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We investigate the critical behavior of three-dimensional antiferromagnetic CPN−1 (ACPN−1) models in cubic
lattices, which are characterized by a global U(N ) symmetry and a local U(1) gauge symmetry. Assuming that
critical fluctuations are associated with a staggered gauge-invariant (Hermitian traceless matrix) order parameter,
we determine the corresponding Landau-Ginzburg-Wilson (LGW) model. For N = 3 this mapping allows us to
conclude that the three-component ACP2 model undergoes a continuous transition that belongs to the O(8) vector
universality class, with an effective enlargement of the symmetry at the critical point. This prediction is confirmed
by numerical analyses of the finite-size scaling behaviors of the ACP2 and the O(8) vector models, which show
the same universal features at their transitions. We also present a renormalization-group (RG) analysis of the
LGW theories for N � 4. We compute perturbative series in two different renormalization schemes and analyze
the corresponding RG flow. We do not find stable fixed points that can be associated with continuous transitions.
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I. INTRODUCTION

CPN−1 models are a class of models in which the fundamen-
tal field is a complex N -component unit vector (more precisely,
an element of the complex projective manifold CPN−1), and
which are characterized by a global U(N ) symmetry and
a local U(1) gauge symmetry. They emerge as effective
theories of SU(N ) quantum antiferromagnets [1–4] and of
scalar electrodynamics with a compact U(1) gauge group.
The simplest three-dimensional (3D) CPN−1 lattice model is
defined by the Hamiltonian

H = J
∑
〈ij〉

| z̄i · zj |2, (1)

where the sum is over the nearest-neighbor sites of a cu-
bic lattice, zi are N -component complex vectors satisfying
z̄i · zi = 1. The model is ferromagnetic for J < 0, antiferro-
magnetic for J > 0.

The CP1 model can be mapped onto the O(3)-symmetric
Heisenberg model. Indeed, if one defines O(3) spins sα

i =∑
ab z̄a

i σ
α
abz

b
i , where σα are the Pauli matrices, one can

rewrite the CP1 Hamiltonian as that of the usual 3-vector
Heisenberg model. As a consequence, the critical properties
can be straightforwardly derived by using the wealth of results
available for the Heisenberg model (see, e.g., Refs. [5–7]). On
the other hand, several aspects of the phase behavior of CPN−1

models with N > 2 remain unclear and worth being further
investigated.

The critical behavior of CPN−1 models can be investigated
by constructing an effective Landau-Ginzburg-Wilson (LGW)
theory. This approach requires the identification of the order
parameter associated with the critical modes. A plausible
choice for ferromagnetic (J < 0) systems is the gauge-
invariant site variable [2,8]

Qab
i = z̄a

i z
b
i − 1

N
δab, (2)

which is a Hermitian and traceless N×N matrix. In the
corresponding LGW theory, the fundamental field is therefore
the most general traceless Hermitian matrix �ab(x), which

one can imagine being defined as the average of Qab
i over

a large but finite lattice domain. The Hamiltonian is the most
general fourth-order polynomial in � consistent with the U(N )
symmetry:

H = Tr(∂μ�)2 + r Tr �2 + w tr �3 + u (Tr �2)2 + v Tr �4.

(3)

For N = 2, one recovers the O(3)-symmetric LGW theory
because the cubic term vanishes and the two quartic terms are
equivalent [9], consistently with the equivalence between the
CP1 and the Heisenberg model. Because of the presence of the
cubic term, on the basis of mean-field arguments, one expects
the system to undergo a first-order transition for any N > 2,
unless the Hamiltonian parameters are tuned so that w = 0 in
the effective model. This prediction is, however, contradicted
by recent numerical studies [2,8,10,11], which find evidence
of continuous transitions in models that are expected to be in
the same universality class as that of the 3D CP2 model. In
particular, a numerical study of 3D loop models [8] provided
the estimate ν = 0.536(13) for the correlation-length critical
exponent. These results imply the existence of a 3D CP2

universality class characterized by a U(3) global symmetry
and U(1) gauge invariance, with a corresponding fixed point
(FP) that cannot be determined in perturbation theory at fixed
N . In order to access this FP, the authors of Ref. [8] proposed
a double expansion around N = 2 (where the cubic term
vanishes) and ε = 4 − d, arguing that a continuous transition
may be possible for values of N sufficiently close to N = 2. For
larger values of N , i.e., N � 4, the numerical analyses [2,8,10]
show evidence of first-order transitions. In the large-N limit,
the quantum field theory corresponding to the ferromagnetic
CPN−1 model gives rise to an effective Abelian Higgs model
and Landau-Ginzburg (LG) theory of superconductivity [12],
whose renormalization-group (RG) flow presents a stable
FP for a sufficiently large number of components. Thus,
continuous transitions are again possible in CPN−1 models
at large N , sharing the same universal critical behaviors of the
LG theory of superconductivity [12]. These results are again in
contrast with the conclusions obtained from the LGW theory
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(3) and suggest that, at least for large values of N , critical
modes are not exclusively associated with the gauge-invariant
order parameter Q [cf. Eq. (2)], but other features become
relevant.

In this paper, we investigate the critical behavior of
antiferromagnetic CPN−1 (ACPN−1) models, such as those
described by the Hamiltonian (1) with J > 0, on a cu-
bic lattice (we expect a similar behavior on any bipartite
lattice). For N = 2, they undergo a critical transition in
the same universality class as that of the ferromagnetic
CP1 model. Indeed, the ACP1 model is equivalent to the
antiferromagnetic Heisenberg model, which in turn can be
mapped onto the ferromagnetic one by performing the trans-
formation s(x) → (−1)x1+x2+x3 s(x), where x ≡ (x1,x2,x3).
Therefore, the staggered variables sstag = (−1)x1+x2+x3 s or
Qstag = (−1)x1+x2+x3Q have the same critical behavior as s
or Q in the ferromagnetic model. However, for N > 2 the
behavior of ACPN−1 models differs from that of ferromagnetic
CPN−1 models, as we shall show.

Under the assumption that the critical modes can be
represented by staggered local gauge-invariant variables, we
show that the LGW Hamiltonian describing the behavior of
the critical modes in the ACPN−1 models is the one given
in Eq. (3), without the cubic term, that is with w = 0.
Indeed, the staggered nature of the order parameter gives
rise to a symmetry � → −�, which prevents the presence
of odd terms in �, such as the cubic term. This fact greatly
simplifies the RG analysis of the theory. In particular, it
allows us to predict that the critical behavior of the ACP2

model belongs to the universality class of the O(8) vector
model, with a dynamical enlargement of the symmetry at the
critical point. Correspondingly, we predict ν ≈ 0.85 for the
ACP2 model, which differ from that found in Refs. [8,10]
for the ferromagnetic CP2 universality class. To validate this
prediction, we perform Monte Carlo (MC) simulations of the
lattice ACP2 and O(8) vector models. The critical exponents
and finite-size scaling (FSS) functions turn out to be the
same in the two models, in agreement with the RG argument.
Finally, we present a general RG study of the LGW theory (3)
without cubic term. We compute high-order field-theoretical
(FT) perturbative series in two different schemes. The RG
analysis does not provide evidence of the existence of stable
FPs for N � 4.

We mention that a critical-point symmetry enlargement
analogous to that of ACP2 models occurs in the antiferro-
magnetic RP2 model [13,14]. These systems are similar to
those considered here: their Hamiltonian is also given by
Eq. (1), but the site variable is a real unit vector. Analogously
to the case of the ACP2 model, RG arguments based on the
corresponding LGW theory predict that the critical behavior
of the antiferromagnetic RP2 model belongs to the universality
class of the O(5) vector model.

The paper is organized as follows. In Sec. II, we construct
the LGW theory which is expected to describe the critical
modes at continuous transitions of ACPN−1 models, assuming
a staggered gauge-invariant order parameter. Section III is
devoted to a numerical study of the ACP2 model. We show
that its continuous transition is in the same universality class
as that of the O(8) vector model. In Sec. IV, we study the
RG flow relevant for models with more components, i.e., for

N � 4, computing and analyzing high-order FT perturbative
series for the corresponding LGW theories. Finally, in Sec. V
we summarize our main results and draw some conclusions.
Some details are reported in the Appendixes.

II. LGW THEORY FOR THE ACPN−1 MODELS

We now derive the LGW theory for the critical modes
at the transition in ACPN−1 models. This effective theory
is generally constructed using global properties such as the
symmetry of the model, the nature of the order parameter, and
the symmetry-breaking pattern. In the case at hand, the model
has a global U(N ) symmetry and a local U(1) gauge invariance.
We assume that the critical modes are effectively represented
by local gauge-invariant variables, such as (2). In the case of
antiferromagnetic interactions (J > 0), the minimum of the
Hamiltonian (1) is locally realized by taking z̄i · zj = 0 for
any pair of nearest-neighbor sites.

In order to construct the LGW Hamiltonian, we should
identify the order parameter of the transition. At variance with
the ferromagnetic case, in the ACPN−1 model we should take
into account the explicit breaking of translational invariance in
the low-temperature phase. To clarify the issue, let us consider
the antiferromagnetic O(M) vector model with Hamiltonian
HO = ∑

〈ij〉 si · sj . In this case, the order parameter is φ =∑
x px sx , where px is the parity of the site x ≡ (x1,x2,x3)

defined by px = (−1)
∑

i xi . Under translations of one site, we
find φ → −φ, hence, this parameter allows us to probe the
breaking of translational invariance. In the ACPN−1 model,
the natural field variable is the combination z̄a

i z
b
i , which is

invariant under the local U(1) gauge transformations of the
model. Hence, we define the order parameter

Bab =
∑

x

pxz̄
a
xz

b
x. (4)

It is immediate to verify that B is Hermitian and traceless (this
follows from the presence of px), that it changes sign under
translations of one site which exchange the two sublattices,
and that it coincides with the O(3) order parameter for N = 2.
Then, as usual, in order to construct the LGW model, we
replace B with a local variable 	 as fundamental variable
(essentially, one may imagine that 	 is defined as B, but
now the summation extends only over a large, but finite,
cubic sublattice). Then, we write the most general fourth-order
polynomial that is invariant under U(N ) transformations and
under the Z2 transformation 	 → −	, a consequence of the
translation invariance of the original theory. We obtain

Ha = Tr(∂μ	)2 + r Tr 	2 + u0

4
(Tr 	2)2 + v0

4
Tr 	4. (5)

The original U(N ) symmetry corresponds to the symmetry
	 → U †	U where U ∈ U(N ). The order parameter 	 is a
Hermitian traceless matrix as the variable � introduced in
the ferromagnetic case. However, because of the presence
of the symmetry 	 → −	, which is a specific feature of
the antiferromagnetic model, the LGW Hamiltonian (5) does
not present a cubic term, which instead appears in the �4

Hamiltonian (3) corresponding to the ferromagnetic case.
Note that the model is not only characterized by the

symmetry group, but also by the nature of the order parameter.
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There are indeed other models with U(N ) symmetry (see, e.g.,
Ref. [15] for an example), which, however, have a different
order parameter and different symmetry-breaking patterns,
leading to different universality classes.

The stability domain of Ha can be determined by studying
the asymptotic behavior of the potential

V (	) = r Tr 	2 + u0

4
(Tr 	2)2 + v0

4
Tr 	4. (6)

This analysis can be easily performed by noting that V (	)
only depends on the N real eigenvalues λa of the Hermitian
matrix 	, which satisfy the condition

∑
a λa = 0. We find that

the theory is stable if

u0 + bNv0 > 0, bN = N2 − 3N + 3

N (N − 1)
, (7)

and if

u0 + 1

N
v0 > 0 for even N,

u0 + cNv0 > 0 for odd N, (8)

where

cN = N2 + 3

N (N2 − 1)
. (9)

Physical systems corresponding to the effective theory (5)
with u0,v0 that do not satisfy these constraints are expected to
undergo a first-order phase transition.

The analysis of the minima of the potential V (	) for
r < 0 gives us information on the symmetry-breaking patterns.
For v0 < 0, the absolute minimum of V (	) is realized by
configurations with 	 = U	minU

† and

	min ∼
(

IN−1 0

0 −(N − 1)

)
, (10)

where In indicates the n×n identity matrix. This gives rise to
the symmetry-breaking pattern

U(N ) → U(1) × U(N − 1). (11)

On the other hand, for v0 > 0 and even N the minimum is
realized by

	min ∼
(

IN/2 0

0 −IN/2

)
(12)

implying the symmetry-breaking pattern

U(N ) → U(N/2) × U(N/2). (13)

For v0 > 0 and odd values of N , we have instead

	min ∼
(

I(N+1)/2 0

0 −kI(N−1)/2

)
, (14)

k = (N + 1)/(N − 1), so that

U(N ) → U(N/2 + 1/2) × U(N/2 − 1/2). (15)

Note that for N = 3, the symmetry-breaking patterns (11) and
(15) are equivalent, hence, the sign of v0 does not play any role.

An important remark is in order. The derivation of the
LGW Hamiltonian (5) is based on the assumption that the

order parameter is the staggered and traceless Hermitian
matrix (4). This assumption can be checked for N = 3. As
we show in Appendix A, the minimum-energy configurations
of Hamiltonian (1) for J > 0 have a very simple structure.
Modulo a global U(3) transformation, one can take zi =
(1,0,0) on one sublattice, and zi = (0,ai,bi) on the other one.
Hence, a zero-temperature configuration corresponds to

B ∼

⎛⎜⎝1 0 0

0 −∑
i |ai |2 −∑

i a
∗
i bi

0 −∑
i aib

∗
i −∑

i |bi |2

⎞⎟⎠. (16)

Therefore, B is nonvanishing in the low-temperature phase
and represents the correct order parameter. The symmetry-
breaking pattern is that given in Eq. (11) or, equivalently,
Eq. (15).

For N � 4, we have not been able to identify ordered zero-
temperature configurations that are translation invariant at least
on one sublattice, hence, we have not been able to check that B,
as defined in Eq. (4), is nonvanishing in the low-temperature
phase, hence that it can be taken as the order parameter. In
the following, we make the working hypothesis that this is the
case, determining what this assumption implies for the nature
of the transitions in the ACPN−1 models.

For N = 3, the LGW theory (5) simplifies. Indeed, one can
easily prove that

Tr 	4 = 1
2 (Tr 	2)2 (17)

for any 3×3 traceless Hermitian matrix. Then, let us define an
eight-component real vector field φ as follows:

	11 + a+	22√
2

= φ1,
	11 + a−	22√

2
= φ2,

	12 = φ3 + iφ4, 	13 = φ5 + iφ6, 	23 = φ7 + iφ8,

(18)

where a± = (1 ± √
3)/2. In terms of the field φ we have

1
2 Tr 	2 = φφ. (19)

Then, we can rewrite Ha as

HO = (∂μφ)2 + 2r φ2 + g0 (φ2)2, (20)

where g0 ≡ u0 + v0/2, proving that the model is equivalent to
the O(8) vector theory.

Since the O(8) vector theory has a stable Wilson-Fisher
FP, the above correspondence allows us to predict that the
critical behavior of the ACP2 model must share the same
universal features as the 3D O(8) vector model. Note that
the enlargement of the symmetry to O(8) is a feature of the
LGW theory (5), i.e., of the expansion up to fourth powers
of 	. Indeed, one can easily check that the sixth-order terms
allowed by the U(3) symmetry, such as Tr 	6, do not share the
O(8) symmetry. Since these terms are RG irrelevant at the O(8)
FP, the contribution of the terms breaking the O(8) symmetry
is suppressed at the critical point. In this sense, we have a
dynamic enlargement of the symmetry to O(8) at the critical
point.

Of course, the fact that only one quartic term is independent
for N = 3 holds also for the Hamiltonian (3) corresponding to
the ferromagnetic CP2 model. Thus, it has an O(8) FP, which is
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unstable due to the presence of the cubic term. This cubic term
gives rise to a spin-3 perturbation at the O(8) FP [16], i.e., a RG
perturbation belonging to the spin-3 representation of the O(8)
group. Its RG dimension y3 can be estimated using the results
of Ref. [17] for the crossover exponent φ3, i.e., y3 = φ3/ν.
The crossover exponent φ3 at the O(8) FP was estimated
in Ref. [17], obtaining φ3 = 0.97(3) in the fixed-dimension
massive-zero-momentum scheme, and φ3 = 0.95(5) in the
ε expansion. Since ν = 0.85(2) (see Sec. III B), we obtain
y3 ≈ 1.1. As y3 > 0, the O(8) FP is unstable in the presence
of the cubic term, and, therefore, the O(8) FP cannot be the
stable FP in the case of ferromagnetic interactions. This is
confirmed by the results of Refs. [8,10]. The critical exponents,
for instance ν = 0.536(13), significantly differ from those of
the O(8) universality class.

It is worth mentioning that an analogous enlargement of
the symmetry at the critical point is also observed [13,14] in
the antiferromagnetic RP2 model. The Hamiltonian of RPN−1

models is analogous to that of CPN−1 models. It is given by
Eq. (1), with real N -component spins si replacing the complex
vectors zi . The order parameter should be a symmetric and
traceless N×N matrix �, analogous to the matrix B defined
in Eq. (4). The corresponding LGW Hamiltonian is given in
Eq. (5), with 	 replaced by � [13,14]. For N = 3, the two
quartic terms are proportional, and one obtains the �4 theory of
the O(5) vector model [again high-order terms break the O(5)
symmetry, but since they are irrelevant, the O(5) symmetry
breaking is suppressed in the critical limit]. The numerical
results of Refs. [13,14] for the antiferromagnetic RP2 model
confirm this prediction.

To identify the nature of a critical transition for N � 4, if it
exists, we must determine the FPs of the RG flow of the LGW
theory (5). The absence of a stable FP implies the absence of
continuous transitions. Such an analysis is quite complex, due
to the presence of two quartic terms. We will perform it in
Sec. IV.

III. CRITICAL BEHAVIOR OF
THE ACP2 LATTICE MODEL

We now check the predictions of the previous section for
the critical behavior of the 3D ACP2 model, confirming that
it undergoes a continuous transition in the O(8) universality
class.

A. Monte Carlo simulations and observables

In order to study the critical behavior of the ACP2 lattice
model (1) with J = 1, we perform Monte Carlo simulations
of cubic systems of linear size L with periodic boundary con-
ditions. Because of the antiferromagnetic nature of the model
we take L even. We use a standard Metropolis algorithm,
hence, we are only able to obtain reliable results up to L = 40.
We use a simple updating algorithm. If ϕ = (Re z,Im z) is a
six-component vector, the update consists in proposing the
new vector Rϕ, where R is a random O(2) matrix acting on
two randomly chosen components of ϕ.

In our MC simulations, we compute correlations of the
gauge-invariant operator

P ab
x = z̄a

xz
b
x. (21)

Its two-point correlation function is defined as

G(x − y) = 〈Tr P †
x Py〉 = 〈| z̄x · zy |2〉. (22)

Due to the staggered nature of the ordered parameter, we
should distinguish correlations between points belonging to
the same sublattice and points belonging to different sublat-
tices. Here, we define the susceptibility and the correlation
length by summing only over points with the same parity:

χ =
∑

x even

G(x) = G̃(0), (23)

ξ 2 ≡ 1

4 sin2(pmin/2)

G̃(0) − G̃(p)

G̃(p)
, (24)

where x runs over all even points,

G̃(p) =
∑
x even

eip·xG(x) (25)

is the Fourier transform of G(x) over the even sublattice,
p = (pmin,0,0), and pmin ≡ 2π/L. Finally, we consider the
Binder parameter

U =
〈[ ∑

x even Tr P
†
0 Px

]2〉〈 ∑
x even Tr P

†
0 Px

〉2 . (26)

In the FSS limit, any RG invariant quantity R, such as
Rξ ≡ ξ/L and U , is expected to behave as

R(β,L) = fR(X) + L−ωgR(X) + · · · , (27)

where X = (β − βc)L1/ν and fR(X) is a universal function
apart from a trivial normalization of the argument. In partic-
ular, the quantity R∗ ≡ fR(0) is universal within the given
universality class. The approach to the asymptotic behavior
is controlled by the universal exponent ω > 0, which is
associated with the leading irrelevant RG operator. Around
βc one may expand fR(X) and gR(X) in powers of the scaling
variable X, obtaining

R = R∗ +
∑
n=1

bn(β − βc)nLn/ν

+L−ω
∑
n=0

cn(β − βc)nLn/ν + · · · . (28)

The exponent η is determined by analyzing the FSS behavior
of the susceptibility

χ ∼ L2−η[fχ (X) + O(L−ω)]. (29)

We present a FSS analysis of the numerical data of the
ACP2 lattice model, up to L = 40. In Fig. 1, we show MC
data of Rξ ≡ ξ/L for several values of L. They show a
crossing point, providing evidence of a transition in the
interval 4.1 � β � 4.2. An analogous behavior is shown by
the Binder parameter U .

To determine whether the transition is continuous or of
first order, we should estimate the effective exponent ν that
gives the slope of the data at the critical point. At a first-order
transition we expect ν = 1/d = 1/3 [18–20], while ν > 1/d

at continuous transitions. The numerical data, including those
of the specific heat, definitely exclude a first-order transition.
Indeed, the increase of dR/dβ at the crossing point is much
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4.05 4.10 4.15 4.20
β

0.4

0.5Rξ

L=8
L=12
L=16
L=20
L=24
L=32

FIG. 1. (Color online) MC data of Rξ for the ACP2 lattice model
for several lattice sizes L. They show a crossing point at β ≈ 4.14.
The dotted lines are drawn to guide the eye. The dashed vertical
line corresponds to our best estimate (34) of βc obtained by a FSS
analysis of the available data assuming the transition to belong to the
O(8) universality class.

slower than L3. Therefore, we conclude that the ACP2 model
has a continuous transition.

B. 3D O(8) vector model

To show that the ACP2 lattice model belongs to the O(8)
universality class, we show that critical exponents and FSS
curves are the same in the two models. Thus, we begin by
computing these quantities in the O(8) spin model defined by
the Hamiltonian

HO = −
∑
〈ij〉

si · sj , (30)

where the spin variable si is an eight-component unit vector.
We consider cubic systems of linear size L with periodic
boundary conditions.

We consider the two-point function

Go(x − y) = 〈sx · sy〉, (31)

and compute the corresponding susceptibility and second-
moment correlation length. They are defined as in Eqs. (23)
and (24), but now we sum over all lattice points, as the model
is ferromagnetic. Moreover, we consider the Binder parameter
U defined as in Eq. (26): we replace Px with sx and sum over
all lattice points.

We perform simulations on lattices of size up to L = 96 (we
use a cluster algorithm) and estimate Rξ , U , and χ . To compute
the critical exponents we fit the data to Eqs. (27) and (29). In
the analysis, we take into account the scaling corrections of
order L−ω, fixing ω ≈ 0.8, as predicted by the FT perturbative
analyses discussed in the following. Corrections turn out to be
small, hence the analyses of the MC data are unable to provide
a more accurate estimate of ω. Fits of Rξ to Eq. (28) (we take
the first terms in the expansions) give βc = 1.926 77(2),

ν = 0.85(2), η = 0.0276(5), (32)

−2 −1 0
(β−βc) L

1/ν

0.3

0.4

0.5

Rξ

L=16
L=24
L=32
L=48
L=64
L=96

O(8) model

FIG. 2. (Color online) FSS behavior of the MC data of Rξ for
the O(8) vector model. Plot of Rξ versus (β − βc)L1/ν , setting
βc = 1.926 77 and ν = 0.85. The dashed horizontal line corresponds
to Rξ = 0.5237.

and the universal critical value R∗
ξ = 0.5237(4). The quoted

uncertainty includes the statistical error and the variation of
the estimates as ω varies between 0.75 and 0.85, an interval
that is larger than that obtained in the FT analyses reported
below. In Fig. 2, we show Rξ versus (β − βc)L1/ν using the
above-reported estimates. Data collapse onto a single curve,
confirming the accuracy of the estimates. Consistent results
are obtained from the analysis of the Binder parameter, which
also gives U ∗ = 1.0383(3).

The values of the critical exponents can be compared
with previous results. Field theory gives ν ≈ 0.830 and
η ≈ 0.027 [21], while the analysis of strong-coupling expan-
sions gives ν ≈ 0.84, 0.86 [22] (the two estimates are obtained
by means of two different resummation methods). Within
errors, they agree with the estimates (32). We have repeated
the analysis of the available six-loop series within the massive
zero-momentum renormalization scheme [21,23], using the
conformal mapping method that exploits the known large-
order behavior of the perturbative expansions [24,25]. We
obtain ν = 0.826(4), η = 0.025(1), and ω = 0.81(1), where
the errors are related to the change of the estimates with
respect to a (reasonable) variation of the parameters entering
the resummation procedure. They are substantially consistent
with our favorite MC estimates (32), although one may suspect
that errors are slightly underestimated. The FT analysis also
provides the estimate of ω that we used (note that, to be on the
safe side, we allowed for a much larger uncertainty in the MC
analysis).

C. FSS of the ACP2 lattice model

If the transitions in the ACP2 and O(8) models belong to
the same universality class, critical exponents and FSS curves
fR(X) for RG invariant quantities (apart from a trivial rescaling
of the variable X) should be the same. This is what we check
in the following.

A first unbiased universality check, which does not need
an estimate of the critical point βc, is obtained by plotting Rξ
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U

0.4

0.5

0.6

Rξ

L=12
L=16
L=20
L=24
L=32
L=40
L=16
L=24
L=32
L=48
L=64
L=96

aCP
2

O(8)

FIG. 3. (Color online) Plot of Rξ vs U . The ACP2 and O(8) MC
results approach the same asymptotic curve. The dotted horizontal
and vertical lines correspond to the critical values R∗

ξ ≈ 0.5237 and
U ∗ ≈ 1.0383 estimated in the O(8) vector model.

versus U . Indeed, since both Rξ and U satisfy Eq. (27), we
must have

Rξ = F (U ) + O(L−ω), (33)

where F (U ) is a universal function. In Fig. 3, we compare
the results for the two models: they appear to approach the
same asymptotic curve with increasing the lattice size. Scaling
corrections are consistent with the expected L−ω behavior with
ω ≈ 0.8. They are much smaller for β < βc than for β > βc.

The dependence of the data on the inverse temperature β

around the crossing point is consistent with the O(8) results.
Fits of the data around the crossing point to the first few terms
of the expansions appearing in Eq. (28) provide an accurate
estimate of the critical point,

βc = 4.142(1). (34)

In Fig. 4, we show χLη−2 and Rξ versus X, using the
estimate (34) of βc and the O(8) estimates (32) of the critical
exponents. The data approach asymptotic scaling curves.
Scaling corrections are larger for Rξ , but definitely compatible
with the expected L−ω behavior. Note also (not shown) that
the scaling curves of Rξ for the ACP2 and O(8) nicely match
after a trivial rescaling of the scaling variable (β − βc)L1/ν :
if we define Y = X for the ACP2 and Y = 3.9X for the O(8)
model, all data fall on the same curve when plotted versus
Y . Finally, we consider the specific heat Cv at βc. We expect
Cv ≈ a + cLα/ν with α/ν = 2/ν − 3 ≈ −0.67. The MC data
are consistent with this behavior.

In conclusion, the numerical analysis of the ACP2 lattice
model provides a robust evidence that its continuous transition
belongs to the universality class of the O(8) vector model, as
predicted by the RG arguments of Sec. II.

IV. RG FLOW FOR N � 4

In this section, we present a FT study of the RG flow of
the LGW theory (5) with N � 4, i.e., the most general �4

theory with traceless Hermitian N×N matrix fields and parity
symmetry. The critical behavior at a continuous transition is

−15 −10 −5 0 5
(β−βc) L

1/ν
0.0

0.2

0.4

χ/
L2
-η

L=8
L=12
L=16
L=20
L=24
L=32
L=40

−10 −5 0 5
(β−βc) L

1/ν

0.4

0.6

Rξ

L=12
L=16
L=20
L=24
L=32
L=40

FIG. 4. (Color online) Scaling behavior of the ratios χ/L2−η and
Rξ vs (β − βc)L1/ν with βc = 4.142 and the critical exponents of the
O(8) universality class [cf. Eq. (32)] . In the top figure, the dashed
horizontal segment indicates the O(8) universal value Rξ = 0.5237,
which is clearly approached by the data of the ACP2 lattice model
with increasing L.

controlled by the FPs of the RG flow, which are determined
by the common zeros of the β functions associated with
the quartic parameters. The presence of a stable FP controls
the universal features of the critical behavior in the case of
continuous transition. The absence of a stable FP implies
the absence of a corresponding universality class, hence
a transition characterized by the same symmetry-breaking
pattern must be of first order.

A. MS perturbative scheme

We compute the β functions of the quartic couplings in the
MS renormalization scheme [26], which uses the dimensional
regularization around four dimensions, and the modified
minimal-subtraction prescription. Thus, the RG functions are
obtained from the divergences for ε ≡ 4 − d → 0 appearing
in the perturbative expansion of the correlation functions of
the critical massless theory.

The procedure is straightforward (see, e.g., Ref. [27]).
The renormalized couplings are defined from the irreducible
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four-point correlation function, and the MS β functions are

βu(u,v) = μ
∂u

∂μ

∣∣∣∣
u0,v0

, βv(u,v) = μ
∂v

∂μ

∣∣∣∣
u0,v0

, (35)

where μ is the renormalization energy scale of the MS scheme.
Here, u and v are the renormalized couplings corresponding
to u0, v0, defined so that u ∝ u0/μ

ε and v ∝ v0/μ
ε at the

lowest order. We compute the β functions up to five loops.
The complete series for N = 4 are reported in Appendix B.

1. One-loop analysis close to four dimensions

Let us first analyze the one-loop β functions. They read as

βu =−εu + N2 + 7

6
u2 + 2N2 − 3

3N
uv + N2 + 3

2N2
v2, (36)

βv = −εv + 2uv + N2 − 9

3N
v2. (37)

The exact normalization of the renormalized variables can be
easily read from these series.

Since for N = 2 and 3 the two quartic terms are not
independent, an appropriate combination of the above β

functions must reproduce the β functions of the O(3) and O(8)
�4 theories. Indeed, using Eq. (17) and setting g = u + v/2,
we obtain

βu + 1
2βv = βO(3)(g) = −εg + 11

6 g2 (38)

for N = 2, and

βu + 1
2βv = βO(8)(g) = −εg + 8

3g2 (39)

for N = 3. These exact relations provide a stringent check of
the five-loop series for the model (5), which must reproduce
the corresponding series of the O(3) and O(8) vector models
[28,29] for N = 2 and 3.

For N � 4 the FPs of the RG flow are given by the common
zeros of the β functions (36) and (37). Their stability requires
that the eigenvalues of the matrix �ij = ∂βgi

/∂gj (where g1,2

correspond to u,v) have positive real part. In the standard
ε-expansion scheme [30], the FPs, i.e., the common zeros of
the β functions, are determined perturbatively as expansions
in powers of ε ≡ 4 − d, while exponents are obtained by
expanding the corresponding RG functions computed at the
FP in powers of ε.

A straightforward analysis of the one-loop β functions (36)
and (37) finds four different FPs. Two of them have v = 0
and are always unstable. We have the trivial Gaussian FP at
(u = 0,v = 0), which is always unstable with respect to both
quartic perturbations. There is also an O(M) symmetric FP
with M = N2 − 1 at

u = ε
6

N2 + 7
, v = 0, (40)

which can be shown, nonperturbatively, to be unstable with
respect to the operator Tr 	4. Indeed, such operator contains
a spin-4 perturbation with respect to the O(M) group [16],
which is relevant at the O(M)-symmetric FP for any M > 4 to
O(ε), and for any M � 3 in three dimensions [7,31].

There are also two FPs with v < 0. One of them is stable,
the other is unstable. However, they only exist for N < Nc,0,

with

Nc,0 = 3√
2

√
1 +

√
3 ≈ 3.506. (41)

For N = Nc,0 these two FPs merge and then, for N > Nc,0,
they become complex. For N = 3 the stable FP merges with
the O(8) FP. These results show that, for integer values of
N satisfying N � 4, there is no stable FP close to four
dimensions, hence only first-order transitions are allowed.

2. Five-loop ε expansion analysis

In order to establish the behavior of the system for ε = 1,
we must determine the fate of the stable FP that exists for
N < Nc,0 close to four dimensions. For finite ε, we expect
a stable and an unstable FP with v �= 0 up to N = Nc(ε).
The two FPs merge for N = Nc(ε) and become complex for
N > Nc(ε). In order to compute Nc(ε), we expand

Nc(ε) = Nc,0 +
∑
n=1

Nc,nε
n, (42)

and require

βu(u,v,Nc) = βv(u,v,Nc) = 0, det �(u,v,Nc) = 0, (43)

the last equation being a consequence of the coalescence of
the two FPs at N = Nc. A straightforward calculation gives
finally

Nc(ε) = 3.5063 − 0.0309ε + 0.3229ε2 − 1.2927ε3

+ 7.6855ε4 + O(ε5). (44)

The expansion alternates in sign, as expected for a Borel-
summable series. Resummations using the Padé-Borel method
appear to be stable. We obtain Nc(ε = 1) = 3.54(1) using the
series to order ε3 and Nc(ε = 1) = 3.59(2) at order ε4 (the
number in parentheses indicates how the estimate changes by
varying the resummation parameters). Apparently, Nc varies
only slightly as ε changes from 0 to 1. In particular, this
analysis predicts the absence of stable FPs for any integer
N � 4 in three dimensions.

3. High-order analysis in three dimensions

Methods based on the expansion around four dimensions
allow us to find only the 3D FPs which can be defined, by
analytic continuation, close to four dimensions. Other FPs,
which do not have a 4D counterpart, cannot be detected.
However, the extension of this result to the relevant d =
3 dimension fails in some cases. For example, this also
occurs for the Ginzburg-Landau model of superconductors,
in which a complex scalar field couples to a gauge field:
although ε-expansion calculations do not find a stable FP [32],
thus predicting first-order transitions, numerical analyses of
3D systems described by the Ginzburg-Landau model show
that they can also undergo continuous transitions (see, e.g.,
Refs. [33,34]). This implies the presence of a stable FP in the
3D Ginzburg-Landau theory, in agreement with experiments
[35]. Other examples are provided by the LGW �4 theories
describing frustrated spin models with noncollinear order
[36,37], the 3He superfluid transition from the normal to
the planar phase [38], and the chiral transitions of the
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strong interactions in the case the U(1)A anomaly effects are
suppressed [39,40].

Therefore, a more conclusive analysis requires a direct
study of the 3D flow. This is achieved by an alternative
analysis of the MS series: the 3D MS scheme without ε

expansion [36,41,42]. The RG functions βu,v are the MS
functions. However, ε ≡ 4 − d is no longer considered as a
small quantity, but it is set equal to its physical value (ε = 1
in our case) before looking for the FPs of the RG flow.
This provides a well defined 3D perturbative scheme which
allows us to compute universal quantities, without the need of
expanding around d = 4 [41,42].

We look for stable FPs of the RG flow, with a finite attraction
domain in the space of the renormalized couplings u and v.
The RG trajectories are determined by solving the differential
equations

−λ
du

dλ
= βu(u(λ),v(λ)), −λ

dv

dλ
= βv(u(λ),v(λ)), (45)

where λ ∈ [0,∞), with the initial conditions

u(0) = v(0) = 0,

du

dλ

∣∣∣∣
λ=0

= s ≡ u0

|v0| ,
dv

dλ

∣∣∣∣
λ=0

= ±1, (46)

where s parametrizes the different RG trajectories in terms of
the bare quartic parameters, and the ± sign corresponds to the
RG flows for positive and negative values of v0. In our study
of the RG flow we only consider values of the bare couplings
which satisfy Eqs. (7) and (8).

The physically relevant results are obtained by resumming
the perturbative expansions, which are divergent but Borel
summable in a large region of the renormalized parameters.
The resummation can be done exploiting methods that take
into account their large-order behavior, which is computed by
semiclassical (hence, intrinsically nonperturbative) instanton
calculations [24,27,31]. Relevant results for the large-order
behavior of the series of the model (5) are reported in
Appendix C.

B. 3D MZM perturbative scheme

In the massive zero-momentum (MZM) scheme
[5,27,43,44] one performs the perturbative expansion directly
in three dimensions, in the critical region of the disordered
phase, in powers of the zero-momentum renormalized quartic
couplings. The theory is renormalized by introducing a set
of zero-momentum conditions for the one-particle irreducible
two-point and four-point correlation functions of the 2×2
matrix field 	:

�
(2)
a1a2,b1b2

(p) =
(

δa1b2δa2b1 − 1

N
δa1a2δb1b2

)
×Z−1

ψ [m2 + p2 + O(p4)], (47)

�
(4)
a1a2,b1b2,c1c2,d1d2

(0) = Z−2
ψ m4−d

(
uUa1a2,b1b2,c1c2,d1d2

+ vVa1a2,b1b2,c1c2,d1d2

)
, (48)

where U,V are appropriate form factors defined so that u ∝
u0/m and v ∝ v0/m at the leading tree order. The FPs of the
theory are given by the common zeros of the Callan-Symanzik
β functions

βu(u,v) = m
∂u

∂m

∣∣∣∣
u0,v0

, βv(u,v) = m
∂v

∂m

∣∣∣∣
u0,v0

. (49)

The normalization of the zero-momentum quartic variables
u,v is such that their one-loop β functions read as

βu =−u + u2 + 4N4 + 22N2 − 42

N (N2 + 7)2
uv

+ 3N4 + 30N2 + 63

N2(N2 + 7)2
v2, (50)

βv =−v + 12

N2 + 7
uv + 2N4 − 4N2 − 126

N (N2 + 7)2
v2. (51)

We compute the MZM perturbative expansions of the
β functions and of the critical exponents up to six loops,
requiring the computation of 1428 Feynman diagrams.
The complete expansion for N = 4 can be found in
Appendix B. The large-order behaviors of the series are
reported in Appendix C. The RG trajectories are obtained by
solving differential equations analogous to Eqs. (45) and (46),
after resumming the β functions as outlined in Appendix C.

C. Results

Some RG trajectories in the renormalized coupling space
of the LGW theory (5) for N = 4 are shown in Figs. 5 and 6,
for the MS and MZM schemes, respectively, for several values
of the ratio s ≡ u0/|v0|. In both renormalization schemes, most
of the RG trajectories flow towards the region in which the

-1.0

-0.5

0.0

0.5

1.0

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

v

u

s=-0.05,+
s=-0.2,+
s=0.1,+
s=0.5,+
s=0.9,+
s=1.0,-
s=1.5,-
s=2.0,-

FIG. 5. RG flow of the LGW theory (5) for N = 4, in the
MS scheme without ε expansion, for several values of the ratio
s ≡ u0/|v0| of the bare quartic parameters. The curves are obtained
by solving Eqs. (45) with the initial conditions (46): in the legend we
report the value of s and the sign of v0 (“+” and “−” correspond to
v0 > 0 and v0 < 0, respectively). The two solid lines represent the
boundary of the Borel-summability region, defined by u + v/4 > 0
and u + b4v = u + 7v/12 > 0.
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-6

-4

-2

 0

 2
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-1  0  1  2  3  4  5  6

v

u

s=-0.2,+
s=-0.1,+
s=0.2,+
s=0.6,+
s=1.0,+
s=1.0,-
s=1.5,-
s=2.0,-

FIG. 6. RG flow of the LGW theory (5) for N = 4, in the MZM
scheme, for several values of the ratio s ≡ u0/|v0| of the bare quartic
parameters. The curves are obtained by solving Eqs. (45) with the
initial conditions (46): in the legend we report the value of s and
the sign of v0 (“+” and “−” correspond to v0 > 0 and v0 < 0,
respectively). The two solid lines represent the boundary of the
Borel-summability region, defined by u + v/4 > 0 and u + b4v =
u + 7v/12 > 0.

series are no longer Borel summable. In the MZM scheme,
for v0 < 0 some trajectories flow instead towards infinity. In
all cases, we do not have evidence of a stable FP. Analogous
results are obtained for N = 6.

These results imply that there is no universality class
characterized by the symmetry breakings (11) and (13). This
would suggest a first-order transition. It is also possible that
more than one transition is present, each of them associated
to a partial decoupling of some degrees of freedom, hence
to a different symmetry-breaking pattern, as it happens in
two-dimensional frustrated XY models [45]. In this case,
continuous transition would still be possible.

V. CONCLUSIONS

We have investigated the nature of the phase transitions in
3D ACPN−1 models, such as the lattice model (1) with J > 0,
which are characterized by a global U(N ) symmetry and a
local U(1) gauge symmetry.

In order to analyze their critical behavior, we construct
the corresponding LGW theory, assuming a staggered local
gauge-invariant order parameter. This leads to the LGW 	4

theory (5), where 	 is a traceless Hermitian N×N matrix,
which is symmetric under the global U(N ) transformations
	 → U	U †, and the Z2 transformations 	 → −	. For
N = 3, the LGW model is equivalent to the one associated
with an eight-component real vector field. Hence, we predict
that, if the ACP2 model undergoes a continuous transition,
it should belong to the O(8) vector universality class. Note
that, at the critical point, there is an effective symmetry
enlargement U(3) → O(8), and the same should occur in the
low-temperature phase as the critical point is approached. The
low-temperature symmetry U(1) × U(2) should be promoted
to O(7). We confirm the RG predictions by comparing
the FSS behavior of the O(8) vector and ACP2 models,

obtained by MC simulations of both lattice models. We
note that the critical behavior, characterized by the O(8)
critical exponents ν = 0.85(2) and η = 0.0276(5), definitely
differs from that of ferromagnetic CP2 models, for which
recent studies [2,8,10,11] have provided numerical evidence of
continuous transitions with critical exponents ν = 0.536(13)
and η = 0.23(2).

In the case of ACPN−1 lattice models with a higher number
of components, i.e., N � 4, the identification of the order
parameter is more complex. If the order parameter is a
staggered local gauge-invariant Hermitian matrix as for N = 2
and 3, the associated LGW theory is that given in Eq. (5).
To determine the possible existence of continuous transitions,
we study the RG flow in perturbation theory. We compute FT
perturbative series in two different renormalization schemes up
to five and six loops, respectively. The analysis of the RG flow
does not provide evidence of stable FPs. This implies that the
dynamics of the staggered gauge-invariant modes associated
with the N×N Hermitian matrices defined in Eq. (4) does not
give rise to continuous transitions. In particular, we do not
expect continuous transitions characterized by the symmetry
breaking U(N ) → U(1) × U(N − 1). Thus, if the ACPN−1

lattice model presents transitions with this symmetry breaking,
they must be first order. Note that it is still possible to have
continuous transitions if they are associated with a different
symmetry breaking, as it may arise from a partial decoupling of
some degrees of freedom. Another possible scenario may arise
from the relevance of further gauge degrees of freedom which
are not taken into account by the LGW theory, analogously to
the case of ferromagnetic CPN−1 model in the large-N limit.
This issue needs further investigation.

APPENDIX A: GROUND STATE FOR THE
ANTIFERROMAGNETIC MODEL WITH N = 3

In this section, we wish to characterize the structure of
the ground state of the antiferromagnetic model for N = 3,
showing the emergence of a ferromagnetic order on a staggered
lattice. Let us first consider a lattice plaquette [see Fig. 7(a)],
and let us determine the configurations of the four spins z1,
z2, z3, and z4 that minimize the energy. Given the global
invariance of the model, it is not restrictive to assume that
z1 = (1,0,0). Since the model is antiferromagnetic, the energy
is minimized if neighboring spins are orthogonal, i.e., if z̄i · zj

= 0 for nearest neighbor sites i and j . Therefore, we have

z2 = (0,v2), z4 = (0,v4), (A1)

1 2

4 3

(a) (b)

1 2

5 6

3

78

4

(c)

1 2

3

5

4

6

FIG. 7. We draw some lattice configurations required by the
discussion of Appendix A.
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where v2 and v4 are two-dimensional complex unit vectors. If
we set z3 = (z31,v3) and consider the links connecting site 3
with its neighbors, we obtain the conditions

v̄2 · v3 = v̄4 · v3 = 0. (A2)

If v2 �= eiφv4 (φ is an arbitrary phase), this condition implies
v3 = 0. Therefore, discarding an irrelevant phase, we obtain
z1 = z3. Instead if v2 = eiφv4, eliminating an irrelevant phase
we obtain z2 = z4. This analysis shows, therefore, that in the
ground-state configuration two opposite spins in the plaquette
are identical. Note that the result holds only for N = 3. For
N � 4, Eq. (A2) does not imply v3 = 0 in the generic case. We
only obtain that z3 belongs to (N − 2)-dimensional subspace
containing z1. This may leave open the possibility of other
symmetry-breaking patterns for N > 3.

Let us now assume that we are dealing with a three-
dimensional system and let us consider a cube [see
Fig. 7(b)]. We wish now to show that the dominant ground-state
configurations have the following structure. One can have
z1 = z3 = z6 = z8 (we properly fix the phases), while z2, z4,
z5, z7 are arbitrary spins lying in the complex two-dimensional
plane orthogonal to z1. Of course, the equivalent arrangement
with z2 = z4 = z5 = z7 is also possible. Note that this config-
uration is highly degenerate, as four two-dimensional vectors
can be arbitrarily chosen.

To prove the previous statement, we consider all other pos-
sible arrangements that are consistent with the result obtained
for the plaquette and we show that they are less degenerate
than the one discussed before. Hence, they are entropically
disfavored and become irrelevant in the infinite-volume limit.
It is not restrictive to assume that z1 = z3 = (1,0,0) since two
opposite spins of plaquette 〈1,2,3,4〉 (we report in angular
brackets the sites belonging to the plaquette) are necessarily
identical. Let us now consider the plaquette 〈5,6,7,8〉. There
are three different possibilities consistent with the result valid
for a single plaquette: (i) z6 = z8 and z6 = z1; (ii) z6 = z8

with z6 �= eiφ z1; (iii) z5 = z7. We wish now to exclude cases
(ii) and (iii). In case (ii), the orthogonality condition applied

to links (1,2) and (2,6) implies

z̄1 · z2 = z̄6 · z2 = 0. (A3)

Since z6 �= eiφ z1, these two conditions completely specify
vector z2 (the phase is of course irrelevant). Repeating the
argument to the spins at sites 2,4,5,7 we end up with

z2 = z4 = z5 = z7. (A4)

It is therefore a configuration of type (i), but now the spins
are ordered on the complementary sites 2,4,5,7. Let us now
consider case (iii). Generically, z2 �= eiφ z5 and z4 �= eiφ z5.
This implies that z6 and z8 are uniquely defined. Therefore,
the configuration is defined by specifying z2, z4, and z5 in
the two-dimensional complex space orthogonal to z1. This
configuration is less degenerate than that defined at point
(i), hence it is irrelevant in the infinite-volume limit (it is
entropically suppressed). If z2 = eiφ z5 and z4 �= eiφ z5, we
obtain the same type of degeneracy since now z4, z5, and z6

can be chosen. The other two cases give the same result.
The result for a cube extends trivially to the whole lattice,

proving that in the ground state we observe two different
symmetry breakings. First, lattice translational invariance
is broken with the emergence of a staggered symmetry.
Second, on one of the two sublattices the system orders
ferromagnetically, breaking the U(3) symmetry down to U(2).
It is important to note that the discussion only applies in three
dimensions. In two dimensions, the results do not hold. Indeed,
referring to Fig. 7(c), nothing forbids in the two-dimensional
case a configuration with z1 = z3, z4 = z5, and z6 �= z3.

APPENDIX B: HIGH-ORDER FIELD-THEORETICAL
PERTURBATIVE EXPANSIONS

In this appendix, we report the FT perturbative series of the
β functions used in our RG analysis of Sec. IV. We only report
those for N = 4; the perturbative series for other values of N

are available on request.
The five-loop β functions of the MS scheme for N = 4 are

βu(u,v) = −εu + 23
6 u2 − 59

12u3 + 24215
1728 u4 − 2808613

62208 u5 + 2231
19440π4u5 + 37543651

221184 u6 − 45935
41472π4u6 − 56005

326592π6u6

+ 29
12uv − 319

72 u2v + 72587
3456 u3v − 2556031

31104 u4v + 2639
15552π4u4v + 4691425207

11943936 u5v − 4445671
1866240π4u5v

− 689765
1959552π6u5v + 19

32v2 − 1129
576 uv2 + 210121

13824 u2v2 − 36468307
497664 u3v2 + 17129

155520π4u3v2 + 42566947705
95551488 u4v2

− 71427821
29859840π4u4v2 − 5358835

15676416π6u4v2 − 83
192v3 + 10789

2048 uv3 − 35875069
995328 u2v3 + 27641

622080π4u2v3

+ 27514775011
95551488 u3v3 − 21388189

14929920π4u3v3 − 9436835
47029248π6u3v3 + 243899

442368v4 − 139893917
15925248 uv4 + 64219

4976640π4uv4

+ 158989734779
1528823808 u2v4 − 17049203

31850496π4u2v4 − 55096345
752467968π6u2v4 − 13810271

15925248v5 + 38971
19906560π4v5

+ 60552906587
3057647616 uv5 − 6124463

53084160π4uv5 − 3213535
214990848π6uv5 + 39907063243

24461180928v6 − 83027651
7644119040π4v6

− 4971655
4013162496π6v6 + 97

18u4ζ (3) − 27967
648 u5ζ (3) + 1058293

4608 u6ζ (3) + 58
9 u3vζ (3) − 400519

5184 u4vζ (3)

+ 127075013
248832 u5vζ (3) + 203

48 u2v2ζ (3) − 232333
3456 u3v2ζ (3) + 371192045

663552 u4v2ζ (3) + 83
48uv3ζ (3)

− 697141
20736 u2v3ζ (3) + 242855651

663552 u3v3ζ (3) + 1271
4608v4ζ (3) − 742109

82944 uv4ζ (3) + 4536772733
31850496 u2v4ζ (3)

− 1246357
1327104v5ζ (3) + 211486009

7077888 uv5ζ (3) + 435745159
169869312v6ζ (3) − 291

32 u6ζ (3)2 − 113129
5184 u5vζ (3)2

− 887615
41472 u4v2ζ (3)2 − 1485335

124416 u3v3ζ (3)2 − 8714053
1990656u2v4ζ (3)2 − 4430365

3981312uv5ζ (3)2 − 1655603
10616832v6ζ (3)2
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− 2435
54 u5ζ (5) + 431011

864 u6ζ (5) − 2755
36 u4vζ (5) + 2847481

2592 u5vζ (5) − 85975
1296 u3v2ζ (5) + 15884369

13824 u4v2ζ (5)

− 43825
1296 u2v3ζ (5) + 5504765

7776 u3v3ζ (5) − 364135
41472 uv4ζ (5) + 518304421

1990656 u2v4ζ (5) − 11345
13824v5ζ (5)

+ 104582551
1990656 uv5ζ (5) + 15744751

3538944 v6ζ (5) + 319039
864 u6ζ (7) + 444773

576 u5vζ (7) + 3807055
4608 u4v2ζ (7) + 7509005

13824 u3v3ζ (7)

+ 15674365
73728 u2v4ζ (7) + 733383

16384 uv5ζ (7) + 1518167
393216 v6ζ (7), (B1)

βv(u,v) = −εv + 2uv − 157
36 u2v + 5879

864 u3v − 685387
20736 u4v + 19

108π4u4v + 4545155
46656 u5v − 989059

933120π4u5v − 24925
122472π6u5v

+ 7
12v2 − 229

72 uv2 + 5921
864 u2v2 − 3207107

62208 u3v2 + 1073
3888π4u3v2 + 2236916635

11943936 u4v2 − 379369
186624π4u4v2

− 767575
1959552π6u4v2 − 29

64v3 + 40699
13824uv3 − 5568277

165888 u2v3 + 12247
77760π4u2v3 + 2050563751

11943936 u3v3

− 11735557
7464960 π4u3v3 − 1806125

5878656π6u3v3 + 5885
9216v4 − 3433885

331776 uv4 + 133
3456π4uv4 + 8406050713

95551488 u2v4

− 381881
622080π4u2v4 − 11779825

94058496π6u2v4 − 18033929
15925248v5 + 4

1215π4v5 + 4316967439
191102976 uv5 − 9687473

79626240π4uv5

− 5139325
188116992π6uv5 + 6609591883

3057647616v6 − 2367521
238878720π4v6 − 163685

62705664π6v6 + 58
9 u3vζ (3) − 4987

144 u4vζ (3)

+ 2807371
15552 u5vζ (3) + 43

6 u2v2ζ (3) − 132667
2592 u3v2ζ (3) + 3169315

9216 u4v2ζ (3) + 175
72 uv3ζ (3) − 75677

2592 u2v3ζ (3)

+ 2558749
9216 u3v3ζ (3) + 145

576v4ζ (3) − 326005
41472 uv4ζ (3) + 235439287

1990656 u2v4ζ (3) − 300469
331776v5ζ (3)

+ 8893439
331776 uv5ζ (3) + 6145307

2359296v6ζ (3) − 1099
324 u5vζ (3)2 − 33215

5184 u4v2ζ (3)2 − 37625
15552u3v3ζ (3)2

+ 364091
248832u2v4ζ (3)2 + 650747

497664uv5ζ (3)2 + 88027
331776v6ζ (3)2 − 2485

54 u4vζ (5) + 540673
1296 u5vζ (5) − 11035

162 u3v2ζ (5)

+ 228535
288 u4v2ζ (5) − 50945

1296 u2v3ζ (5) + 19449871
31104 u3v3ζ (5) − 59095

5184 uv4ζ (5) + 4044073
15552 u2v4ζ (5)

− 7285
4608v5ζ (5) + 58034203

995328 uv5ζ (5) + 3784553
663552 v6ζ (5) + 29155

72 u5vζ (7) + 221725
288 u4v2ζ (7) + 354515

576 u3v3ζ (7)

+ 2424275
9216 u2v4ζ (7) + 560413

9216 uv5ζ (7) + 683795
110592v6ζ (7). (B2)

The six-loop β functions of the MZM scheme for N = 4 are

βu(u,v) =−u + u2 − 0.22544283u3 + 0.10908673u4 − 0.06576687u5 + 0.04692261u6 − 0.03823225u7

+ 0.63043478uv − 0.20303858u2v + 0.15749967u3v − 0.11634780u4v + 0.10631128u5v − 0.10058595u6v

+ 0.15489130v2 − 0.08970454uv2 + 0.11442230u2v2 − 0.10401712u3v2 + 0.12188821u4v2 − 0.13382427u5v2

− 0.01961248v3 + 0.04186104uv3 − 0.05255068u2v3 + 0.08208912u3v3 − 0.10859850u4v3 + 0.00498971v4

− 0.01301539uv4 + 0.03157946u2v4 − 0.05477669u3v4 − 0.00117098v5 + 0.00642308uv5 − 0.01679641u2v5

+ 0.00054799v6 − 0.00289150uv6 − 0.00021554v7, (B3)

βv(u,v) =−v + 0.52173913uv − 0.20023805u2v + 0.06703734u3v − 0.05601881u4v + 0.03225406u5v

− 0.03176901u6v + 0.15217391v2 − 0.14632780uv2 + 0.06972703u2v2 − 0.08566328u3v2 + 0.06017577u4v2

− 0.07408173u5v2 − 0.02133655v3 + 0.02700191uv3 − 0.05410921u2v3 + 0.05068529u3v3 − 0.07920335u4v3

+ 0.00462087v4 − 0.01692328uv4 + 0.02380079u2v4 − 0.04877347u3v4 − 0.00215837v5 + 0.00591753uv5

− 0.01769814u2v5 + 0.00059843v6 − 0.00351442uv6 − 0.00029807v7. (B4)

APPENDIX C: SUMMATION OF
THE PERTURBATIVE SERIES

Since perturbative expansions are divergent, resummation
methods must be used to obtain meaningful results. Given a
generic quantity S(u,v) with perturbative expansion S(u,v) =∑

ij cij u
ivj , we consider

S(xu,xv) =
∑

k

sk(u,v)xk, (C1)

which must be evaluated at x = 1. The expansion (C1) in
powers of x is resummed by using the conformal-mapping

method [27] that exploits the knowledge of the large-order
behavior of the coefficients, generally given by

sk(u,v) ∼ k! [−A(u,v)]k kb [1 + O(k−1)]. (C2)

The quantity A(u,v) is related to the singularity ts of the Borel
transform B(t) that is nearest to the origin: ts = −1/A(u,v).
The series is Borel summable for x > 0 if B(t) does not
have singularities on the positive real axis, and, in particular,
if A(u,v) > 0. The large-order behavior can be determined
using semiclassical computations, based on the computations
of appropriate instanton configurations [24,27]. For even N ,
these semiclassical calculations show that the expansion is
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Borel summable when

u + bNv > 0, u + 1

N
v > 0, (C3)

where bN is given in Eq. (7). For odd N we obtain analogously

u + bNv > 0, u + cNv > 0, (C4)

where cN is given in Eq. (9). Note that the conditions for Borel
summability on the renormalized couplings correspond to the
stability conditions (7) and (8) of the bare quartic couplings.
In this Borel-summability region we have for even N

A(u,v) = 1
2 Max(u + bNv,u + v/N). (C5)

For odd N , we should replace u + v/N with u + cNv.
Under the additional assumption that the Borel-transform

singularities lie only in the negative axis, the conformal-
mapping method turns the original expansion into a convergent
one in the region (C3). Outside, the expansion is not Borel
summable.

Analogously, one can derive the large-order behavior of the
MZM scheme, which is again given by Eq. (C2) but with

A(u,v) = 1.32997

N2 + 7
Max(u + bNv,u + v/N) (C6)

for even N . For odd values of N , u + v/N should be replaced
with u + cNv.

We use the conformal mapping method to resum the
series taking into account what we know about their
large-order behavior. The method we use is described in
Refs. [27,31]. Resummations depend on two parameters,
which are optimized in the procedure. Using the notations
of Refs. [27,31], the approximants we use depend on two
parameters α and b.
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