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Determining the Tsallis parameter via maximum entropy
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The nonextensive entropic measure proposed by Tsallis [C. Tsallis, J. Stat. Phys. 52, 479 (1988)] introduces a
parameter, q, which is not defined but rather must be determined. The value of q is typically determined from a
piece of data and then fixed over the range of interest. On the other hand, from a phenomenological viewpoint,
there are instances in which q cannot be treated as a constant. We present two distinct approaches for determining
q depending on the form of the equations of constraint for the particular system. In the first case the equations
of constraint for the operator Ô can be written as Tr(F qÔ) = C, where C may be an explicit function of the
distribution function F . We show that in this case one can solve an equivalent MAXENT problem which yields q as
a function of the corresponding Lagrange multiplier. As an illustration the exact solution of the static generalized
Fokker-Planck equation (GFPE) is obtained from MAXENT with the Tsallis enropy. As in the case where C is a
constant, if q is treated as a variable within the MAXENT framework the entropic measure is maximized trivially
for all values of q. Therefore q must be determined from existing data. In the second case an additional equation
of constraint exists which cannot be brought into the above form. In this case the additional equation of constraint
may be used to determine the fixed value of q.
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Since its introduction, the Tsallis entropy [1–5] has in-
creasingly been utilized as the entropic measure in maximum
entropy (MAXENT) calculations [6]. The choice of the Tsallis
parameter, q, which is not defined a priori [7,8] can yield in
the limit q → 1 the Boltzmann-Gibbs (BG) entropy as well as
a family of fractal entropies (q �= 1). It has been argued that
perhaps this parameter should be constant, if not universally,
at least for classes of dynamical systems [9–11], and attempts
have been made to set limits on the value of this parameter (see
[12] for an extensive list of examples). Within the framework
of the MAXENT approach the question arises as to how one
should determine q.

For a classical system the stationary state distribution
function F can be obtained from the classical Tsallis entropy

Sq = 1

q − 1
(F − Fq), (1)

via the MAXENT equation [4]

δF Sq = 0, (2)

along with the equation of constraint for the operator Ô,

Tr(FqÔ) = C. (3)

The solution of these equations yields the classical Tsallis
distribution given by

F (x) = D[1 − β(1 − q)Ô(x)]
1

1−q , (4)

where D is a constant.
Here we focus of the equation of constraint. There are two

possible cases: the equation of constraint can either be brought
into the form of Eq. (3) or it cannot. In the former case, as
we shall show in the case of the generalized Fokker-Planck
equation (generalized by the presence of F 2−q in the diffusion
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term), C depends on the distribution functions, F . This leads
to a dependence of q on the other Lagrange multipliers. Should
C only be a function of the Lagrange multipliers we will show
that within the framework of the MAXENT formalism q cannot
be determined without recourse to a fit to the existing data.
In the latter case q may be determined from the equation of
constraint.

In the first case all equations of constraint are of the form of
Eq. (3). We consider the following nonlinear one-dimensional
generalized Fokker-Planck equation (GFPE) [13]:

∂F (x,t)

∂t
= − ∂

∂x
[K(x)F (x,t)] + 1

2
Q

∂2F 2−q(x,t)

∂x2
, (5)

where F is the distribution function, Q is the diffusion
coefficient, and K(x) is the drift coefficient which determines
the potential:

V (x) = −
∫ x

x0

K(x)dx. (6)

The particular power q − 2 is chosen in accordance with
the quite general discussion of the generalized Bogulubov
inequalities [14], which points out that systems which obey
Tsallis statistics exhibit abrupt changes at q = 2. An exact
solution (both static and time dependent) of the GFPE has
been found and is shown under certain circumstances to be
equivalent to the Tsallis classical distribution functions [4].

In the static case we formulate and solve the equivalent
MAXENT problem where C is an explicit function of the
distribution function. In the GFPE case one has

K(x)F (x) = Q

2

∂F 2−q(x)

∂x
, (7)

∫ x

x0

K(x)F (x)dx = Q

2
[F 2−q(x) − F 2−q(x0)]. (8)
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Integrating by parts [K(x) = − ∂V
∂x

and V (x0) = 0],

V (x)F (x) =
∫ x

x0

V
∂F (x)

∂x
dx − Q

2
[F 2−q(x) − F 2−q(x0)]

(9)
or

Tr(V Fq) = Tr

[
Fq−1(x)

( ∫ x

x0

V
∂F (x)

∂x
dx

− Q

2
(F 2−q(x) − F 2−q(x0)

)]
. (10)

Now Eq. (7) is solved by the solution obtained in [13],

F (x) = D[1 − β(1 − q)V (x)]
1

1−q . (11)

Note in this case the authors have simply shown that a solution
of the form given in Eq. (4) is a solution of the GFPE. One
can verify by substitution that Eq. (4) is a solution to Eq. (7)
provided

β = 2

Q

Dq−1

2 − q
. (12)

With D = 1 the solution is the same as that obtained from
the above MAXENT equations [with Eq. (10) as the equation of
constraint]. Again the equation of constraint is only satisfied
if β is given by Eq. (12) (with D = 1). Note in this case there
is no solution if V (x) is a constant.

Generally the C in the equation of constraint is a constant
rather than an explicit function of the distribution function. In
order to simultaneously determine q it has been suggested [5]
that an additional equation,

∂S

∂q

∣∣∣∣
β

= 0, (13)

must be solved. However it should be noted that this equation
can be rewritten as

∂S

∂q

∣∣∣∣
β

= ∂S

∂F

∣∣∣∣
β

∂F

∂q

∣∣∣∣
β

(14)

= 0. (15)

Since Tsallis distribution functions [Eq. (4)] are the so-
lutions of Eqs. (2) and (3) the above equation is trivially
satisfied for any value of q. Hence q cannot be determined
in this manner and one has no choice but to determine q from
the existing data. For the practitioners this has been accepted
de facto and calculations involving the Tsallis entropy have
generally used one piece of data to determine the value of q,
which is then fixed over the range of interest [12].

In the second case an additional equation of constraint
exists which cannot be brought into the form of Eq. (3).
Such is the case in obtaining the distribution functions of
the finite temperature BCS equations with the Tsallis single-
particle entropic measure. Aside from the self-consistency
requirements of the single quasiparticle energies, which are
needed, the determination of the distribution functions follows
from Eq. (2) along with the appropriate equations of constraint.
The existence of a critical point where the gap vanishes yields
an additional equation of constraint not of the form given
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FIG. 1. (Color online) U vs. β for V (x) = x2 and D = 1 for fixed
values of q and for q = 2 − 1

β
, which corresponds to the solution

obtained in [13] with Q = 2.

by Eq. (3). As has been shown recently this can be used to
determine q [15,16].

The important issue addressed here is how the nonextensive
parameter q is to be determined from known data and
constraints. We have pointed out that there are two distinct
approaches in determining q depending on the specific form
of the equations of constraint of the system. If the equations of
constraint can be written as Tr[FqÔ] = C(F ), where C may
be an explicit function of the distribution function F , then one
can solve an equivalent MAXENT problem which yields q as
a function of the corresponding Lagrange multiplier. This is
the case, for example, in the GFPE. Exact solutions to the
stationary GFPE were obtained via MAXENT, which yielded q

as a function of the Lagrange multiplier β. Should C only be a
function of the Lagrange multipliers, q cannot be determined
without recourse to a fit to the existing data. In the second
case an additional equation of constraint exists which cannot
be brought into this form. In this case the additional equation
of constraint may be used to determine the fixed value of q.

Last we wish to point out that we have been able to obtain
the exact solution of the GFPE given in [13] from the Tsallis
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FIG. 2. (Color online) Ū vs. β for V (x) = x2 and D = 1 for fixed
values of q and for q = 2 − 1
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with Q = 2.
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entropy via MAXENT. This is a clear indication that this is the
proper choice of entropy for such a system. In the static or
equilibrium case the internal energy is given by

Uq(β) = Tr[Fq(x)V (x)]. (16)

In Fig. 1 a plot of U (β) for V (x) = x2 is given for different
choices of q. Note that, since the internal energy is not defined

as

Ūq(β) = Tr[F (x)V (x)], (17)

the H theorem obtained by Shino [17] no longer holds. Figure 2
shows Ūq(β) for different choices of q. It is interesting to note
that, in the case of the calculation of the internal energy, Uq(β),
as a function of β for a fixed value of q for 1.05 � q � 1.8,
is in reasonable agreement with the results obtained using the
relation β = 1

2−q
. This unfortunately is not the case for Ūq(β).
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