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We present a simple paradigm for detection of an immobile target by a space-time coupled random walker
with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and
exponentially distributed duration, interrupted by random changes in the direction of motion and resumption of
motion in the new direction with the same speed. We call these walkers “mortal creepers.” A mortal creeper may
die at any time during its motion according to an exponential decay law characterized by a finite mean death rate
ωm. While still alive, the creeper has a finite mean frequency ω of change of the direction of motion. In particular,
we consider the efficiency of the target search process, characterized by the probability that the creeper will
eventually detect the target. Analytic results confirmed by numerical results show that there is an ωm-dependent
optimal frequency ω = ωopt that maximizes the probability of eventual target detection. We work primarily in
one-dimensional (d = 1) domains and examine the role of initial conditions and of finite domain sizes. Numerical
results in d = 2 domains confirm the existence of an optimal frequency of change of direction, thereby suggesting
that the observed effects are robust to changes in dimensionality. In the d = 1 case, explicit expressions for the
probability of target detection in the long time limit are given. In the case of an infinite domain, we compute
the detection probability for arbitrary times and study its early- and late-time behavior. We further consider the
survival probability of the target in the presence of many independent creepers beginning their motion at the
same location and at the same time. We also consider a version of the standard “target problem” in which many
creepers start at random locations at the same time.
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I. INTRODUCTION

There are many processes in nature in which one or more
randomly moving entities detect one or more targets. Among
many examples, we mention binding or trapping processes in
molecular environments, diffusion-limited chemical reactions,
and the search for nutrients in a biological context such as
predator-prey interactions in ecological systems. In many of
these “target problems” the question of interest is the efficiency
with which the mobile entity finds the target as measured by
the time it takes to accomplish this outcome. The mathematical
quantities to be calculated for this purpose are first passage
time distributions or their moments, especially the mean first
passage time (MFPT) for an entity to reach the target. The
above problem is then tantamount to the calculation of the
survival probability of the target. Many such problems for
moving entities that execute random walks or, essentially
equivalently, diffusive motion, have been presented in Ref. [1].
Recently, the role of parallel and intermittent search strategies
in the above context has also attracted considerable interest
(see, e.g., Refs. [2,3]).

Other types of motion have frequently been considered in
the context of target capture, especially in the ecology literature
[4], including Lévy flights and Lévy walks (see, e.g., Chaps.
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7 and 8 in Ref. [5] and a recent review on Lévy walks [6]).
Lévy flights are characterized by instantaneous steps whose
lengths are chosen from a probability distribution that decays
as a power law. This leads to scale-free superdiffusive motion.
Lévy walks differ from Lévy flights in that the steps are not
instantaneous but occur at a constant speed. Other models
of superdiffusion are based on step-step correlations [7] and
have also been considered in the target capture problem (see,
e.g., the example with fractional Brownian motion cited in
[8]). Whereas normal diffusion is associated with a mean
square displacement that grows linearly with time 〈x2〉 ∼ t ,
in superdiffusive motion the growth is superlinear. At the
other extreme lie subdiffusive models, ones in which the
growth is sublinear. These are often associated with crowded
environments where motion is impeded by traps, barriers, and
dead ends. Recent work has extended target capture models
to subdiffusive motions arising from continuous time random
walks (CTRWs) [9–12].

Stepping back from the outcomes of various groups of
models in terms of the mean square displacement to the meso-
scopic basis for these outcomes, we can broadly characterize
the random motions by two distributions: the distribution of
stepping times (in the language of continuous time) and the
distribution of stepping lengths (in the language of continuous
space). Normal diffusion appears if the first moment of the
waiting time distribution and the two first moments of the
stepping length distribution are finite. The ubiquitous example
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is an exponential distribution of stepping times and a Gaussian
distribution of stepping lengths. Subdiffusive motion can be
achieved with stepping time distributions that lack a first
moment, that is, there is a strong probability of a long sojourn
at one location before moving on, so much so that the mean
stepping time diverges. Superdiffusive motion, on the other
hand, is associated with distributions of stepping distances
that lack a second moment, that is, the variance of the step
length diverges. We note that in recent years work on target
capture has been extended to more complex processes such as,
for instance, ones displaying nontrivial spatial or space-time
correlations. One such example is given by the capture of an
evasive prey which is able to detect predators within a certain
range and step back accordingly [13].

A feature of our own recent work is the recognition that in
many problems the moving entity has a finite lifetime [14–21].
In general, this finite lifetime is randomly distributed. We have
considered a variety of lifetime distributions, from exponential
to algebraic. The former is the distribution associated with
a “unimolecular” concentration decay process entity → 0,
while the latter may be indicative of more complex, encounter-
controlled kinetics leading to death or inactivation [22].

Returning to the target problem, the goal of a great deal
of work, whichever the underlying model of motion and
death, is to establish if optimization is possible. The goal
may be to maximize the probability of encountering the target
(lowest survival probability) or to minimize it (greatest survival
probability). The latter case is for instance relevant in ecology,
e.g., if a moving prey is trying to avoid a predator. Apart
from the aforementioned details of the stepping time and
the stepping length distributions, the relevant parameters with
respect to which the search process must be optimized vary
with the details of the model, for example, initial conditions,
boundary conditions, size, or dimensionality of the system.
In particular, the literature refers to the target problem when
there are many walkers starting their walk at random locations.
There is a vast literature on the target problem [1,8], but not on
the target problem with mortal rather than immortal walkers.
However, in recent days the literature on the latter topic and
related problems is increasing rapidly [15–21,23,24].

In any case, interesting effects arise from the interplay of
the lifetime of an entity and the time it takes it to reach the
target. If the lifetime is much shorter than the time it would
take an immortal entity to reach the target, then the problem
is in a sense uninteresting because the target is simply hardly
ever reached. In the reverse case, the fact that the entity has
a finite lifetime does not matter because it most frequently
reaches the target before it dies. Clearly, the most interesting
scenarios arise when these times are comparable. Since these
times are both distributed, the most interesting cases are those
where there is a significant overlap of the two distributions.

In this paper, we examine the search efficiency of mortal
Lévy walkers whose step duration and step length are exponen-
tially distributed. More explicitly, the motion of our walkers
is characterized by ballistic displacements at a fixed speed,
interrupted at random times by random changes in the direction
of motion and resumption of motion in the new direction with
the same speed as before. Following Hughes [25], we call
these walkers “creepers” to distinguish them from “leapers,”
that is, walkers performing instantaneous jumps. In addition,

we assume that our creepers are mortal, i.e., they have a finite
lifetime which we assume to be exponentially distributed here.

In investigating the survival probability of the target and the
optimization (in this work, minimization) thereof, the interplay
of two parameters is of special interest, namely, the average
death rate ωm and the average frequency of reorientation ω

of the creeper. We also emphasize an important point of the
model: the creeper may reach the target at any time during its
trajectory, which need not coincide with the end of a linear
displacement. Most (but not all) of our paper deals with this
problem in one dimension, where reorientation is simply a
direction reversal. This case is admittedly considerably simpler
than the problem in higher dimensions, but we do show
numerically that the results are qualitatively similar in two
dimensions.

We organize our presentation as follows. In Sec. II, we set
forth the formalism for the motion of a single mortal creeper as
well as for a collection of mortal creepers. In Sec. III, we use
this formalism to calculate the survival probability of a target
in the one-dimensional (1D) case, both in an infinite and in a
finite domain. In the former case we give an explicit expression
valid for arbitrary times. Section IV presents a brief numerical
study of the two-dimensional (2D) problem. Finally, in Sec. V
we summarize our main findings and possible extensions of
this work.

II. GENERAL FRAMEWORK

Consider a system consisting of an immobile, impenetrable
hyperspherical target of radius R and a randomly moving
creeper of negligible spatial extent initially located at a certain
distance from the target surface. The target is detected by the
searcher as soon as the latter intersects the target surface. Our
goal is to calculate the survival probability of the target.

A. Master equation describing the motion of the creeper

The motion of the creeper in one dimension starting from
initial position x0 is described by the equation

j (x,t |x0) =
∫ t

0
dt ′

∫ ∞

−∞
dx ′j (x − x ′,t − t ′|x0)�(x ′,t ′) + j0.

(1)

Here, j (x,t |x0)dx dt is the probability that the creeper com-
pletes a displacement and thus performs a turn (direction
reversal) during the infinitesimal time interval [t,t + dt] while
dwelling in the infinitesimal segment [x,x + dx], and �(x,t)
is the probability density of having performed a displacement
x in a time interval t between consecutive turns. Thus, Eq. (1)
represents a detailed bookkeeping of the possible ways in
which a creeper may finish a displacement at a given time
in terms of all the possible positions and times of the previous
turn. The deterministic initial condition is embodied in the
choice j0(x) = δ(x − x0)δ(t). In quantities that are conditional
on the initial condition, the dependence on initial time t = 0
is understood, e.g., j (x,t |x0) is an abbreviated notation for
j (x,t |x0,0).
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The description of the motion given by (1) is complemented
by the equation

p(x,t |x0) =
∫ t

0
dt ′

∫ ∞

−∞
dx ′j (x − x ′,t − t ′|x0)φ(x ′,t ′), (2)

which relates the statistical properties of the location of the
creeper at time t to those of its sojourn in different regions of
space for different periods of time. The quantity p(x,t |x0) dx

is the probability of finding the walker inside the interval
[x,x + dx] at time t provided it was at x0 at time t = 0, and
φ(x,t) dx is the probability that a step remains unfinished
after a time interval t since its start, during which time a
displacement x was performed [if the creeper velocity is
vf > 0, then obviously φ ∝ δ(x ± vf t); see the following].

The particular case of a walk with an exponentially
decaying waiting time probability distribution function (PDF)
is described by the following joint density:

�(x,t) = 1
2 [δ(x + vf t) + δ(x − vf t)]ω e−ωt , (3)

where, as introduced earlier, ω is the average rate at which
displacements are terminated by a turn, implying that ω−1

is the mean duration of a displacement in one direction.
We also call this the characteristic “persistence time” of the
creeper. The product form of �(x,t) reflects the fact that the
speed of each displacement is independent of its duration.
For simplicity, we assume that the beginning of the first
displacement coincides with the initial time t = 0, and that
the creeper initially has equal probability to move to the left
or to the right. The δ functions in fact indicate the constant
modulus vf of the creeper’s velocity. Given the density in
Eq. (3), the corresponding expression for the density φ(x,t)
is obtained by computing the probability

∫ ∞
t

ω e−ωt ′ dt ′ that a
given step is unfinished after a time t :

φ(x,t) = 1

2
[δ(x + vf t) + δ(x − vf t)]

∫ ∞

t

ω e−ωt ′ dt ′

= 1

2
[δ(x + vf t) + δ(x − vf t)]e−ωt = �(x,t)

ω
. (4)

Equations (1)–(4) provide a full description of the motion of
an immortal creeper.

We now introduce a finite lifetime for the creeper. We take
the death process to be independent of the transport properties.
The sojourn PDF p∗(x,t |x0) for a mortal creeper can then
be expressed in terms of the PDF p(x,t |x0) for an immortal
creeper as

p∗(x,t |x0) = ϕ(t)p(x,t |x0), (5)

where the mortality function ϕ(t) is the probability that the
creeper has survived for a time interval t since it started
moving, and ϕ(0) ≡ 1. Throughout the remainder of this work
we will use asterisks to denote quantities describing mortal
creepers.

B. Probability of target detection

We next turn to the calculation of the survival probability
of a target centered at xtg , that is, the probability that it has
not been detected by a creeper. In the one-dimensional case
we may assume without loss of meaningful information that
the target radius is vanishingly small, R = 0. We first write the

relevant equations for the case of immortal creepers and then
show how to extend them to the case of mortal creepers.

1. Single immortal creeper

We introduce q(xtg,t |x ′,t ′) as the probability per unit
time for the creeper to detect the target (that is, the target
detection rate) at time t no matter how often this detection
has occurred before, given that the creeper is found at x ′ at
time t ′ < t . In particular, q(xtg,t |x0,0) ≡ q(xtg,t |x0) is the
detection rate given that the creeper started its search at x0

at the initial time t = 0. To detect the target, the creeper
must step on location xtg . Therefore, q(xtg,t |x0) is clearly
proportional to the probability density p(xtg,t |x0) introduced
in the previous section (the special case with x0 = xtg will
be dealt with separately). In what follows, we assume perfect
target detection, that is, the creeper detects the target with unit
probability whenever it steps on location xtg .

We are ultimately only interested in the first encounter of the
creeper with the target. The rate f (xtg,t |x0) of first detection
(probability per unit time to detect the target for the first time)
for a creeper that starts at x0 can be computed as a function
of the overall detection rate q(xtg,t |xtg,t

′) from the renewal
equation [26]:

q(xtg,t |x0) = f (xtg,t |x0) +
∫ t

0
q(xtg,t |xtg,t

′)f (xtg,t
′|x0) dt ′.

(6)

Here, the rate at which the target is detected at time t has
been decomposed into two mutually exclusive contributions.
One contribution arises from first detection events at time t ,
given by the first term on the right-hand side. The second
contribution on the right-hand side accounts for revisitations
to the target location, that is, first visitations of the target at time
t ′ < t followed by a return to the target at time t (following
any number of additional revisitations in-between). Hence, the
first detection rate also appears in this term.

Since the system is invariant with respect to a time
shift, one has that p(xtg,t |x ′,t ′) = p(xtg,t − t ′|x ′), and thus
q(xtg,t |x ′,t ′) = q(xtg,t − t ′|x ′). One therefore obtains the
closed equation

q(xtg,t |x0)=f (xtg,t |x0)+
∫ t

0
q(xtg,t−t ′|xtg)f (xtg,t

′|x0) dt ′.

(7)

This is especially convenient because the integral is now a
convolution so that the equation is greatly simplified in Laplace
space. The Laplace transform of Eq. (7) readily leads to

f (xtg,s|x0) = q(xtg,s|x0)

1 + q(xtg,s|xtg)
. (8)

Note that we use the same notation for any function of time
and its Laplace transform. The choice is made clear by the
argument. The mean first detection time of the target (hereafter
called the mean first passage time, MFPT) can then be obtained
from this result for the Laplace transform of the probability
per unit time of first detection (cf. [26]).

We focus instead on the closely related survival probability
of the target, which we assume to be killed as soon as the
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creeper arrives at the target location for the first time. The
survival probability of the target is then given by

S(t) = 1 −
∫ t

0
f (xtg,t

′|x0)dt ′. (9)

In Laplace space, one then has

S(s) = 1

s
− 1

s
f (xtg,s|x0). (10)

In particular, the asymptotic survival probability S∞ ≡ S(t →
∞) is then given by

S∞ = 1 −
∫ ∞

0
f (xtg,t |x0)dt = 1 − lim

s→0
f (xtg,s|x0). (11)

Since the searcher is immortal and the embedding geometry is
one dimensional, the motion is recurrent, that is, every location
is guaranteed to be visited. This ensures that the target will
eventually be detected with certainty, i.e., the integral on the
right-hand side of Eq. (11) is unity. These arguments can easily
be generalized to the case of an arbitrary initial probability
distribution p(x0) by taking the corresponding average in
Eq. (11).

2. Single mortal creeper

Equation (6) must be modified for mortal creepers since
detection is now conditional on the survival function ϕ(t) of
the creeper. To take this into account, we multiply Eq. (6) by
ϕ(t) and rewrite the resulting equation as follows:

q∗(xtg,t |x0) = f ∗(xtg,t |x0)

+
∫ t

0
q∗(xtg,t |xtg,t

′)f ∗(xtg,t
′|x0) dt ′. (12)

Here, q∗(xtg,t |xtg,t
′) ≡ [ϕ(t)/ϕ(t ′)] q(xtg,t |xtg,t

′) and
f ∗(xtg,t |x0) ≡ [ϕ(t)/ϕ(0)] f (xtg,t |x0) = ϕ(t) f (xtg,t |x0).
The quantities q∗ and f ∗ have the same interpretation as q and
f , but now weighted with the appropriate conditional survival
probabilities. In particular, the ratio ϕ(t)/ϕ(t ′) is the survival
probability of the creeper in the time interval [t ′,t] conditional
on having survived up to time t ′.

Since ϕ(t)/ϕ(t ′) depends on both t and t ′ separately and in
general not on the time difference t − t ′, the death process in
general destroys the invariance of the propagator with respect
to a time shift. It is then not possible to obtain a closed equation
of the form (7) for the quantities with an asterisk. However, if
the survival function decays exponentially ϕ(t) = e−ωmt , one
has ϕ(t)/ϕ(t ′) = e−ωm(t−t ′) and the shift invariance is preserved
[17]. For this particular case, one does find a renewal equation
similar to (7), namely,

q∗(xtg,t |x0) = f ∗(xtg,t |x0)

+
∫ t

0
q∗(xtg,t − t ′|xtg)f ∗(xtg,t

′|x0) dt ′. (13)

In analogy to Eq. (8), we find in Laplace space f ∗(x,s|x0) =
q∗(xtg,s|x0)[1 + q∗(xtg,s|xtg)]−1, and applying the shift theo-
rem for the Laplace transform we obtain

f ∗(xtg,s|x0) = q(xtg,s + ωm|x0)

1 + q(xtg,s + ωm|xtg)
= f (xtg,s + ωm|x0).

(14)

The survival probability at time t in the presence of an
exponential mortality function then is

S∗(t) = 1 −
∫ t

0
f ∗(xtg,t

′|x0) dt ′, (15)

whose Laplace transform yields

S∗(s) = 1 − f ∗(xtg,s|x0)

s
. (16)

The asymptotic value of the survival probability is formally
similar to that found in the absence of mortality,

S∗
∞ = 1 −

∫ ∞

0
f ∗(xtg,t |x0)dt = 1 − lim

s→0
f ∗(xtg,s|x0),

(17)

but it no longer vanishes. In particular, we now obtain the final
result

S∗
∞ = 1 − q(xtg,s = wm|x0)

1 + q(xtg,s = wm|xtg)
. (18)

Once again these arguments can easily be generalized to an
arbitrary initial distribution p(x0).

3. N immortal or mortal creepers

Finally, suppose that instead of a single creeper we now have
a collection of N statistically independent immortal creepers
all starting at the same location x0 at time t = 0. The survival
probability SN (t) of the target up to time t is simply the
probability that it has not been detected by any of the searchers
up to that time. We now have SN (t) = [S(t)]N , and also the
asymptotic result SN,∞ = SN

∞. The same reasoning applies
to mortal creepers provided they all have the same mortality
function, i.e., S∗

N,∞ = (S∗
∞)N .

III. EXPLICIT RESULTS IN ONE DIMENSION

In this section, we obtain a variety of explicit results for
the survival probability of a target in the presence of one
or more mortal and immortal creepers in dimension d = 1,
and compare a number of them with the results of numerical
simulations.

A. Infinite domain

1. Single immortal creeper

We begin with a single creeper and a target at location
xtg . The convolution structure of Eqs. (1) and (2) translates
into a Fourier-Laplace transform p(k,s|x0) ≡ F {p(x,t |x0)}
of the propagator which satisfies the so-called Montroll-Weiss
equation (see, e.g., [5], p. 112):

p(k,s|x0) = φ(k,s)e−ikx0

1 − �(k,s)
. (19)

We adopt the convention f (k) = ∫ ∞
−∞ dx f (x)eikx for the

Fourier transform, using the same letter f (k) for the Fourier
transform as we do for the space-dependent function f (x),
again relying on the argument to make the distinction. In the
particular case of our Markovian walk the above equation takes
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the form [see Eq. (4)]

p(k,s|x0) = ω−1e−ikx0

�−1(k,s) − 1
. (20)

Next, taking the Fourier-Laplace transform of the joint
distribution �(x,t) defined by Eq. (3), one obtains

�(k,s) = w

2

[
1

s + w + ikvf

+ 1

s + w − ikvf

]

= (s + w)w

(s + w)2 + v2
f k2

. (21)

Inserting this expression into Eq. (20) yields

p(k,s|x0) = (w + s)e−ikx0

s(s + w) + v2
f k2

. (22)

As is well known, the above expression is simply the Fourier-
Laplace transform of the free solution of the telegrapher’s
equation (see, e.g., [27], p. 246):

v2
f

∂2

∂x2
p(x,t |x0) = ∂2

∂t2
p(x,t |x0) + w

∂

∂t
p(x,t |x0) (23)

[the telegrapher’s equation can also be obtained directly by
differentiating the set of equations (1) and (2) with respect to
time]. Fourier inversion of p(k,s|x0) yields

p(x,s|x0) = 1

2vf

√
s + w

s
e−√

s(s+w)|x−x0|/vf . (24)

Finally, introducing the definition αw(s) ≡ √
s(s + w) one

has

p(x,s|x0) = 1

2vf

αw(s)

s
e−αw(s)|x−x0|/vf . (25)

The normalization of this probability density to unity can
easily be ascertained through

∫ ∞
−∞ p(x,s|x0) dx = s−1. The

analytic inversion with respect to the Laplace variable s can
also be carried out and leads to an expression in terms of
modified Bessel functions. However, bearing in mind that we
are focusing on the survival probability, it is more convenient
to continue working in Laplace space.

As an aside, we note that the expression (24) for the
Laplace-transformed propagator can be compared with the
one for normal diffusion pnd (x,s|x0). One has

pnd (x,s|x0) ≡ L
{

e−(x−x0)2/(4Dt)

√
4πDt

}
= e−√

s/D|x−x0|

2
√

Ds
, (26)

which coincides with the small s limit of Eq. (24) if one takes
D = v2

f w−1. This in turn implies a coincidence at long times.
The rate at which an immortal creeper detects the target at

xtg any number of times is the sum of the probability fluxes
of particles that arrive at xtg from the left (with velocity
vf ), 
+(xtg,t), and from the right (with velocity −vf ),

−(xtg,t). In terms of differential detection probabilities,

one has

q(xtg,t |x0) dt = 
+(xtg,t)dt + 
−(xtg,t)dt

=
∫ xtg

xtg−vf dt

p(x,t ; vf |x0)dx

+
∫ xtg+vf dt

xtg

p(x,t ; −vf |x0)dx, (27)

where p(x,t ; vf |x0)dx and p(x,t ; −vf |x0)dx are, respec-
tively, the ensemble probabilities that creepers at a position
x at time t move toward the right and toward the left. For
t > 0 an expansion in dt yields

q(xtg,t |x0) = vf [p(xtg,t,vf |x0) + p(xtg,t, − vf |x0)]

= vf p(xtg,t |x0). (28)

Obviously, q(xtg,0|x0) = 0 when x0 �= xtg . However, the case
of t = 0 and x0 = xtg must be treated with care. First, we
realize that p(x,0; ±vf |x0) = (1/2)δ(x − x0) so that, for t →
0, half of the creepers go to the right from x0, whereas none
go to x0 from the right because there are no creepers beyond
x0. In other words, for t → 0 position x0 is special: all the
creepers move away from x0, and no creeper goes toward x0.
This means that

q(x0,0|x0) dt = 
±(x0,0)dt = 1
2 . (29)

However, vf p(x0,0|x0)dt = 
+(x0,0)dt + 
−(x0,0)dt = 1,
so that we can rewrite Eq. (29) as q(x0,0|x0) dt =
vf p(x0,0|x0)dt − 1/2. On the other hand, p(xtg,0|x0) = 0 for
x0 �= xtg . Therefore, these results together with Eq. (28) can
be written as follows [28]:

q(xtg,t |x0) =
{

vf p(xtg,t |x0), x0 �= xtg

vf p(xtg,t |x0) − 1
2δ(t), x0 = xtg.

(30)

Note that we have assumed that the walker does not detect the
target at t = 0 even if its initial location is x0 = xtg . Detection
only occurs if the creeper returns to this location. This is not a
necessary assumption, and one could easily deal with inclusion
of immediate target death if the initial creeper location is at
the target.

We close this part by noting that taking the Laplace
transform of Eq. (30) yields a straightforward relation be-
tween q(xtg,s|x0) and the unrestricted Laplace-transformed
propagator p(x,s|x0) of the telegrapher’s equation evaluated
at x = xtg . The resulting closed analytic expression can then
be used to explicitly compute f (xtg,s|x0) by means of Eq. (8).
Inserting the resulting expression into Eq. (10) yields an
expression for the Laplace-transformed detection probability
which can subsequently be inverted to explicitly compute S(t).
Formally, one may assume that the target is killed as soon as
it is detected. The detection probability can then be identified
with the survival probability of the target. If one assumes that
the searcher also dies as soon as it detects the target, the target
can be regarded as a trap and the survival probability of the
searcher then also becomes identical to S(t). The computation
of the survival probability of an immortal walker whose motion
is governed by the telegrapher’s equation in the presence of a
trap was carried out in Ref. [29], and the result is expressible
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FIG. 1. Plot of the search efficiency in an infinite domain as a function of the mean rate ω of direction reversal of the creeper for different
initial conditions x0 and different values of the mortality rate ωm: |xtg − x0| = 0.1 (circles), 1 (squares), 10 (diamonds), and 50 (triangles).
The solid lines correspond to the analytic result (33), whereas the points denoted by symbols are obtained numerically from the average over
the trajectories of 105 independent random searchers. In all cases, we use vf = 1. The domain size in the simulations has been chosen large
enough for finite-size effects to be negligible.

in terms of modified Bessel functions (also see the remarks at
the end of Sec. III A 3).

2. Single mortal creeper

We next calculate S∗
∞, the asymptotic survival probability

of the target in the presence of a mortal creeper. To do this, we
refer back to Eq. (18). The right-hand side requires the Laplace
transform of Eq. (30), which is easily calculated using Eq. (25).
We readily obtain

S∗
∞ =

⎧⎨
⎩

1 − αω(ωm)
αω(ωm)+ωm

e−αω(ωm)|xtg−x0|/vf , x0 �= xtg

2ωm

αω(ωm)+ωm
, x0 = xtg.

(31)

This can be compared to the corresponding normal diffusion
model in the limit vf → ∞, ω → ∞, with fixed D ≡ v2

f ω−1.
In this case, one obtains the expression

S∗
nd,∞ = 1 − e−√

ωm/D|xtg−x0| (32)

for all x0. Note that in the limit of infinite lifetime ωm → 0, all
of these survival probabilities lead (as they should) to the result
S∗

∞ = S∗
nd,∞ → S∞ = 0, that is, the target does not survive

regardless of the initial position of the creeper. On the other
hand, in the limit of a creeper that dies infinitely quickly, the
target survives with unit probability, S∗

∞ = S∗
nd,∞ = 1, because

the creeper essentially does not move before dying. This is the
case even when x0 = xtg since our convention is not to count
the initial position as a step in the process.

Comparisons of our results with numerical simulations are
presented in terms of the search efficiency 1 − S∗

∞, which
we write explicitly because this makes the comparison more
straightforward:

1 − S∗
∞ =

⎧⎨
⎩

αω(ωm)
αω(ωm)+ωm

e−αω(ωm)|xtg−x0|/vf , x0 �= xtg

αω(ωm)−ωm

αω(ωm)+ωm
, x0 = xtg.

(33)

Figure 1 shows three plots of the search efficiency as a
function of the mean frequency ω of change of direction of the
creeper (direction reversal in dimension d = 1) for different

values of the creeper mortality rate ωm and for different initial
conditions. The analytic result (33) is in excellent agreement
with results from Monte Carlo simulations averaged over 105

realizations of the random walk.
As would be expected, the search efficiency increases

with decreasing values of the initial distance |xtg − x0| and
decreasing mortality rate (in the latter case, the searcher
obviously has a longer time to detect the target). A number
of the plots in Fig. 1 show an optimal value of ω for which
the search efficiency becomes maximal. This is the result of
a tradeoff between maintaining persistence long enough to
avoid spending a great deal of time in a region devoid of
the target, and breaking persistence often enough to avoid
large departures from a nearby target. Obviously, the details
on how this tradeoff works depend on the characteristic time
ω−1 between turns, on the mean lifetime ω−1

m of the creeper,

0
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0.1
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ω
o
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t

ωm

FIG. 2. Behavior of the optimal persistence ωopt as a function of
the mortality rate ωm for different values of system size, L = 100
(circles), 103 (squares), 104 (diamonds), and L → ∞ (triangles).
Solid lines correspond to the analytic result (60), while symbols
denote data points obtained from Monte Carlo simulations (averaging
over the trajectories of 105 independent mortal creepers). In all cases,
we place the target at xtg = 0, begin the walk of the creeper at x0 = 10
and the creeper has speed vf = 1.
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and on the typical time τ0 = |x0 − xtg|/vf it would take the
creeper to cover the initial distance ballistically. In a finite
domain of linear size L, an additional time scale is introduced,
namely, the typical time needed to cover the full system length
in the absence of the target L/vf . This is thus a complex
problem, but Fig. 1 shows the fairly universal feature of an
optimal search efficiency (minimum survival probability of
the target).

Figure 2 shows the optimal frequency of turns (optimal
persistence) as a function of creeper mortality rate for various
values of L. While we leave most of the discussion of a finite
domain to Sec. III B, it is helpful to consider the L → ∞
behavior shown in Fig. 2. For very large mortality rates, it is
clear that the creeper must perform ballistic motion in order to
have a chance to detect the target. However, as the mortality
rate becomes smaller, it may be desirable to change direction
a few times in order to avoid long excursions away from

the target, thereby leading to a finite optimal frequency of turns
ωopt. The relation between ωopt and ωm can then be expressed
as follows:

ωm = vf (1 − ωopt|xtg − x0|/vf )2

|xtg − x0| (2 − ωopt|xtg − x0|) . (34)

From here we see that ωopt = vf /|xtg − x0| when ωm → 0,
and also that the threshold value of the mortality rate for which
ωopt becomes zero is ωm = vf /(2|xtg − x0|), in agreement
with Fig. 2 and with the description given above. We return to
Fig. 2 later to discuss the case of finite L.

3. Time dependence

Results for the search efficiency 1 − S∗(t) at finite times
can be obtained by inversion of the exact expression in the
Laplace domain. The latter reads as

1

s
− S∗(s) =

⎧⎪⎨
⎪⎩

1
s

(s+ω+ωm)1/2

(s+ωm)1/2+(s+ω+ωm)1/2 e−αω(s+ωm)|xtg−x0|/vf , x0 �= xtg

1
s

(s+ω+ωm)1/2−(s+ωm)1/2

(s+ω+ωm)1/2+(s+ωm)1/2 , x0 = xtg.

(35)

Let us first focus on the case where the searcher starts at
the target location (x0 = xtg). Inverting the equation for the
Laplace transform by means of the Faltung theorem and the
shift theorem, one obtains

1 − S∗(t)=
∫ t

0
dτ e−ωmτL−1

s→τ

{
[(s+ω)1/2−s1/2]2

ω

}
. (36)

According to Ref. [30] (p. 215, formula 79), one has

L−1
s→τ =

{
[(s + ω)1/2 − s1/2]2

ω

}
= 1

τ
e−ωτ/2I1

(ωτ

2

)
,

(37)
where I1(. . .) stands for a modified Bessel function. We thus
find

1 − S∗(t) =
∫ t

0
dτ τ−1e−(ω+2ωm)τ/2I1

(ωτ

2

)
. (38)

One can easily check with lookup tables that the value of the
integral on the right-hand side in the limit t → ∞ coincides
with the value of 1 − S∗

∞ given in Eq. (33). In passing, we also
note that in the absence of mortality (ωm = 0) the integral is
known for all times t (see, e.g., Ref. [31], p. 46). One finds

1 − S(t) = 1 − e−ωt/2I1

(
ωt

2

)
− e−ωt/2I0

(
ωt

2

)
. (39)

Returning to the general case ωm �= 0, the killing probability
can be rewritten as follows:

1 − S∗(t) = αω(ωm) − ωm

αω(ωm) + ωm

−
∫ ∞

t

dτ τ−1e−(ω+2ωm)τ/2I1

(ωτ

2

)
. (40)

For long (but finite) times t , we now use in the above
formula the asymptotic expansion for large x:

I1(x) = ex

√
2πx

{
1 − 3

8x
− 15

128x2
+ O(x−3)

}
. (41)

Neglecting all the terms beyond the first subdominant term
and making use of partial integration, we find∫ ∞

t

dτ τ−1e−(ω+2ωm)τ/2I1

(ωτ

2

)

≈ 1√
π

∫ ∞

t

dτ τ−1 e−ωmτ

(ωτ )1/2
− 3

4
√

π

∫ ∞

t

dτ τ−1 e−ωmτ

(ωτ )3/2

= 1√
πω

e−ωmt

ωmt3/2
− 3√

πω

e−ωmt

(2ωm + 4ω)ωmt5/2

+O

(
e−ωmt

t7/2

)
. (42)

At long times, one thus has

1 − S∗(t) = αω(ωm) − ωm

αω(ωm) + ωm

− 1√
πω

e−ωmt

ωmt3/2

+ 3√
πω

e−ωmt

(2ωm + 4ω)ωmt5/2
+ O

(
e−ωmt

t7/2

)
.

(43)

In the opposite limit of early times we can make use of the
Taylor expansion

I1(x) = x

2
+ x3

16
+ O(x5) (44)
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and the series definition of the exponential function in (38) to obtain

1 − S∗(t) = ω

4

∫ t

0
dτ

{
1 −

(
ω + 2ωm

2

)
τ +

[
ω2

32
+ (ω + 2ωm)2

8

]
τ 2 + O(τ 3)

}
. (45)

Thus,

1 − S∗(t) = ωt

4
− ω(ω + 2ωm)

16
t2 +

[
ω3

384
+ ω(ω + 2ωm)2

96

]
t3 + O(t4). (46)

We now turn to the case x0 �= xtg . Taking the inverse Laplace transform of the expression given in (35) for this case, one finds

1 − S∗(t) = ω−1
∫ t

0
dτ e−ωmτL−1

s→τ {[s + ω − αω(s)]e−αω(s)τ0}, (47)

where we have introduced τ0 = v−1
f |xtg − x0|. In what follows, we restrict ourselves to the case t � τ0 since for t < τ0 one

trivially has 1 − S∗(t) ≡ 0. Now, we invoke the following results given in Ref. [32]:

L−1
s→τ {e−αω(s)τ0} = e−ωτ/2δ(τ − τ0) + ωτ0

2

e−ωτ/2√
τ 2 − τ 2

0

I1

(
ω

2

√
τ 2 − τ 2

0

)
θ (τ − τ0), (48)

L−1
s→τ {s e−αω(s)τ0} = ∂

∂τ

⎧⎨
⎩e−ωτ/2δ(τ − τ0) + ωτ0

2

e−ωτ/2√
τ 2 − τ 2

0

I1

(
ω

2

√
τ 2 − τ 2

0

)
θ (τ − τ0)

⎫⎬
⎭ , (49)

L−1
s→τ {αω(s) e−αω(s)τ0} = e−ωτ/2

(
∂2

∂τ 2
− ω2

4

)
I0

(
ω

2

√
τ 2 − τ 2

0

)
θ (τ − τ0), (50)

where θ (. . .) stands for the Heaviside step function. Substituting these results into Eq. (47), applying partial integration for
integrals involving derivatives of Bessel functions, and carrying out integrals not involving Bessel functions, we are left with the
following expression:

1 − S∗(t) =
(

1 + ωm

ω

)
e−(ω+2ωm)τ0/2 −

[
(ω + 2ωm)2

4ω
− ω

4

] ∫ t

τ0

dτ e−(ω+2ωm)τ/2I0

(
ω

2

√
τ 2 − τ 2

0

)

+
(

ω + ωm

2

) ∫ t

τ0

dτ
τ0√

τ 2 − τ 2
0

e−(ω+2ωm)τ/2I1

(
ω

2

√
τ 2 − τ 2

0

)

−
(

ω + 2ωm

2ω

)
e−(ω+2ωm)t/2I0

(
ω

2

√
t2 − τ 2

0

)
− 1

2

√
t − τ0

t + τ0
e−(ω+2ωm)t/2I1

(
ω

2

√
t2 − τ 2

0

)
, (51)

where additional use of the identity (∂/∂x)I0(x) = I1(x) has been made to express the time derivative of the zeroth-order modified
Bessel function in terms of the first-order modified Bessel function.

Note that there is a discontinuity of 1 − S∗(t) at t = τ0, where it jumps from zero to a finite value. In this case, 1 − S∗(τ0)
is the probability that the target is found by the creeper exactly at t = τ0. For this to happen, (i) the creeper must start moving
towards the target at time t0, (ii) it must not change direction in the time interval between 0 and τ0. and (iii) it must not not die
during this time interval. The probabilities for these three independent events are, respectively, 1/2, e−ωτ0/2, and e−ωmτ0 . The
product of the three yields the result 1 − S∗(τ0) = (1/2) e−(ω+2ωm)τ0/2.

Let us now focus on the study of the asymptotic behavior of (51). We first start with the long-time regime. Making use of the
x-large expansion

I0(x) = ex

√
2πx

{
1 + 1

8x
+ 9

128x2
+ O(x−3)

}
(52)

together with (41), and applying partial integration to the corresponding integrals, one finds the long-time behavior

1 − S∗(t) = αω(ωm)

αω(ωm) + ωm

e−αω(ωm)τ0 −
[

1 + (ω + ωm)τ0

2ωm

√
πω

]
e−ωmt

t3/2

+
{

3(2ω + ωm)[1 + (ω + ωm)τ0]

8
√

πω3ω2
m

}
e−ωmt

t5/2
+ O

(
e−ωmt

t7/2

)
. (53)

Let us now consider the opposite limit of short times. Here, one uses

I0(x) = 1 + x2

4
+ x4

64
+ O(x6) (54)
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together with (44) to perform an expansion of the functions appearing in (51) in the small parameter 
 = t − τ0. The final result
is

1 − S∗(t) = e−(ω+2ωm)τ0/2

[
1

2
+ ω(ωτ0 + 2)

16

 + (ωτ0 − 4)ω3τ0 − 16ω2 − 16(ωτ0 + 2)ωωm

512

2 + O(
3)

]
. (55)

Note that the linear term in 
 does not depend on ωm. The mortality rate only appears in the quadratic order term.
Finally, we note that in the absence of mortality, the formula (51) takes the simplified form

1 − S(t) = e−ωτ0/2 − 1

2
e−ωt/2I0

(
ω

2

√
t2 − τ 2

0

)
− 1

2

√
t − τ0

t + τ0
e−ωt/2I1

(
ω

2

√
t2 − τ 2

0

)

+ ω

2

∫ t

τ0

dτ
τ0√

τ 2 − τ 2
0

e−ωτ/2I1

(
ω

2

√
τ 2 − τ 2

0

)
. (56)

Alternatively, this formula can be obtained as the spatial inte-
gral of the propagator given in Ref. [29] for the telegrapher’s
equation in the presence of a single trap.

Returning to the case with mortality, Fig. 3 shows a
comparison for different parameter values between analytical
and numerical results for the detection probability as a function
of time. Excellent agreement is found.

We close by noting that, in the presence of creeper mortality,
the survival probability of the target S∗(t) and that of the
creeper S∗

cr(t) become different if one assumes that both creeper
and target die instantaneously upon detection. However, there
is a straightforward relation between both of them, namely,
S∗(t) = S∗

cr(t) + ωm

∫ t

0 S∗
cr(τ )dτ (see Ref. [16] for a detailed

derivation). Obviously, one must have S∗(t) > S∗
cr(t) in this

case since the creeper can die not only upon encounter with
the target, but also spontaneously.

4. N mortal creepers

Consider the case of N > 1 independent creepers that begin
their walk at the same location and at the same time. The
question in this case is whether an optimal search efficiency of
the walkers (i.e., minimum value of the survival probability of
the target) is still found. The search efficiency is now simply
1 − S∗

N,∞ = 1 − (S∗
∞)N . The condition for ωopt is again found

by requiring that the derivative of the efficiency with respect
to ω be zero. However, the condition for this derivative to
become zero is the same as for the N = 1 case. Therefore,
the value of ωopt is the same. However, since S∗

∞ < 1, the

detection probability of the target tends to one as N → ∞. In
words, when the number of walkers becomes infinitely large,
one of them will sooner or later reach the target with certainty
no matter how quickly the walkers die on average.

B. A finite domain

1. Single mortal creeper

The most straightforward extension of our results to a finite
system is to a ring of length L. On this ring, we place a
point target and calculate its survival probability S∗

∞ in the
presence of a single mortal creeper. This is most easily done
by exploiting the relation between the probability density
p(x,t |x0) introduced in Eq. (2) and that of the finite system
pL(x,t |x0):

pL(x,t |x0) =
∞∑

n=−∞
p(x + nL,t |x0), 0 < x < L. (57)

In Laplace space, this translates into the relation

pL(x,s|x0) =
∞∑

n=−∞
p(x + nL,s|x0), 0 � x � L. (58)

Using Eq. (25), we then obtain an expression in terms of a
geometric series which can be summed. The sum yields

pL(x,s|x0) = 1

2vf

αw(s)

s

{
e−αw(s) |x−x0|/vf + e−αw(s) (L−|x−x0|)/vf

1 − e−αw(s) L/vf

}
, 0 � x � L. (59)

One can easily check that the above equation is normalized, i.e.,
∫ L

0 dx pL(x,s|0) = s−1. The limit of an infinite system is also
recovered as one lets L → ∞ in the above expression.

The corresponding detection rate qL(xtg,t |x0) is obtained by making use of Eq. (59) in Eq. (30). The survival probability of the
target is subsequently computed from Eq. (18), which remains valid for a system of finite size. The final result reads as follows:

S∗
∞ =

⎧⎨
⎩

1 − αω(ωm)
ωmβ−

L +αω(ωm)β+
L

(e−αω(ωm)|xtg−x0|/vf + e−αω(ωm)(L−|xtg−x0|)/vf ), x0 �= xtg

2ωmβ−
L

ωmβ−
L +αω(ωm)β+

L

, x0 = xtg,

(60)

with β±
L = 1 ± e−αω(ωm)L/vf .
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FIG. 3. Log-linear plot of the cumulative probability to find the target as a function of time. The left figure corresponds to the case xtg = x0,
whereas the right figure corresponds to the case |xtg − x0| = 10. In both cases, we take ωm = 0.002. The symbols correspond to simulation
results for ω = 0.01 (circles), ω = 0.1 (squares), ω = 1 (diamonds), and ω = 10 (triangles). The solid lines correspond to the analytic results
respectively given by the formulas (38) and (51).

We note the great qualitative and even quantitative similar-
ity between the results for L finite (Fig. 4) and those in Fig. 1.
This similarity is also seen quite explicitly when comparing
Eqs. (60) and (31) in the limits ωm → 0 and ωm → ∞. The
differences between the figures and equations of course arise
from our domain size (L = 200) which is small enough to
produce non-negligible finite-size effects in the ranges of
values we chose for the other parameters. Without loss of
generality, we place the target at xtg = 0 or, equivalently,
xtg = L. A physical sense of the situation is obtained as
follows. Suppose that the creeper begins its walk at a location
near the target (the greatest initial distance between creeper
and target occurs when the creeper begins its motion near
x0 = L/2). If the creeper moves toward the target along the
shorter direction without a direction reversal, it reaches the
target very quickly and the target does not survive these events,
thus decreasing the survival probability S∗

∞. These events are
independent of system size, and thus are not affected by the
finite size of our system. If the creeper moves toward the target
along the long side, the minimum time needed for the creeper
to reach the target at xtg = L is of order L/vf . The mean
time to death of the creeper is of order 1/ωm. If this time is
shorter than L/vf , the creeper dies before reaching the target,
and finite system size effects are again not seen on average.
This description fits that shown in the right panel of Fig. 4

since L/vf = 200 for the parameter choices indicated in the
caption, and 1/ωm = 50. If the creeper suffers many trajectory
reversals, then it is even more likely that it dies before reaching
the target. The left panel is the one in which the parameter
choices would most clearly lead to finite-size effects since
now 1/ωm = 5000 and for sufficiently low reversal frequency
the searcher will almost certainly reach the target, even though
its initial position is not so close to the target. The survival
probability of the target S∗

∞ should be smaller than in the right
panel, and this is what we see. However, the results for the
infinite system in Fig. 1 and for the finite system in Fig. 4 are
rather similar, not only qualitatively but even quantitatively for
all the parameters considered.

Earlier, we introduced Fig. 2, which shows the reversal
frequency ω of the creeper trajectory at which the search
efficiency 1 − S∗

∞ is a maximum as a function of the mortality
rate of the creeper. We called this frequency the optimal
persistence ω = ωopt. We see there that the optimal persistence
depends quite sensitively on L in some regimes. For very small
systems, the optimal value is always near zero (as happens
for L = 100 in Fig. 2), that is, regardless of the mortality
rate of the walker the best strategy is ballistic motion. As
L increases, a new regime emerges where ωopt is nonzero,
that is, the creeper is most likely to step on the target with
reversals in the direction of motion. For very high creeper
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FIG. 4. Plot of the search efficiency in a finite domain (L = 200) as a function of ω for different values of the mortality rate and for different
initial conditions: |xtg − x0| = 0.1 (circles), 1 (squares), 10 (diamonds), and 50 (triangles). Solid lines correspond to the analytic result (60)
and symbols are obtained numerically from the average over the trajectories of 105 independent random creepers. In all cases, we take vf = 1.
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FIG. 5. Schematic representation of the three regimes observed
in Fig. 2 for intermediate values of L. Sketches of typical trajectories
showing how the creeper (the black point) most likely reaches the
target are shown as arrows for each region. The target is located
at xtg = 0, which is equivalent to xtg = L because of the periodic
boundary conditions.

mortality rate, the best strategy is again ballistic motion. This
is consistent with the behavior seen in Fig. 4. Note that the
maximum value of ωopt is roughly the same for the larger L

values shown in Fig. 2, but the width of the ωm interval where
ωopt is appreciably different from zero is strongly L dependent
and it is narrower for smaller L. Finally, as L → ∞ the region
with a finite optimal persistence increases in the direction of
low mortality and eventually becomes dominant.

In order to further clarify these results, Fig. 5 shows a
sketch of typical trajectories of the creeper in the three regimes
observed for intermediate values of L. For a high mortality
rate (region III), the only way the searcher can successfully hit
the target is to move ballistically toward it along the shortest
path before dying, and therefore maximum persistence is
desirable. However, as the mortality rate decreases, the creeper
has time to reverse its trajectory and move in one direction
or the other, eventually with equal probability. Introducing
some breaking of persistence in this regime is seen to be
a desirable strategy for the creeper. The reason is that in
those runs where the creeper starts moving away from the
target, a change in direction makes it more likely to detect the
target before dying. Finally, if mortality is so low (region I)
that the searcher has enough time to reach the target location
x = L by moving ballistically before dying, one again finds
that ωopt = 0. Breaking the persistence in this regime would
evidently introduce unnecessary overlapping of the trajectory
with itself and increase the cumulative probability of death
due to the additional delay. As one would expect, in the limit
L → ∞, region II grows at the expense of region I (which
becomes vanishingly small), and ωopt saturates at a value that
depends on the initial separation |x0| (recall that we have set
xtg = 0 for simplicity).

From our analysis so far, it is clear that the transition from
region II to III points to the fact that the characteristic lifetime
ω−1

m of the creeper has gone from being longer to being shorter
than x0/vf , while the transition from region II to I occurs
as ω−1

m grows and becomes comparable to L/vf , the typical

time it takes the creeper to reach the target if the motion is
ballistic. Implicit in this reasoning is the condition x0 � L/2;
otherwise, the necessary tradeoff for the onset of an optimum
persistence breaks down. This is the reason why in Fig. 2
no onset of region II is observed for sufficiently small values
of L.

Mathematically, the specific condition that ensures the
existence of region II so that the search efficiency is not
always maximal for ω = 0 arises from the requirement
d(1 − S∞∗ )/dω|ω=0 > 0. Using Eq. (60) in this requirement
one finds that the condition

2ωm

vf

(
L − x0 + x0e

ωm(L−2x0)/vf
) + e−2ωmx0/vf + e−ωmL/vf

− eωm(L−2x0)/vf − 1 < 0 (61)

must be fulfilled. From this condition, one can establish that
both ωm � L/vf and x0 � L/2 must necessarily hold for
region II to exist. Summarizing, a nonzero optimal persistence
can only arise if mortality is high enough and if the searcher
is initially within a short distance of the target. Distant targets
can not be reached within the creeper’s lifetime.

2. N mortal creepers and the target problem

Next, we again consider a target in the presence of N

creepers. If the creepers start from the same location, the
remarks made in the case of an infinite system apply here
as well. More interesting is the situation where the position of
each creeper is drawn from a uniform distribution p(x0) = L−1

in the interval [−L/2,L/2], with the target located at the
center of the interval (xtg = 0). This so-called target problem
has long been discussed in the literature for immortal random
walkers and more recently by three of us for mortal diffusing
particles and mortal walkers with independent stepping time
and stepping length distributions [16,19–21]. The survival
probability of the target at time t in the presence of the mortal
creepers is given by the same expression as for usual walkers
(leapers), namely,

S∗
N (t) =

[
1

L

∫ L/2

−L/2
dx0 S∗(t |x0)

]N

=
[

2

L

∫ L/2

0
dx0 S∗(t |x0)

]N

. (62)

In the thermodynamic limit, we let both L and N go to infinity,
keeping the initial density of mortal creepers fixed at a value
ρ0 = N/L. The above equation then becomes

S̄∗(t) ≡ lim
N,L→∞

S∗
N (t)

= lim
N,L→∞

{
1 − 2ρ0

N

∫ N/(2ρ0)

0
dx0 [1 − S∗(t)]

}N

= exp

{
−2ρ0

∫ ∞

0
dx0 [1 − S∗(t)]

}
, (63)

where S̄∗(t) denotes the survival probability of the target in the
aforementioned thermodynamic limit. For t → ∞, we now
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CAMPOS, ABAD, MÉNDEZ, YUSTE, AND LINDENBERG PHYSICAL REVIEW E 91, 052115 (2015)

FIG. 6. Asymptotic span of a 1D mortal creeper as a function of
the frequency of reorientation for different mortality rates (we have
set vf = 1). Solid lines correspond to analytic solutions, and symbols
to numerical simulation results.

use Eq. (33) to evaluate the last integral explicitly:

S̄∗
∞ = lim

t→∞ S̄∗(t) = exp{−2ρ0vf /[ωm + αω(ωm)]}. (64)

Note that the corresponding search efficiency 1 − S̄∗
∞ de-

creases steadily with increasing average direction reversal
frequency ω, implying that no optimal persistence ωopt > 0
arises in this limit.

There is an interesting and useful connection between the
last term of Eq. (63) and the territory explored by a single
walker during time t [17,33]. Explored territory includes
all those locations visited any number of times. For mortal
creepers, this territory is given by the integral in the argument
of the exponential in Eq. (63), that is, 2

∫ ∞
0 dx0 [1 − S∗(t)].

Thus, according to Eq. (64), in the limit t → ∞ the territory
explored by a single mortal creeper is 2vf /[ωm + αω(ωm)]
(in 1D this quantity is identical with the span of the mortal
random walk in the absence of the target). This analytic result
is confirmed by numerical simulations (see Fig. 6).

IV. RESULTS IN TWO DIMENSIONS

In order to assess whether the onset of an optimal
persistence is specific to the one-dimensional case and the
peculiarities of space exploration properties of random creep-
ers in this constrained geometry, we have briefly investigated
the behavior of the search efficiency in a two-dimensional
system. The route to an analytic solution appears to be
cumbersome, but numerical simulations allow us to conclude
that an optimal persistence also exists in this case. We
again assume perfect detection, implying that the target will
instantaneously be detected whenever the trajectory of a
pointwise searcher attempts to penetrate it. Turns interrupting
the ballistic trajectories of the searchers occur according to a
uniform turn angle distribution. In particular, this also applies
for the initial direction of motion.

Results for the search efficiency in two-dimensional torii
(arising from periodic boundary conditions) are displayed
in Fig. 7. Trends similar to those of the one-dimensional
case displayed in Fig. 2 are observed. Once again, regions
I–III can be clearly identified and the behavior of the
optimal persistence as a function of L follows the same
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FIG. 7. Optimal persistence obtained as a function of the mortal-
ity rate ωm for periodic square lattices of size L × L, with L = 25
(circles), 100 (squares), 400 (diamonds), and L → ∞ (triangles).
The results were obtained by averaging over trajectories of 105

independent mortal creepers. The target is assumed to be a circle with
unit radius centered at the origin [xtg = (xtg,ytg) = 0]. In all cases, the
parameter values

√
(xtg − x0)2 + (ytg − y0)2 = 2 and vf = 1 were

taken.

trends as in dimension d = 1. A reasoning similar to the
one underlying Figs. 2 and 5 is expected to apply here as
well.

V. SUMMARY AND OUTLOOK

We have investigated the effect of mortality processes in
the efficiency of a search process performed by a class of
randomly moving particles with spatiotemporal coupling. Our
main conclusion is that for a suitable parameter choice a
finite optimal persistence maximizing the long-time detection
probability of the target appears. This optimization effect has
been shown to exist both in finite and infinite 1D domains,
and to persist in the 2D case (in the case of an infinite
one-dimensional domain we have also derived an explicit
expression for the survival probability of the target after a finite
time t). However, optimization with respect to the frequency of
turns is suppressed in the limit where the target is surrounded
by a finite density of mortal creepers initially distributed at
random over an infinite interval (1D target problem).

Even though our model is a strong simplification of real
systems (say, a predator hunting a prey), the robustness of
the aforementioned effect leads us to believe that it may also
play a major role in more realistic systems. In any case, our
model incorporates features which are likely to be relevant in
an ecological context, namely, the fact that long displacements
must pay a time penalty, and lifetimes which are comparable
to the relevant time scales of transport [28].

This work can be extended in many interesting ways.
Further efforts are indeed needed to completely ascertain
the role of spatiotemporal coupling and mortality in a broad
class of target search problems. As already mentioned in the
Introduction, one could for instance replace the exponentially
decreasing waiting time density with a long-tailed waiting
time density and investigate whether the resulting walk leads
to similar optimization effects as the ones observed here. Such
problems are interesting even in the absence of mortality.

052115-12



OPTIMAL SEARCH STRATEGIES OF SPACE-TIME . . . PHYSICAL REVIEW E 91, 052115 (2015)

Bearing in mind possible applications in ecology, the case
of Lévy flights with long-tailed jump length distributions
but no coupling between jump lengths and waiting times
could be investigated (in this case, special care should be
taken when defining the details of the detection process).
Finally, one could relax the condition of an immobile target
and assess the behavior of the search efficiency by devising
suitable approximations for the case where the target is also
allowed to move. The question is whether some kind of Pascal
principle applies, as in the case of conventional Brownian
motion [34].
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