabs < Irej and
Q̇abs < Q̇rej, so that Q̇g < 0. This kind of situation is undesired
in the following discussion. It is seen from Fig. 3(b) that the
total absorbing heat flow Q̇g gradually decreases with the
increase of the dissipation factor λ. Therefore, the parameter
λ is defined as the dissipation factor.

FIG. 3. (Color online) The curves of charge currents I and heat
flows Q̇ varying with the dissipation factor λ for q	V /(�γ ) = 45.

IV. PERFORMANCE EVALUATION OF A REFRIGERATOR

A. Performance characteristics

We first consider the case of Ts > Tg . Such a system can
constitute a refrigerator to cool the reservoir g. The heat flow
Q̇g is absorbed from the reservoir g by the applied bias voltage
	V = (μr − μl)/q, and the heat flow Q̇s is rejected to the
reservoir s. According to the first law of thermodynamics,
Q̇g + P = Q̇s , where P = I	V is the power input. Thus, the
cooling power Q̇c is given by Q̇c = Q̇g and the coefficient of
performance (COP) is defined as

ε = Q̇c

P
= Q̇g

P
. (21)

In the limiting case of λ = 0, the contribution of the
undesired processes (the processes �±

r1 and �±
l0 reject an energy

U to the reservoir g) will be negligible. As a consequence,
based on Eqs. (12) and (14), the charge current I and heat flow
Q̇g are related only by their quantization, namely

I

Q̇g

= q

U
. (22)

This means that the energy transferred between the two
systems (conductor and gate systems) is quantized: a charge
current flowing along the conductor and an energy U transfer-
ring from the gate reservoir g into the conductor reservoirs s.
Therefore, the COP is simplified as

ε = U

q	V
. (23)

The COP is inversely proportional to the voltage bias and
achieve the Carnot COP εC = Tg/(Ts − Tg) at the threshold
voltage 	V = 	V0 = U/(qεC), but the cooling power Q̇c will
vanish, as shown in Fig. 4.

Figure 4 shows the performance characteristics of the three-
terminal quantum-dot refrigerator. It is seen from Fig. 4(a)
that the cooling power increases first and then decreases as
the voltage bias increases for a given λ. There exists an
optimum voltage bias 	VQ̇c

leading to a maximum cooling
power Q̇max

c . On the other hand, the maximum cooling power
Q̇max

c decrease gradually with the increase of the dissipation
factor. Figure 4(b) shows that the COP is a nonmonotonous
function of the voltage bias for given values of λ �= 0. There
exists an optimum voltage bias 	Vε leading to a maximum
COP εmax. In the region of 	V < 	Vε, the COP increases as
the voltage bias increases. While in the region of 	V > 	Vε,
the COP decreases as the voltage bias increases. It is seen
that the maximum COP decreases rapidly with the increase
of λ. Particularly, there exists a threshold voltage 	V0. The
system can realize the refrigeration only when the voltage bias
is greater than the threshold voltage. In addition, for the case
of λ = 0, the cooling power vanishes when the voltage bias
arrives at the so called the threshold voltage 	V0, because the
electric current is equal to zero. At this point, the COP can
achieve its maximum value, which means that the refrigerator
works at nondissipative situation.

By using the data in Figs. 4(a) and 4(b), the characteristic
curves of the cooling power versus COP can be plotted, as
shown in Fig. 4(c). Due to the contribution of these undesired
processes �±

r1 and �±
l0 can be negligible for the case of
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FIG. 4. (Color online) Performance characteristics of a three-
terminal quantum-dot refrigerator. (a) The cooling power and (b)
the coefficient of performance as a function of the voltage bias
for different values of the dissipation factor λ. (c) Characteristic
curves for different values of dissipation factor λ. Inset (a): the partial
enlarged detail.

λ = 0, the electronic transport is ideal and of no dissipation.
Therefore, it is seen that the characteristic curve between the
cooling power and the COP is open shaped. But, for the case
of λ �= 0, the electronic transport of these undesired processes
will gradually increase with the increase of λ. Therefore, the
characteristic curves are closed loop-shaped. This means that
the cooling power at the maximum COP does not vanish.

For actual refrigerators, engineers always want to get a
COP as large as possible and at the same time obtain one large
cooling power. Therefore, the optimally operating regions of
the quantum dot refrigerator should be located in those regions
of the ε ∼ Q̇ curves with negative slopes, as shown in Fig. 4(c).
Thus, the optimal regions of the three-terminal quantum-dot

refrigerator should be

Q̇mε
c � Q̇ � Q̇max

c , (24)

and

εmQc
� ε � εmax, (25)

where Q̇me
c ,Q̇max

c ,εmQc
, and εmax are four important parameters

which determine the lower and upper bounds of the optimized
cooling power and COP of a quantum-dot refrigerator.

B. Performance optimization

The variation curves of the threshold voltage 	V0 and
the optimal voltage biases 	VQ̇c

and 	Vε at the maximum
cooling power and maximum COP as a function of the
dissipation factor λ are plotted as shown in Fig. 5. It is
found that the threshold voltage increases rapidly with the
increase of the dissipation factor and reaches infinite at the
maximum dissipation factor λmax ≈ 0.608. This means that the
dissipation tunneling processes �±

r1 and �±
l0 are greater than the

refrigeration transport process �±
r0 and �±

l1. Therefore, in the
actual design, the operating regions of the dissipation factor λ

should be 0 < λ < λmax. Moreover, it is found that the optimal
region of the voltage bias should be

	Vε � 	V � 	VQ̇c
, (26)

as shown in the gray area in Fig. 5. Obviously, 	Vε and 	VQ̇c

are also two important parameters that determine the lower and
upper bounds of the optimized voltage bias. In this optimal
voltage bias region, the quantum-dot refrigerator is located
in the range of the characteristic curves with negative slopes.
The optimal voltage bias regions gradually decrease with the
increase of λ. The results obtained here indicate a way to
operate the refrigerator at the optimum ranges.

The curves of the maximum cooling power varying with
the temperature ratio Tg/Ts are plotted for different values of
λ, as shown in Fig. 6(a). It is clearly shown that the maximum
cooling power is a monotonically increasing function of Tg/Ts

and gradually decreases with the increase of the dissipation
factor λ. The COP at the maximum cooling power in the

FIG. 5. (Color online) The threshold voltage (solid line) and
optimal voltage biases at the maximum cooling power (blue dot line)
and maximum COP (red dash line) as a function of the dissipation
factor λ.
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FIG. 6. (Color online) (a) The maximum cooling power and
(b) the COP at the maximum cooling power as a function of
the temperature ratio Tg/Ts for different values of the dissipation
factor λ.

dissipation cases (λ �= 0) is smaller than that in the ideal case
(λ = 0) and obviously decreases as the dissipation factor λ

increases, as shown in Fig. 6(b).
Figure 7 shows (a) the maximum COP and (b) the

corresponding cooling power as a function of the temperature
ratio Tg/Ts for different values of the dissipation factor λ.
It is seen that the maximum COP decreases as the dissipation
factor λ increases. For the case of λ = 0, the maximum COP is
equal to the Carnot COP, i.e., εmax = εC , but the corresponding
cooling power is zero. While the corresponding cooling power
increases first and then decreases as the dissipation factor λ

increases. Therefore, the dissipation factor λ has an optimal
value at which the cooling power at the maximum COP will
attains its maximum. This will be discussed hereinafter.

Figure 8 shows the maximum cooling power and the
corresponding COP at the maximum cooling power as a
function of the dissipation factor λ. It is found that for the
case of λ = 0, maximum cooling power and the corresponding
COP reach their maximum value. But, for the case of λ �= 0,
both the maximum cooling power and the corresponding
COP obviously decrease as the dissipation factor λ increases.
When the maximum dissipation factor λ = λmax, Q̇max

c = 0,
and εmQ̇c

= 0, because the undesired processes �±
r1 and �±

l0

cannot be negligible. Hence, these undesired processes �±
r1

and �±
l0 should be minimized as largely as possible in the

actual maximum cooling power optimization design.
The variation curves of the maximum COP and correspond-

ing cooling power at the maximum COP with the dissipation

FIG. 7. (Color online) (a) The maximum COP and (b) the cooling
power at the maximum COP as a function of the temperature ratio
Tg/Ts for different values of the dissipation factor λ.

factor λ are plotted as shown in Fig. 9. It is seen that the
maximum COP decreases as the dissipation factor λ increases,
while the corresponding cooling power at the maximum COP
increases first and then decreases as the dissipation factor λ

increases, yielding to its maximum value Q̇mε
c /γ ≈ 0.0161 at

λopt ≈ 0.114. It shows that the maximum COP optimization
is different from the maximum cooling power optimization.
In order to achieve the maximum COP and at the same time
obtain a large cooling power, the quantum-dot refrigerator
should work in the area of λ � λopt, as shown in Fig. 9. Thus,
in the actual design, the optimal region of the dissipation factor

FIG. 8. (Color online) The maximum cooling power (black line)
and the COP at the maximum cooling power (blue line) as a function
of the dissipation factor λ.
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FIG. 9. (Color online) The maximum COP (black line) and the
cooling power at the maximum COP (blue line) as a function of the
dissipation factor λ.

λ should be 0 < λ � λopt. According to this criterion, Eq. (26)
may be rewritten as 	Vε(λ = 0) � 	V � 	VQ̇c

(λ = λopt).

C. Discussion and comparison

We now turn to discuss the performance of the refrigerator
operated in the case of Tg > Ts , which has the same initial
configuration as in the previous case, except parameters
kBTs = 5�γ , Tg = 2Ts , and γl1 = γr0 = λγ (0 � λ � 1). The
results obtained will be compared with those of the refrigerator
operated in the case of Ts > Tg .

In the case of Tg > Ts , the heat flow −Q̇s absorbed from the
reservoir s by the applied bias voltage 	V = (μr − μl)/q, and
the heat flow −Q̇g rejected to the reservoir g. Hence, according
to the first law of thermodynamics is −Q̇g = P − Q̇s . Thus,
the cooling power Q̇c is given by Q̇c = −Q̇s , and the COP is
defined as

ε = −Q̇s

P
= −Q̇g − P

P
. (27)

In the case of λ = 0, we get I/−Q̇g = q/U , which is similar
to the previous case. Therefore, Eq. (27) is simplified as

ε = U − q	V

q	V
. (28)

The Carnot COP εC = Ts/(Tg − Ts) can be achieved at the
threshold voltage 	V = 	V0 = U/[q(εc + 1)]. In particular,
the COP vanishes, i.e., ε = 0, at the so-called stopping voltage
	Vstop = U/q. This is mainly due to the quantization of the
charge current and heat flow. In every state of the cycle
processes shown in Fig. 1(b), a certain energy U not depending
on the voltage bias is transferred. Thus, in the case of Tg > Ts ,
the range of the voltage bias must be

U
/

[q (εc + 1)] ≡ 	V0 < 	V < 	Vstop ≡ U
/
q. (29)

The characteristic curves of the cooling power versus COP
can be plotted as shown in Fig. 10. Due to all the heat flow
Q̇g absorbed from the reservoir g by the applied voltage bias
contribute to the cooling power in the case of Ts > Tg , but in
the case of Tg > Ts , the heat flow Q̇g rejected by the reservoir
g consists of two parts, where one part comes from the power
input and the other part comes from the cooling power. It

FIG. 10. (Color online) The characteristic curves of the refriger-
ators in the cases of Tg > Ts and Ts > Tg for λ = 0.002. Inset: the
partial enlarged detail.

is found that the cooling power in the case of Tg > Ts is
significantly smaller than that in the case of Ts > Tg . However,
in the region where the cooling power is very small, the COP
in the case of Tg > Ts is slightly greater than that in the case of
Ts > Tg , as shown by the inset of Fig. 10. But, in the optimal
region that the ε ∼ Q̇ curves with negative slopes, both the
cooling power and COP in the case of Tg > Ts are smaller than
those in the case of Ts > Tg . Thus, the refrigerator operated
in the case of Tg > Ts should not be adopted in practical
applications.

Figure 11 shows the maximum COPs as a function of the
temperature ratio τ (τ = Ts/Tgfor Tg > Ts , τ = Tg/Tsfor Ts >

Tg). It is found that the temperature ratio τ must be larger than
the threshold temperature ratio τ ′

0 in the case of Tg > Ts (τ0 in
the case of Ts > Tg , as shown by the inset of Fig. 11). This is
because the heat flow driven by temperature difference is larger
than that driven by the voltage bias. When the temperature
ratio τ � τ ′

0 in the case of Tg > Ts (τ0 in the case of Ts > Tg),
the refrigerator will lose its role. Because τ0 < τ ′

0, it shows
once again that in practical applications, one should adopt

FIG. 11. (Color online) The maximum COPs as a function of the
temperature ratio τ in the cases of Tg > Ts and Ts > Tg for λ = 0.01.
Inset: the partial enlarged detail.
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FIG. 12. (Color online) The maximum COP (black line) and the
cooling power at the maximum COP (blue line) as a function of the
dissipation factor λ.

the refrigerator operated in the case of Ts > Tg rather than
Tg > Ts .

The variation curves of the maximum COP and the cooling
power at the maximum COP with the dissipation factor λ

are plotted as shown in Fig. 12. It is seen that the maximum
dissipation factor λ′

max ≈ 0.0106 in the case of Tg > Ts .
Compared with the case of Ts > Tg shown in Fig. 9, it is
found that λ′

max < λmax. The cooling power at the maximum
COP can reaches its maximum value (Q̇mε

c /γ )∗ ≈ 0.00199
at λ′

opt = 0.0031. It is found that both the maximum cooling
power at the maximum COP and optimal dissipation factor in
the case of Tg > Ts is significantly smaller than those in the
case of Ts > Tg , i.e., (Q̇mε

c /γ )∗ < Q̇mε
c /γ and λ′

opt < λopt.

V. CONCLUSIONS

We have analyzed the thermodynamic performance charac-
teristics of three-terminal quantum-dot refrigerators operated
in two different cases. This study is based on the evaluation

of the cooling power and COP derived from the steady-state
charge and energy transport between two quantum dots and
thermal reservoirs in the sequential tunneling approximation.
It is found that when the dissipation factor is not equal to zero,
the contribution of undesired processes is a major source of the
irreversibility of three-terminal quantum-dot refrigerators. We
have shown that the Carnot COP can be achieved in the limiting
case that the dissipation factor is equal to zero. The optimally
operating regions of three-terminal quantum-dot refrigerators
should be located in the characteristic curves with negative
slopes. Therefore, quantum-dot refrigerators can be operated
at the optimal regime by reasonably choosing the system’s
parameters. For the actual refrigeration system, the optimal
region of the voltage bias should be 	Vε(λ = 0) � 	V �
	VQ̇c

(λ = λopt). In order to achieve simultaneously a high
COP and a large cooling power, the dissipation factor λ should
be chosen in the range of 0 < λ � λopt in the case of Ts > Tg .
Through the comparison of the performance characteristics of
the refrigerators operated in the case of Ts > Tg and Tg > Ts , it
is found that both the cooling power and maximum COP in the
case of Tg > Tsare smaller than those in the case of Ts > Tg ,
and that the refrigerator operated in the case of Tg > Ts should
not be adopted in practical applications. The results obtained
here show that the investigation on the optimal performance
of three-terminal quantum-dot refrigerators is very necessary
and is not the simple duplicate research on the performance
of three-terminal quantum-dot heat engines. They may fill
the existing gap in the field of three-terminal quantum-dot
thermoelectric devices and provide some theoretical guidelines
for the optimal design and manipulate of practical three-
terminal quantum-dot refrigerators.
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[16] S. F. Godijn, S. Möller, H. Buhmann, L. W. Molenkamp, and

S. A. van Langen, Phys. Rev. Lett. 82, 2927 (1999).
[17] M. C. Llaguno, J. E. Fischer, A. T. Johnson, and J. Hone, Nano

Lett. 4, 45 (2003).
[18] A. A. M. Staring, L. W. Molenkamp, B. W. Alphenaar, H. van

Houten, O. J. A. Buyk, M. A. A. Mabesoone, C. W. J. Beenakker,
and C. T. Foxon, Europhys. Lett. 22, 57 (1993).

[19] L. Molenkamp, A. A. M. Staring, B. W. Alphenaar, H. van
Houten, and C. W. J. Beenakker, Semicond. Sci. Technol. 9,
903 (1994).

[20] A. S. Dzurak, C. G. Smith, C. H. W. Barnes, M. Pepper,
L. Martı́n-Moreno, C. T. Liang, D. A. Ritchie, and G. A. C.
Jones, Phys. Rev. B 55, R10197 (1997).

052118-8

http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1016/j.mser.2009.10.001
http://dx.doi.org/10.1016/j.mser.2009.10.001
http://dx.doi.org/10.1016/j.mser.2009.10.001
http://dx.doi.org/10.1016/j.mser.2009.10.001
http://dx.doi.org/10.1063/1.881752
http://dx.doi.org/10.1063/1.881752
http://dx.doi.org/10.1063/1.881752
http://dx.doi.org/10.1063/1.881752
http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1126/science.285.5428.703
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1103/PhysRevLett.89.116801
http://dx.doi.org/10.1103/PhysRevLett.89.116801
http://dx.doi.org/10.1103/PhysRevLett.89.116801
http://dx.doi.org/10.1103/PhysRevLett.89.116801
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1103/PhysRevE.81.041106
http://dx.doi.org/10.1103/PhysRevE.81.041106
http://dx.doi.org/10.1103/PhysRevE.81.041106
http://dx.doi.org/10.1103/PhysRevE.81.041106
http://dx.doi.org/10.1103/PhysRevE.85.031117
http://dx.doi.org/10.1103/PhysRevE.85.031117
http://dx.doi.org/10.1103/PhysRevE.85.031117
http://dx.doi.org/10.1103/PhysRevE.85.031117
http://dx.doi.org/10.1088/0256-307X/30/1/010501
http://dx.doi.org/10.1088/0256-307X/30/1/010501
http://dx.doi.org/10.1088/0256-307X/30/1/010501
http://dx.doi.org/10.1088/0256-307X/30/1/010501
http://dx.doi.org/10.1088/0031-8949/88/03/035002
http://dx.doi.org/10.1088/0031-8949/88/03/035002
http://dx.doi.org/10.1088/0031-8949/88/03/035002
http://dx.doi.org/10.1088/0031-8949/88/03/035002
http://dx.doi.org/10.1103/PhysRevE.88.062120
http://dx.doi.org/10.1103/PhysRevE.88.062120
http://dx.doi.org/10.1103/PhysRevE.88.062120
http://dx.doi.org/10.1103/PhysRevE.88.062120
http://dx.doi.org/10.1103/PhysRevLett.82.2927
http://dx.doi.org/10.1103/PhysRevLett.82.2927
http://dx.doi.org/10.1103/PhysRevLett.82.2927
http://dx.doi.org/10.1103/PhysRevLett.82.2927
http://dx.doi.org/10.1021/nl0348488
http://dx.doi.org/10.1021/nl0348488
http://dx.doi.org/10.1021/nl0348488
http://dx.doi.org/10.1021/nl0348488
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1088/0268-1242/9/5S/136
http://dx.doi.org/10.1103/PhysRevB.55.R10197
http://dx.doi.org/10.1103/PhysRevB.55.R10197
http://dx.doi.org/10.1103/PhysRevB.55.R10197
http://dx.doi.org/10.1103/PhysRevB.55.R10197


THREE-TERMINAL QUANTUM-DOT REFRIGERATORS PHYSICAL REVIEW E 91, 052118 (2015)

[21] H. L. Edwards, Q. Niu, and A. L. de Lozanne, Appl. Phys. Lett.
63, 1815 (1993).

[22] H. L. Edwards, Q. Niu, G. A. Georgakis, and A. L. de Lozanne,
Phys. Rev. B 52, 5714 (1995).

[23] J. R. Prance, C. G. Smith, J. P. Griffiths, S. J. Chorley,
D. Anderson, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Phys.
Rev. Lett. 102, 146602 (2009).
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