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Analytical representations of the spread harmonic measure density
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We study the spread harmonic measure that characterizes the spatial distribution of reaction events on a partially
reactive surface. For Euclidean domains in which Brownian motion can be split into independent lateral and
transverse displacements, we derive analytical formulas for the spread harmonic measure density and analyze its
asymptotic behavior. This analysis is applicable to slab domains, general cylindrical domains, and a half-space.
We investigate the spreading effect due to multiple reflections on the surface, and the underlying role of finite
reactivity. We discuss further extensions and applications of analytical results to describe Laplacian transfer
phenomena such as permeation through semipermeable membranes, secondary current distribution on partially
blocking electrodes, and surface relaxation in nuclear magnetic resonance.
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I. INTRODUCTION

In many physical, chemical, and biological systems, parti-
cles diffuse in the bulk toward specific sites located on a reac-
tive surface. Examples can be found in heterogeneous catalysis
(when a reactant has to reach a catalytic site on a catalyst’s
surface to initiate its chemical transformation [1–9]), in living
cells (when enzymes search for specific DNA sequences to
start replication or another biochemical process [10–17]), and
in nuclear magnetic resonance (when excited nuclei relax their
magnetization on paramagnetic impurities dispersed on a solid
wall of a porous medium [18–25]). These diffusion-reaction
processes present a class of first-passage phenomena, in which
the reaction event is often characterized by an appropriate
first-passage time [26–28]. Depending on the problem, it can
describe the first time of arrival onto the reactive surface, the
moment of reaction, relaxation or replication on the surface, or
the escape time from the confining domain. Similar equations
appear in the mathematical description of partially blocking
electrodes in electrochemistry [29–37].

The complementary information about the diffusion-
reaction process can be gained by studying the spatial distri-
bution of reaction events. For this purpose, one can introduce
a measure ωx0{A} defined as the probability for reaction to
happen on a subset A of the reactive surface when the particle
has started from a bulk point x0. The most known example is
the harmonic measure that characterizes the probability that
the first arrival onto the surface occurs on the subset A [38]. For
a Euclidean domain �, the harmonic measure, as a function of
the starting point x0, satisfies the Laplace equation,

�ωx0{A} = 0 (x0 ∈ �) (1)

for any subset A of the boundary ∂� of �.1 This equation is
complemented by the Dirichlet boundary condition on ∂�:

ωx0{A} = IA(x0) (x0 ∈ ∂�), (2)

*denis.grebenkov@polytechnique.edu
1Strictly speaking, a measure is defined for any subset A from the

Borel σ -algebra of subsets of the boundary; see [38].

where IA(x0) is the indicator function of A: IA(x0) = 1 if
x0 ∈ A, and 0 otherwise. The harmonic measure has numerous
applications by determining, e.g., the growth rates in diffusion-
limited aggregation, primary current distribution in electro-
chemistry, distribution of particle fluxes on a membrane, and
electric charge distribution on a metallic surface [39–42]. In
particular, ωx0{A} can be interpreted as a fraction of surface
charge induced on a subset A of the grounded conducting
surface ∂� by a point charge at x0 [43]. Scaling behavior and
multifractal properties of the harmonic measure on irregular
boundaries were thoroughly investigated [44–51].

While the harmonic measure characterizes the first arrival
onto the boundary, reaction events may not happen immedi-
ately upon the arrival (Fig. 1). In fact, most realistic models of
physical, chemical, and biological boundary transfer allow for
multiple reflections on the surface before reaction [1,3,34–
37,52–55]. In the simplest situation, the particle that hit
the surface can either react with a prescribed absorption
probability, p, or be rebounced to resume its bulk diffusion
until the next arrival. These multiple reflections can be
caused by different microscopic mechanisms, such as finite
permeability of a membrane, finite reactivity of a catalytic
surface, or finite relaxivity of a solid wall. In addition, they
can model the effect of a heterogeneous distribution of reactive
sites at small length scales (if the particle hits the surface at
a passive point, it needs a number of reflections to reach an
active point) or the effect of randomly activated gates [when
the particle arrives onto the surface, the “gate” at the arrival
point can be either active (open) or passive (closed), and the
particle is reflected in the latter case].

When the absorption probability is homogeneous in time
and space, while reflections have no memory and are indepen-
dent of particle diffusion, the random number of reflections
prior to reaction follows the geometric probability distribution
characterized by the absorption probability p. For a continuous
formulation, it is convenient to consider the renormalized
number of reflections or, equivalently, the local time process
on the boundary [56,57],

�t = lim
a→0

aNt (a), (3)
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FIG. 1. (Color online) (a) Slab � = R2 × [0,L] and (b) cylinder
� = R × �⊥ of arbitrary cross section �⊥ as examples of domains
for which Brownian motion can be split into independent lateral and
transverse displacements. (c) Simulated partially reflected Brownian
motion in the half-plane � = R × R+. The diamond, triangle, and
circle show the starting point at x0 = (0,z0), the first arrival point
onto the horizontal line (reactive surface), and the stopping position,
respectively.

where Nt (a) is the (random) number of passages of reflected
Brownian motion through a boundary layer of width a up
to time t (here, the use of a finite width a is necessary
because after the first hit, reflected Brownian motion returns
to the surface infinitely many times during an arbitrarily short
period). The reaction occurs at the stopping time τ when the
local time process �t exceeds an independent exponentially
distributed random variable ζ characterized by a length 
 [52]:

τ = inf{t > 0 : �t > ζ }, P{ζ > z} = exp(−z/
). (4)

Since �t can be interpreted as the total distance traveled by
reflected Brownian motion in the transverse direction in a
vicinity of the boundary, the length 
 appears as the mean
traveled distance. This length is naturally related to both
macroscopic transport parameters (
 = D/κ , where D is the
bulk diffusion coefficient and κ is the permeability, reactivity,
or relaxivity of the surface) and microscopic parameters
[
 = a(1 − p)/p, where a is the reflection distance in a
discretized model]. The resulting diffusive process conditioned
to stop at the random time τ was called the partially reflected
Brownian motion [52].

The spatial distribution of the stopping points (reaction
events) can be characterized by the so-called spread harmonic
measure, ω


x0
{A}, i.e., the probability that the stopping point

belongs to a subset A of the boundary. As a function of the
starting point x0, the spread harmonic measure satisfies the
Laplace equation (1) with the Robin boundary condition [52]:

[
ω


x0
{A} + 


∂

∂n
ω


x0
{A}

]
= IA(x0) (x0 ∈ ∂�), (5)

where ∂/∂n is the normal derivative oriented outward the
domain �.2 The presence of the derivative in the second
term requires certain smoothness restrictions on the boundary
(see [52] for details). Setting 
 = 0 (i.e., κ = ∞ or p = 1),
one retrieves the harmonic measure.

Scaling properties of the spread harmonic measure on
prefractal boundaries, the spreading effect due to multiple
reflections, and the relation to the Dirichlet-to-Neumann
operator have been studied [52,58,59]. In particular, the spread
harmonic measure naturally appears in the description of the
Laplacian transfer [37,60]. When the boundary is smooth, the
spread harmonic measure is fully characterized by its density
ω


x0
(s):

ω

x0

{A} =
∫

A

ds ω

x0

(s). (6)

In this paper, we aim at deriving analytical representations
of the spread harmonic measure density ω


x0
(s) for a class

of Euclidean domains that can be represented as a Cartesian
product: � = �|| × �⊥ ⊂ Rd+d⊥ . In other words, the lateral
displacements of Brownian motion in �|| are independent of
its transverse displacements in �⊥ (Fig. 1). The most common
examples of practical interest are the half-space Rd × R+, a
slab domain Rd × [0,L] between two parallel hyperplanes at
distance L, and a cylinder R × �⊥ of arbitrary cross section
�⊥. We are interested in the probability density ω


x0
(y) of

the stopping position y ∈ �|| of the lateral component for the
diffusive process started from x0 ∈ �. The stopping criterion
will be determined by the transverse diffusion and related to
the statistics of multiple reflections on the surface �|| × ∂�⊥
in order to get the spread harmonic measure (here we assume
that ∂�⊥ �= ∅, i.e., �⊥ �= Rd⊥ ).

The paper is organized as follows. In Sec. II, we first
describe a general derivation and then focus on the case of
a slab domain Rd × [0,L] for which different representations
of the spread harmonic measure density are derived and
illustrated. The limiting cases of the half-space (L → ∞) and
of the harmonic measure (
 → 0) are discussed in detail.
Section III presents various extensions and applications of
these analytical results.

II. ANALYTICAL FORMULAS

This section presents numerous analytical formulas for
the spread harmonic measure density and related objects.
Although most of these formulas look rather cumbersome
(integrals or infinite series involving Bessel functions), they
are well suited for both analytical and numerical computations.
To guide a reader through this section, we summarize the main
results as follows: (i) for all studied domains in which lateral
and transverse displacements are independent, the probability
density of stopping points, ωx0 (y), is given by Eq. (11); (ii)
for unrestricted lateral motion (�|| = Rd ), the density ωx0 (y)
can be expressed through the Laplace-transformed probability
density of the stopping time according to Eq. (14); (iii) for any

2Note that in the original definition in Ref. [52], the normal
derivative was oriented inward in the domain that yielded the negative
sign in front of the second term in Eq. (5).
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bounded transverse domain �⊥, the spectral decomposition of
the propagator implies the series expansion (20) for ωx0 (y);
(iv) for a slab of width L (with �⊥ = [0,L]), the coefficients
of the series (20) are explicitly given by Eq. (33); (v) for a
slab, the harmonic measure density ω0

z0,L
(y) is provided by

equivalent relations (37), (40), and (47); (vi) for a half-space
(L = ∞), the harmonic measure density ω0

z0
(y) is provided by

equivalent relations (41), (44), and (45); this is the rare case
when ω0

z0
(y) has a simple expression (41); (vii) for a slab,

the spread harmonic measure density ω

z0,L

(y) is provided
by equivalent relations (59), (61), (62), and (63); (viii) for
a half-space, the spread harmonic measure density ω


z0
(y) is

provided by equivalent relations (66) and (68); (ix) for an
infinite cylinder of an arbitrary bounded cross section, the
spread harmonic measure density ω


z0
(y) is given by Eq. (90);

and (x) for diffusion outside the infinite circular cylinder, the
spread harmonic measure density ω


z0
(y) is given by Eq. (94).

A. General formulation

We consider Brownian motion in a Euclidean domain
� = �|| × �⊥ ⊂ Rd+d⊥ . Since the lateral motion in �|| is
independent of the transverse motion in �⊥, the diffusion
propagator is factored as G

||
t (y0,y)G⊥

t (z0,z), where the lateral
and transverse diffusion propagators describe the probability
density of moving from y0 to y in �||, and from z0 to z in �⊥,
during time t . Both propagators satisfy the diffusion (or heat)
equation subject to the initial condition with Dirac distribution
δ [61–63]:[

∂

∂t
− D||�y

]
G

||
t (y0,y) = 0, G

||
0(y0,y) = δ(y0 − y), (7)

[
∂

∂t
− D⊥�z

]
G⊥

t (z0,z) = 0, G⊥
0 (z0,z) = δ(z0 − z), (8)

where D|| and D⊥ are the lateral and transverse diffusion
coefficients, and �y and �z are the Laplace operators. The
Robin boundary condition is imposed on a partially reactive
boundary ∂�⊥ in order to be able to deduce the spread
harmonic measure:

G⊥
t (z0,z) + 


∂

∂n
G⊥

t (z0,z) = 0 (z ∈ ∂�⊥), (9)

where the parameter 
 can in general be a function of the
boundary point (see below).

We formally introduce the stopping time by defining the
density ρz0 (t) as

ρz0 (t) =
∫

S

ds
(
−D⊥

∂

∂n
G⊥

t (z0,z)

)
z=s

, (10)

i.e., by integrating the probability flux at the boundary point
s ∈ ∂�⊥ (the expression in parentheses) over a prescribed
“stopping set” S ⊂ ∂�⊥. For instance, if 
 = 0 in Eq. (9),
the process is stopped after the first arrival of the transverse
motion onto S. In Sec. II C, we discuss the choice of the
stopping set S to get the spread harmonic measure. In general,
the density ρz0 (t) is not normalized to 1 because the particle
can react on another subset of the boundary (if S �= ∂�⊥), or
even never reach the boundary (e.g., if �⊥ is the exterior of
the unit ball in three dimensions, the probability of reaching

the surface ∂�⊥ is 1/|z| due to the transient character of
Brownian motion). In fact, the integral of ρz0 (t) from 0 to
infinity gives the probability of stopping at S. Renormalizing
ρz0 (t) by this probability yields the conditional probability
density of the stopping time. With some abuse of language, we
will use the term “probability density” for ρz0 (t), regardless of
its normalization. In each case, a probabilistic interpretation
of the related results will be provided.

Since the lateral and transverse motions are independent,
the probability density ω


x0
(y) of the stopping position y can be

expressed as the convolution of ρz0 (t) with the lateral diffusion
propagator G

||
t (y0,y),

ωx0 (y) =
∫ ∞

0
dt ρz0 (t)G||

t (y0,y), (11)

where x0 = (y0,z0) ∈ � is the starting point.
When both domains �|| and �⊥ are bounded, both prop-

agators can be expressed through Laplacian eigenfunctions,
yielding thus a spectral representation of ω(y0,z0)(y). In this
paper, we study a different situation when �|| or/and �⊥ is
unbounded.

B. General cylindrical domains

In this section, we focus on cylindrical domains � = Rd ×
�⊥, where �⊥ is a bounded domain with reactive surface
∂�⊥. The lateral motion in �|| = Rd is characterized by the
Gaussian propagator

G
||
t (y0,y) = 1

(4πD||t)d/2
exp

(
−|y − y0|2

4D||t

)
. (12)

Since the lateral motion is translation-invariant, we fix the
starting point to be above the origin: y0 = 0.

Taking the Fourier transform of Eq. (11) with respect to
y and using the Gaussian form of the lateral propagator, one
gets the following relation between the Fourier-transformed
probability density of the stopping position and the Laplace-
transformed probability density of the stopping time:

Fk{ωz0 (y)} =
∫ ∞

0
dt e−D|||k|2t ρz0 (t) ≡ LD|||k|2{ρz0 (t)}, (13)

where Fk{· · · } and Ls{· · · } denote the Fourier and Laplace
transforms, respectively. The inverse Fourier transform yields
the general integral representation:

ωz0 (y) =
∫
Rd

dk
(2π )d

e−i(k1y1+···kdyd )LD|||k|2{ρz0 (t)}

= |y|1− d
2

(2π )
d
2

∫ ∞

0
dk k

d
2 J d

2 −1(k|y|)LD||k2{ρz0 (t)}, (14)

where Jν(z) is the Bessel function of the first kind, and we
used the identity∫

Rd

dk
(2π )d

e−i(k1y1+···+kdyd )f (|k|)

= |y|1− d
2

(2π )
d
2

∫ ∞

0
dk k

d
2 J d

2 −1(k|y|)f (k), (15)

which is valid for any function f decaying fast enough
to ensure the convergence of the integrals. In general, the
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Laplace transform of ρz0 (t) is easier to get than ρz0 (t) itself.
In particular, LD||k2{ρz0 (t)} can be written explicitly for many
simple domains while ρz0 (t) is known only in a form of an
infinite series (see below). The convergence of the integral
representation (14) and similar expressions derived below,
as well as their numerical computation, are discussed in
Appendix.

For the transverse motion in a bounded domain �⊥, the
propagator G⊥

t (z0,z) admits a spectral representation,

G⊥
t (z0,z) =

∞∑
m=1

u∗
m(z0)um(z)e−D⊥λmt , (16)

where the asterisk denotes the complex conjugate, and λm and
um(z) are the eigenvalues and eigenfunctions of the Laplace
operator in �⊥:

�zum(z) + λmum(z) = 0 (z ∈ �⊥),
(17)

um(z) + 

∂

∂n
um(z) = 0 (z ∈ ∂�⊥).

The eigenvalues are enumerated by m = 1,2, . . . and ordered
in ascending order: 0 � λ1 � λ2 � λ3 � · · · , while the eigen-
functions are orthogonal and have L2 normalization:∫

�⊥
dz u∗

m(z)um(z) =
{

1 (m = m′),
0 (m �= m′).

Substituting the spectral representation (16) into Eq. (10),
one gets

ρz0 (t) = D⊥
∞∑

m=1

cm(z0) exp(−D⊥λmt), (18)

where

cm(z0) = u∗
m(z0)

∫
S

ds
(
−∂um(z)

∂n

)
z=s

. (19)

Substituting Eqs. (12) and (18) into Eq. (11) yields

ω

z0

(y) = η
d
2 +1 |y|1− d

2

(2π )
d
2

∞∑
m=1

cm(z0)λ
d−2

4
m Kd

2 −1(η
√

λm|y|), (20)

where η = √
D⊥/D||, Kν(z) is the modified Bessel function

of the second kind, and we used the identity∫ ∞

0
dt

e−at−b/t

td/2
= 2b1− d

2 (ab)
d−2

4 Kd
2 −1(2

√
ab). (21)

As expected from the rotation invariance of �|| = Rd , the
density ω


z0
(y) depends on the distance |y| between the origin

and the stopping point y. The convergence of the series (20) and
similar expressions derived below, as well as their numerical
computation, are discussed in Appendix.

The probability of stopping at any distance larger than R

follows from Eq. (20):

P 

z0

(R) ≡ P{|y| > R} =
∫

|y|>R

dy ω

z0

(y)

= (ηR)
d
2

2
d
2 −1�

(
d
2

) ∞∑
m=1

cm(z0)λ
d
4 −1
m Kd

2
(η

√
λmR), (22)

where �(z) is the gamma function, and we used the identity

d

dx
[xνKν(x)] = −xνKν−1(x). (23)

In particular, the probability of stopping on the set S is

P 

z0

(0) =
∫
Rd

dy ω

z0

(y) =
∞∑

m=1

cm(z0)

λm

=
∫ ∞

0
dt ρz0 (t),

(24)

where the last equality relates spatial and temporal properties
of the stopping event. As mentioned earlier, this probability can
in general be less than 1. To get the conventional normalization
by 1, one can consider the conditional probability density
ω


z0
(y)/P 


z0
(0).

The compact exploration of the transverse domain �⊥
results in the exponential decay of the density ω


z0
(y) in Eq. (20)

at large |y| and of the probability P 

z0

(R) in Eq. (22) at large
R. In fact, the asymptotic formula

Kν(z) 

√

π

2z
e−z (z � 1) (25)

yields

ω

z0

(y) 
 c1(z0)
η

d+1
2

2(2π |y|) d−1
2

λ
d−3

4
1 exp(−η

√
λ1|y|),

(26)

P 

z0

(R) 
 c1(z0)

√
π

�
(

d
2

)(
ηR

2

) d−1
2

λ
d−5

4
1 exp(−η

√
λ1R)

for |y| � (η
√

λ1)−1 and R � (η
√

λ1)−1, respectively. The
decay rate is determined by the smallest eigenvalue λ1.

In the next section, we provide the explicit formulas for
computing λm and cm(z0) for a slab domain and then investigate
the behavior of the density ω


z0
(y).

C. Probability density of the first exit time

We consider a slab domain � = Rd × [0,L] between
two parallel reactive hyperplanes �0 = {(y,0) : y ∈ Rd} and
�L = {(y,L) : y ∈ Rd} separated by distance L. In this case,
one needs to compute the eigenvalues and eigenfunctions of
the Laplace operator in the interval [0,L] with two boundary
conditions:

−D⊥u′
m(0) + κum(0) = 0, D⊥u′

m(L) + κ1um(L) = 0,

(27)
where two distinct reactivities κ and κ1 can be imposed
at two end points 0 and L. Setting um(z) = e1 sin(αx/L) +
e2 cos(αx/L), one gets e2 = e1αh from the left end point (at
z = 0) and

tan α

α
= h + h1

α2hh1 − 1
(28)

from the right end point (at z = L), where

h = D⊥
κL

, h1 = D⊥
κ1L

. (29)

Denoting αm (m = 1,2, . . .) all positive zeros of Eq. (28) in
ascending order, one gets λm = α2

m/L2, while the remaining
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coefficient e1 is determined by the L2 normalization of
eigenfunctions. One gets, therefore,

um(z) = βm√
L

[sin(αmx/L) + hαm cos(αmx/L)], (30)

where

β−2
m = 1

2

[
1 + α2

mh2 + (h + h1)
1 + α2

mhh1

1 + α2
mh2

1

]
. (31)

We also note the relation

sin(αmz0/L) + hαm cos(αmz0/L) = hαm sin
[
αm

(
1 − z0

L

)]
sin αm

(32)
that will be used in the following analysis.

Since the boundary of the transverse domain �⊥ = [0,L]
consists of two points, ∂�⊥ = {0,L}, there are only a few
choices for the stopping set S. We consider two situations: S =
{0} (i.e., only reaction events on the hyperplane �0 matter), and
S = {0,L} (i.e., reaction events on both hyperplanes �0 and
�L matter). In the former case,

cm(z0) = um(z0)

(
∂um(z)

∂z

)
z=0

= αmβ2
m

L2
[sin(αmz0/L) + hαm cos(αmz0/L)] (33)

[since S = {0}, the integral in Eq. (10) over S is reduced to
the value of the probability flux at this point]. The resulting
probability densities ρ


z0,L
(t) and ω


z0,L
(y) from Eqs. (18)

and (20) are not normalized to 1 because the reaction events at
the other hyperplane are ignored (note the subscript L that we
added to highlight the presence of the second hyperplane at
z = L). In fact, the probability of stopping at the hyperplane
�0 is

P 

z0,L

(0) = 1 − z0/L + h1

1 + h + h1
. (34)

It can be found either by summing the series in Eq. (24) or
by solving the Laplace equation on the interval [0,L] with the
reactive boundary conditions.

In turn, if the reaction is allowed through both end points
(i.e., S = {0,L}), one has to replace cm(z0) by

c̃m(z0) = um(z0)

[(
∂um(z)

∂z

)
z=0

−
(

∂um(z)

∂z

)
z=L

]

= αmβ2
m

L2
(1 + hαm sin αm − cos αm)

× [sin(αmz0/L) + hαm cos(αmz0/L)] (35)

(the tilde sign will be used to distinguish the quantities
corresponding to this case). As expected, the resulting proba-
bility densities ρ̃


z0,L
(t) and ω̃


z0,L
(y) are normalized to 1, i.e.,

P̃ 

z0,L

(0) = 1.
In the next subsection, we analyze the behavior of

the harmonic measure density, while Sec. II E is devoted
to the spread harmonic measure. For convenience, we assume
the same diffusion coefficient D for the lateral and transverse
motion, D⊥ = D|| = D (i.e., η = 1), though all results could
be obtained in the anisotropic case as well.

D. Harmonic measure

We first consider the simplest case when both reactivities
are infinite, κ = κ1 = ∞, i.e., 
 = 
1 = 0 and h = h1 = 0.
Equation (28) is reduced to sin αm = 0, from which αm = πm,
β2

m = 2, and cm(z0) = 2πm sin(πmz0/L), so that

ρ0
z0,L

(t) = D

L2

∞∑
m=1

2πm sin(πmz0/L)e−Dπ2m2t/L2
(36)

and

ω0
z0,L

(y) = (2|y|/L)1− d
2

Ld

∞∑
m=1

sin(πmz0/L)m
d
2

×Kd
2 −1(πm|y|/L). (37)

This is the harmonic measure density, i.e., the probability
density of the first arrival on the hyperplane �0 at y for
Brownian motion started from (0,z0) ∈ �, without hitting
the other hyperplane �L. In contrast to ρ0

z0,L
(t) describing

temporal statistics, the harmonic measure density does not
depend on the diffusion coefficient D. In fact, the harmonic
measure characterizes the spatial distribution of arrival points,
independently of how long the arrival takes. According to
Eq. (24), the integral of this density over y ∈ Rd gives the
probability of hitting the hyperplane �0 before the hyperplane
�L: P 0

z0,L
(0) = 1 − z0/L.

If one is interested in the first arrival on either of
the hyperplanes (�0 or �L), one uses c̃m(z0) = 2πm[1 −
(−1)m] sin(πmz0/L) instead of cm(z0) to get a slightly dif-
ferent expression,

ω̃0
z0,L

(y) = (2|y|/L)1− d
2

Ld

∞∑
m=1

[1 − (−1)m]

× sin(πmz0/L)m
d
2 Kd

2 −1(πm|y|/L). (38)

Since Brownian motion certainly hits one of two hyperplanes,
this density is normalized to 1, as expected.

The Poisson summation formula allows one to rewrite the
probability density ρ0

z0,L
(t) of the first exit time through the

end point 0 as

ρ0
z0,L

(t) = 1√
4πDt3

∞∑
k=−∞

(z0 + 2kL) exp

(
− (z0 + 2kL)2

4Dt

)
,

(39)
from which another representation for the harmonic measure
density follows,

ω0
z0,L

(y) =
∞∑

k=−∞
ω0

z0+2kL(y), (40)

where ω0
z0

(y) is the generalized Cauchy distribution for the
harmonic measure density in the half-space (for which we
omit the second subscript L = ∞):

ω0
z0

(y) = �
(

d+1
2

)
π

d+1
2

z0(
z2

0 + |y|2) d+1
2

. (41)

Note that Eq. (40) could also be obtained by the method of
images. In electrostatics, ω0

z0
(y) describes the surface charge

density on the grounded conducting hyperplane �0 induced

052108-5



DENIS S. GREBENKOV PHYSICAL REVIEW E 91, 052108 (2015)

by a point charge at height z0 above the surface [43]. While
the equivalent representations (36) and (39) of the probability
density ρ0

z0,L
(t) are, respectively, convenient at long and

short times, the equivalent representations (37) and (40) are
convenient at long and short distances |y|/L, respectively.

Similarly, if the exit from both end points is allowed,
the probability density ρ̃0

z0,L
(t) and the associated harmonic

measure density ω̃0
z0,L

(y) are

ρ̃0
z0,L

(t) = 1√
4πDt3

∞∑
k=−∞

(−1)k(z0 + kL)e−(z0+kL)2/(4Dt),

(42)

ω̃0
z0,L

(y) =
∞∑

k=−∞
(−1)kω0

z0+kL(y).

In the limit L → ∞ (i.e., no barrier), only the term with
k = 0 in Eq. (40) survives, yielding the generalized Cauchy
formula (41), which decays as a power law,

ω0
z0

(y) 
 �
(

d+1
2

)
π

d+1
2

z0

|y|d+1
(|y| � z0), (43)

in contrast to the exponential decay (26) in the presence
of a barrier (L < ∞). Both the exponential and power-law
behaviors of the harmonic measure density are illustrated in
Fig. 2. When the barrier is relatively far (L = 20, circles), the
power-law behavior at small |y|/L switches to the exponential
one at large |y|/L.

For completeness, we also provide the representation of the
harmonic measure density through the d-dimensional Fourier
transform. For the harmonic measure density in the half-space,
the Fourier transform of Eq. (41) yields for z0 � 0

ω0
z0

(y) =
∫
Rd

dk
(2π )d

e−i(k1y1+···+kdyd )e−z0|k| (44)

= |y|1− d
2

(2π )
d
2

∫ ∞

0
dk k

d
2 J d

2 −1(k|y|)e−z0k, (45)

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

|y|

ω
z 0,L
0

(y
)

L = 2
L = 20
L = ∞

FIG. 2. (Color online) Harmonic measure density ω0
z0,L(y) as a

function of |y| for d = 2, z0 = 1, and three values of L: 2, 20, and
∞. For L < ∞, symbols show the spectral representation (37) while
lines indicate the exponential asymptotic decay (26). For L = ∞,
triangles show the generalized Cauchy distribution (41) while the
line indicates the power-law asymptotic decay (43).

where we used the identity (15). Comparing this formula to
Eq. (41), one deduces the following relation that will be used
below:∫ ∞

0
dk k

d
2 J d

2 −1(ky)e−zk = 2
d
2 �

(
d+1

2

)
√

πy1− d
2

z

[z2 + y2]
d+1

2

. (46)

Substituting the representation (44) into Eqs. (40) and (42),
one can also obtain the Fourier representation for the harmonic
measure density in the presence of a barrier:

ω0
z0,L

(y) =
∫
Rd

dk
(2π )d

e−i(k1y1+···+kdyd ) sinh[(L − z0)|k|]
sinh(L|k|)

= (|y|/L)1− d
2

Ld (2π )
d
2

∫ ∞

0
dα α

d
2 J d

2 −1(α|y|/L)

× sinh
[
α
(
1 − z0

L

)]
sinh(α)

(47)

and

ω̃0
z0,L

(y) =
∫
Rd

dk
(2π )d

e−i(k1y1+···+kdyd ) cosh
[(

L
2 − z0

)|k|]
cosh

(
L
2 |k|)

= (|y|/L)1− d
2

Ld (2π )
d
2

∫ ∞

0
dα α

d
2 J d

2 −1(α|y|/L)

× cosh
[
α
(

1
2 − z0

L

)]
cosh(α/2)

, (48)

Given that the poles of the integrand function in Eq. (47)
appear at α = iπm, the spectral representation (37) can
be interpreted as the application of the residue theorem to
Eq. (47). Comparing Eqs. (44), (47), and (48) to Eq. (14), one
can recognize the integrand function as the Laplace transform
of the probability density ρ0

z0,L
(t), for instance,

Ls

{
ρ0

z0,L
(t)

} = sinh[(L − z0)
√

s/D]

sinh(L
√

s/D)
(49)

for the first exit time from the interval [0,L] through the end
point 0 [26].

1. Two-dimensional stripe

For a two-dimensional stripe (i.e., d = 1), one uses

K−1/2(x) = K1/2(x) =
√

π/(2x)e−x (50)

to get, after resummation of geometric series,

ω0
z0,L

(y) = sin(πz0/L)e−π |y|/L

L[1 − 2 cos(πz0/L)e−π |y|/L + e−2π |y|/L]
. (51)

In the limit L → ∞, one retrieves the Cauchy distribution:

ω0
z0

(y) = z0

π
(
z2

0 + y2
) . (52)

Similarly, one gets

ω̃0
z0,L

(y) = 2 sin(πz0/L)e−π |y|/L(1 + e−2π |y|/L)

L[1 − 2 cos(2πz0/L)e−2π |y|/L + e−4π |y|/L]
.

(53)
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2. Relation to the Green function

We recall that the harmonic measure density can in general
be directly obtained from the Green function of the Laplace
operator [64,65]:

ωx0 (s) = −
(

∂G(x,x0)

∂n

)
x=s

, (54)

where �xG(x,x0) = −δ(x − x0) in � and G(x,x0) = 0 on
the boundary of ∂�. For the half-space Rd × R+, the Green
function with the Dirichlet boundary condition reads

G(x,x0) = g(x,x0) − g(x,x′
0), (55)

where x′
0 = (y0, − z0) is the reflection of x0 = (y0,z0) with

respect to the hyperplane at z = 0, and g(x,x0) is the
fundamental Green function in the whole space Rd+1:

g(x,x0) =

⎧⎪⎪⎨
⎪⎪⎩

−1

2π
ln |x − x0| (d = 1),

�
(

d−1
2

)
4π

d+1
2

1

|x − x0|d−1
(d > 1).

(56)

Taking the normal derivative in Eq. (54) yields Eq. (41). In
general, the computation of the Green function is not easier
than that of the harmonic measure density.

E. Spread harmonic measures

We consider the spread harmonic measure density in a
slab domain Rd × [0,L]. Setting κ1 = ∞ (i.e., 
1 = h1 = 0),
Eq. (28) becomes tan(α) = −αh, whose roots αm belong
to [−π/2 + πm,πm] (the extreme cases h = ∞ and h = 0
correspond to the two ends of this interval). The other
expressions are simplified as

β2
m = 2

1 + h + α2
mh2

(57)

and

cm(z0) = 2αm[sin(αmz0/L) + hαm cos(αmz0/L)]

L2
(
1 + h + α2

mh2
) , (58)

whose substitution into Eq. (20) yields the spread harmonic
measure density:

ω

z0,L

(y) = (|y|/L)1− d
2

Ld (2π )
d
2

∞∑
m=1

2h sin[αm(1 − z0/L)][
1 + h + α2

mh2
]

sin αm

×α
d
2
mKd

2 −1(αm|y|/L), (59)

where we used Eq. (32). Figure 3(a) illustrates the behavior of
this density.

The probability P 

z0,L

(R) from Eq. (22) gets a similar form:

P 

z0

(R) = (R/L)
d
2

2
d
2 −1�

(
d
2

) ∞∑
m=1

2h sin[αm(1 − z0/L)][
1 + h + α2

mh2
]

sin αm

×α
d
2
mKd

2
(αmR/L). (60)

In analogy to Eqs. (37) and (47) for the harmonic measure,
one can consider Eq. (59) as the result of applying the residue
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10
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10
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10
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|y|

ω
z 0,L
Λ

(y
)

(a)

Λ = 0
Λ = 0.1
Λ = 1
Λ = 10
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)
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Λ = 0
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Λ = 1
Λ = 10

FIG. 3. (Color online) Spread harmonic measure density ω

z0,L(y)

as a function of |y| for d = 2, z0 = 1, and four values of 
:
{0,0.1,1,10}, with a barrier at L = 20 (a) and without a barrier (b).
For L = 20, symbols show the spectral representation (59) while lines
indicate the asymptotic relation (26). For L = ∞, symbols show the
result of numerical integration of Eq. (68) and the approximation (70).

theorem to the following integral:

ω

z0,L

(y) = (|y|/L)1− d
2

Ld (2π )
d
2

∫ ∞

0
dα

α
d
2 J d

2 −1(α|y|/L)

1 + αh coth(α)

× sinh[α(1 − z0/L)]

sinh α
. (61)

Using the identity (15), one can also represent the spread
harmonic measure density as

ω

z0,L

(y) =
∫
Rd

dk
(2π )d

e−i(k1y1+···+kdyd )

1 + 
|k| coth(L|k|)
× sinh[(L − z0)|k|]

sinh(L|k|) . (62)

This relation can be seen as the convolution of the harmonic
measure density ω0

z0,L
(y0) (describing the first arrival point y0

onto the boundary) and the transition density T 

L (y − y0) ≡

ω

0,L(y − y0) (describing the passage from the first arrival point

y0 to the stopping point y):

ω

z0,L

(y) =
∫
Rd

dy0ω
0
z0,L

(y0)T 

L (y − y0). (63)
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In probabilistic terms, this representation is a consequence of
the Markov property of partially reflected Brownian motion:
the paths before and after the first arrival are independent.
Earlier studies of the spread harmonic measure were mainly
focused on T 


L (y − y0), which fully includes the spreading
effect [52,58,59]. Setting z0 = 0 into Eqs. (59), (61), and (62)
yields analytical formulas for this kernel. Comparing Eq. (62)
to Eq. (14), one can recognize the integrand function as the
Laplace transform of ρ


z0,L
(t) for a slab domain:

Ls

{
ρ


z0,L
(t)

} = sinh[(L − z0)
√

s/D]

sinh(L
√

s/D) + 

√

s/D cosh(L
√

s/D)
.

(64)
From Eq. (61), one deduces an integral representation for

the probability P 

z0,L

(R),

P 

z0,L

(R) = 1 − z0/L

1 + h
− 2[R/(2L)]

d
2

�( d
2 )

×
∫ ∞

0
dα α

d
2 −1J d

2
(αR/L)

× sinh[α(1 − z0/L)]

sinh α + αh cosh α
(65)

[here, it is convenient to compute first the probability P{|y| <

R} and then to get P{|y| > R}, bearing in mind that the prob-
ability of stopping at the hyperplane �0 is (1 − z0/L)/(1 + h)
according to Eq. (24)].

1. No barrier limit

To obtain the spread harmonic measure density without a
barrier (i.e., for a half-space), one can take the limit L → ∞
in Eqs. (61) and (65) to get

ω

z0

(y) = (|y|/
)1− d
2


d (2π )
d
2

∫ ∞

0
dα

α
d
2 J d

2 −1

(
α|y|



)
e−αz0/


1 + α
, (66)

P 

z0

(R) = 1 − 21− d
2

�
(

d
2

) ∫ ∞

0
dx x

d
2 −1J d

2
(x)

e−xz0/R

1 + x
/R
. (67)

In the half-space, the harmonic and spread harmonic
measures can be related in a particularly simple way. For this
purpose, one multiplies the relation (46) by e−z/
, integrates
both parts over z from z0 to infinity, and, after simplifications,
identifies the left-hand side with Eq. (66), from which

ω

z0

(y) = �
(

d+1
2

)

π

d+1
2

∫ ∞

0
dz

(z + z0)e−z/


[(z + z0)2 + |y|2]
d+1

2

or, equivalently,

ω

z0

(y) =
∫ ∞

0
dz ω0

z0+z(y)
e−z/




. (68)

According to this relation, the spread harmonic measure
density can be seen as the Laplace transform of the harmonic
measure density ω0

z0+z(y) with respect to z. At the same time,
this relation appears as the average of the harmonic measure
density ω0

z0+ζ (y) over the random height z0 + ζ above the
hyperplane, where ζ follows the exponential law in Eq. (4).
Since the local time process �t in Eq. (3) can be interpreted
as the distance traveled by reflected Brownian motion near

the boundary and the process is stopped when �t = ζ , the
spreading effect is equivalent to starting from a further point
z0 + ζ (or z0 + �t ). In other words, if the particle traveled
the distance z0 before stopping at a fully reactive boundary
(
 = 0), it would travel the random distance z0 + ζ before
stopping at a partially reactive boundary. Note also that the
same convolution structure is applicable to the stopping time,
namely,

ρ

z0

(t) =
∫ ∞

0
dz ρ0

z0+z(t)
e−z/




. (69)

Integrating Eq. (68) by parts twice, one deduces the
asymptotic behavior of ω


z0
(y) at large |y|:

ω

z0

(y) 
 �
(

d+1
2

)
π

d+1
2

z0 + 
(
z2

0 + |y|2) d+1
2

+ · · · .

The accuracy of this relation can be improved by replacing z0

by z0 + 
 in the denominator. This is equivalent to replacing
the exponential law in the average (68) by a Dirac distribution
δ(z − 
) centered at the mean traveled distance 
:

ω

z0

(y) 
 ω0
z0+
(y). (70)

Figure 3(b) shows that this approximation is more accurate for
large |y| and small 
, as expected.

Integrating Eq. (68) over |y| > R, one gets

P 

z0

(R) = 2�
(

d+1
2

)
√

π�
(

d
2

)
[ ∫ z0/R

0

dx

(x2 + 1)
d+1

2

+ 1

R

∫ ∞

0
dz

e−z/


[1 + (z + z0)2/R2]
d+1

2

]
. (71)

In the limit 
 → 0 (the harmonic measure), the second term
vanishes, yielding

P 0
z0

(R) = 2�
(

d+1
2

)
√

π�
(

d
2

) ∫ z0/R

0

dx

(x2 + 1)
d+1

2

. (72)

For instance, one has

P 0
z0

(R) =

⎧⎪⎨
⎪⎩

2
π

arctan(z0/R) (d = 1),
z0√

R2 + z2
0

(d = 2). (73)

For higher dimensions, P 0
z0

(R) can be found by differentiating
these expressions:

P 0
z0

(R) = (−1)n

�
(

d
2

) lim
x→1

∂n

∂xn

⎧⎨
⎩

2 arctan(z0/R/
√

x)√
π

√
x

,

z0/R

x
√

x+(z0/R)2
,

(74)

with the first line and n = 1
2 (d − 1) standing for odd dimen-

sions d, while the second line and n = 1
2 (d − 2) for even

dimensions.
Note that the approximation (70) for ω


z0
(y) yields a similar

approximation for P 

z0

(R):

P 

z0

(R) ≈ P 0
z0+
(R). (75)

As illustrated in Fig. 4, this approximation is accurate for small

 but becomes invalid for large 
.

052108-8



ANALYTICAL REPRESENTATIONS OF THE SPREAD . . . PHYSICAL REVIEW E 91, 052108 (2015)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R

P
z 0Λ

(R
)

 

 

Λ = 0
Λ = 0.1
Λ = 1
Λ = 10

FIG. 4. (Color online) The probability P 

z0

(R) as a function of R

for d = 2, z0 = 1, and four values of 
: 0, 0.1, 1, and 10. Symbols
show the results of numerical integration in Eq. (67), while lines
indicate the approximate relation (75), in which the exact relation (73)
was used.

When z0 → 0, the first term in Eq. (71) vanishes, yielding

P 

0 (R) = 2�

(
d+1

2

)
√

π�
(

d
2

) ∫ ∞

0
dx

e−xR/


(1 + x2)
d+1

2

. (76)

This expression illustrates that the length 
 determines the
size of an interfacial region around the first hitting point on
which the partially reflected Brownian motion is most likely
to stop. In other words, multiple reflections after the first
arrival onto the surface yield widening or spreading of the
harmonic measure controlled by the length 
: larger values
of 
 correspond to more spread harmonic measures, and vice
versa [52,59]. In particular, the median distance Rm [such
that P 


0 (Rm) = 1/2] is proportional to 
: Rm 
 0.6232
 for
d = 1, Rm 
 1.1702
 for d = 2, etc.

It is worth noting that the spread harmonic measure density
could also be obtained directly from Eq. (11), with the
probability density ρ


z0
(t) for the half-axis:

ρ

z0

(t) = De−z2
0/(4Dt)


2

[

√
πDt

− K
(

z0√
4Dt

+
√

Dt




)]
,

(77)
whereK(z) = exp(z2)erfc(z) and erfc(z) is the complementary
error function. In the limit 
 → 0, one retrieves ρ0

z0
(t) =

z0e
−z2

0/(4Dt)/
√

4πDt3. The above expression can be deduced
from the survival probability on the positive semiaxis with
a semipermeable boundary condition at the origin [see [61],
Eq. (3.35)]:

Sz0 (t) = 1 − erfc

(
z0√
4Dt

)

+ exp

(
z0



+ Dt


2

)
erfc

(
z0√
4Dt

+
√

Dt




)
. (78)

We conclude this section by mentioning that the represen-
tation (68) of the spread harmonic measure density suggests a
simple way to generate the stopping positions by generating the
first arrival positions with random exponentially distributed
height z0 + ζ . For this purpose, one can invert Eq. (73) [or,
in general, Eq. (74)] to generate the distance R from the

origin as

R = (z0 + ζ )ctan(πμ/2) (d = 1),
(79)

R = (z0 + ζ )
√

1/μ2 − 1 (d = 2),

where ζ obeys the exponential distribution with parameter 
,
and μ is an independent random variable uniformly distributed
over the unit interval. The rotational symmetry allows one to
transform the distance R to the position y. For d = 1, one
just needs to choose randomly the sign, i.e., y = Rν, where ν

is another random variable: ν = ±1 with equal probabilities.
For d = 2, one generates a point on the circle of radius R: y =
(R cos(2πν),R sin(2πν)), with ν being uniform over [0,1].
This scheme allows one to avoid the inversion of the integral
relation (71).

III. DISCUSSION

While the harmonic measure characterizes the accessibility
of different regions of a surface to Brownian motion, the spread
harmonic measure describes the stopping positions of partially
reflected Brownian motion by incorporating finite surface
reactivity and the consequent multiple reflections. In addition,
the spread harmonic measure density provides a solution of a
general Laplacian boundary value problem: for a given f (s),
the function

u(x0) =
∫

∂�

ds ω

x0

(s)f (s) (80)

satisfies the Laplace equation �u(x0) = 0 in � with the Robin
boundary condition on ∂�:[

u(x0) + 

∂

∂n
u(x0)

]
x0=s

= f (s). (81)

In fact, the density ωx0 (s) formally satisfies the Robin boundary
condition [

ω

x0

(s) + 

∂

∂n
ω


x0
(s)

]
x0=s0

= δ(s − s0). (82)

This relation suggests an important link to the Dirichlet-
to-Neumann operator M [66]. For a function f (s) on a
smooth bounded boundary ∂�, the operator M maps f to
the normal derivative of a harmonic function u in � subject to
the Dirichlet boundary condition u = f on ∂�. In other words,
Mf = ( ∂u

∂n
)|∂�, where u is the solution of the Laplace equation

�u = 0 subject to u = f on ∂�. Mathematically speaking,
the operator M acts from the Sobolev space H 1(∂�) to
L2(∂�), and it is known to be a self-adjoint pseudodifferential
operator of the first order, with a discrete positive spectrum
{μα} and smooth eigenfunctions forming a complete basis in
L2(∂�) [66–71]. One can also define its resolvent operator
T 
 = [I + 
M]−1, called the spreading operator. This is
an analytic operator function in the whole complex plane
C, except for a denumerable set of points, C\{−μ−1

α }. In
particular, T 
 is well defined for any positive 
 [52]. Using
the Dirichlet-to-Neumann operator, Eq. (82) can be written as

[I + 
M]ω

s0

(s) = δ(s − s0), (83)

from which one concludes that T 
(s − s0) = ω

s0

(s) is the
kernel of the spreading operator T 
. In particular, Eqs. (59)
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and (68) with z0 = 0 determine this kernel for a slab domain
and for a half-space, respectively.

In analogy to the harmonic measure density [e.g., see
Eq. (54)], the density ω


x0
(s) can be expressed as

ω

x0

(s) = −
(

∂

∂n
G
(x,x0)

)
x=s

= 1



G
(s,x0), (84)

where the Green function G
(x,x0) satisfies �xG

(x,x0) =

−δ(x − x0) in �, with the Robin boundary condition on ∂�:

G
(x,x0) + 

∂

∂n
G
(x,x0) = 0. (85)

Note that the Green function is directly related to the
propagator:

G
(x,x0) = D

∫ ∞

0
dt Gt (x,x0) (86)

(this relation is not applicable for the Neumann case when 
 =
∞). Although the spread harmonic measure density ignores
the temporal aspects of diffusion, it can be computed by using
either the propagator or the Green function. In practice, the
former approach is often simpler. For instance, the propagator
on the semiaxis is known as [62,72]

G⊥
t (z,z0) = exp

(− (z−z0)2

4Dt

) + exp
(− (z+z0)2

4Dt

)
√

4πDt

− 1



exp

(
2



(z + z0 + 2κt)

)

× erfc

(
z + z0 + 4κt√

4Dt

)
, (87)

where κ = D/
 is the surface reactivity. Multiplying this
expression by the lateral propagator (12) and integrating by
t from 0 to ∞, one gets the corresponding Green function

G
(x,x0) = g(x,x0) + g(x,x′
0) − D




∫ ∞

0
dt

exp
(−|y−y0|2

4Dt

)
(4πDt)d/2

× exp

(
2



(z + z0 + 2κt)

)
erfc

(
z + z0 + 4κt√

4Dt

)
,

(88)

where g(x,x0) is given by Eq. (56), and x′
0 is the mirror reflec-

tion of x0 with respect to the hyperplane z = 0. Rearranging
terms and writing the last integral through the density ρ


z0
(t)

from Eq. (77), one can recognize in the last term the general
form (11) for the spread harmonic measure density, from which

G
(x,x0) = g(x,x0) − g(x,x′
0) + 
ω


z+z0
(y − y0). (89)

In turn, the density ω

z+z0

(y − y0) can be represented according
to Eq. (68). Setting z = 0, one retrieves Eq. (84).

A. Diffusion in cylindrical domains

Although this paper was focused on the spread harmonic
measure on slab domains, there are other practically relevant
examples. For instance, for an infinite cylinder � = R × �⊥
of an arbitrary bounded cross section �⊥ ⊂ Rd⊥ , Eq. (20)

yields

ω

z0

(y) = 1

2

∞∑
m=1

cm(z0)√
λm

exp(−
√

λm|y|). (90)

Among all bounded domains of the same volume, the ball
minimizes the first eigenvalue λ1. This statement is known
as the Rayleigh-Faber-Krahn isoperimetric inequality for the
Dirichlet boundary condition (
 = 0), and it was extended
by Daners for the Robin boundary condition (
 > 0) [73,74]
(see [75,76] for reviews). As a consequence, the slowest decay
rate

√
λ1 is achieved for a ball in Rd⊥ . In particular, among

all cylinders of cross-sectional area πL2 embedded into the
three-dimensional space (with d⊥ = 2), the circular cylinder of
radius L provides the slowest lateral decay, with λ1 = α2

1/L
2,

where α1 ≈ 2.4048 . . . is the first zero of the Bessel function
J0(z).

When the cross section �⊥ of a cylindrical domain is not
bounded, one needs first to solve Eqs. (8) and (9) for the
transverse diffusion propagator in order to get the probability
density ρz0 (t) of the stopping time. This problem can be solved
analytically for rotation-invariant domains [26]. For instance,
if �⊥ = {z ∈ R2 : |z| > L} is the exterior of the disk of radius
L, the first-passage time density can be written through the
inverse Laplace transform (denoted as L−1

t ) [77]

ρ0
z0

(t) = L−1
t

{
K0(|z0|

√
s/D)

K0(L
√

s/D)

}
. (91)

Since the modified Bessel function K0(z) is positive in the
whole complex plane (see [78], p. 511), the residue theorem
is not applicable (in contrast to the usual case), and one needs
to perform the Laplace inversion numerically. At long times,
the probability density exhibits very slow decay [79],

ρ0
z0

(t) 
 2(|z0|/L − 1)

t ln2(2Dt/L2)
(t � L2/D), (92)

i.e., very long transverse excursions remain probable. An
extension of Eq. (91) to a partially reactive boundary is
straightforward:

ρ

z0

(t) = L−1
t

{
K0(|z0|

√
s/D)

K0(L
√

s/D) + 

√

s/DK1(L
√

s/D)

}
. (93)

Although the explicit representation of ρ

z0

(t) is not avail-
able, the probability density of relocations along the cylinder
(i.e., precisely the spread harmonic measure density along the
cylinder axis) can be found by using Eq. (14):

ω

z0

(y) = 1

L

∫ ∞

0

dα

π

cos(αy/L)K0(α|z0|/L)

K0(α) + αhK1(α)
(94)

(this expression was first derived in [15]). Long transverse
excursions imply long lateral relocations:

ω

z0

(y) 
 
/L + ln(|z0|/L)

2|y| ln2(|y|/L)
(|y| � L). (95)

This asymptotic behavior is drastically different from the
exponentially fast decay for diffusion inside the cylinder. The
statistics of relocations by bulk diffusion can be used to study
intermittent diffusion in which bulk and surface diffusion
alternate (see [80–83] and references therein).
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B. Diffusion near a reflecting boundary

Diffusion in a thin layer near a reflecting boundary is
often substituted by surface diffusion. In this model, a particle
diffuses on the surface until a random stopping time, after
which it is ejected above the surface to a distance a. The
desorption events are typically modeled by an exponential
law with a prescribed desorption rate λ, i.e., with ρ(t) =
λe−λt [80,81]. For a flat surface, the probability density of
desorption positions follows from Eq. (11):

ω̂a(y) = (|y|/a)1− d
2

ad (2π )
d
2

(λa2/D)
d+2

4 Kd
2 −1(|y|

√
λ/D). (96)

As expected, this expression is very similar to Eq. (20),
in which only one exponential term is kept and Dλ1/a

2

is replaced by λ. In other words, setting λ = Dλ1/a
2, one

achieves the same asymptotic behavior at large distances for
both densities ω̂a(y) and ω0

a,a(y). This is not surprising because
the first exit time density ρ0

z0,a
(t) resembles an exponential law

at long times. If the exponential law for desorption events was
replaced by ρ0

z0,a
(t), both models would yield exactly the same

densities of desorption positions. Note that the probability
density ω0

a,a(y) of exit points from a layer of width a above
the reflecting flat boundary can be obtained by setting h = 0
and h1 = ∞ (Neumann boundary condition).

C. Anomalous diffusion

To incorporate long-time trapping events and the con-
sequent subdiffusive behavior in complex systems, normal
diffusion is often replaced by continuous-time random walks
(CTRWs) [84–86]. This model has been thoroughly studied; in
particular, the survival probability and the effect of a partially
reactive boundary on the probability density of the stopping
times were investigated [87–89]. In mathematical terms, a
CTRW can be described by an appropriate time subordination
of Brownian motion or, equivalently, by replacing a diffusion
equation by a fractional diffusion equation. As a consequence,
both lateral and transverse propagators, as well as the proba-
bility density of the stopping time, will be changed [84,88]:

Ls

{
ρ


z0
(t)

} = e−z0
√

sα/Dα

1 + 

√

sα/Dα

(97)

and

Ls{G||
t (y0,y)} = s−1

(
sα/Dα)

d
2

(2π )
d
2

Kd
2 −1

(|y − y0|
√

sα

Dα

)
(|y − y0|

√
sα

Dα

) d
2 −1

, (98)

where Dα is the generalized diffusion coefficient, and 0 <

α � 1 is the scaling exponent (α = 1 corresponds to normal
diffusion). A physical interpretation of the length 
 for a
CTRW is provided in [90]. In general, both α and Dα can be
different for lateral and transverse motion.

When only the transverse motion is anomalous, Eq. (14) can
be applied to compute the spread harmonic measure density
in the half-space for a probability density of the stopping time
given in the Laplace space. Substituting Eq. (97), one gets for

the transverse CTRW:

ω

z0

(y) = |y|1− d
2

(2π )
d
2

∫ ∞

0
dk k

d
2 J d

2 −1(|y|k)
e−z0ηkα

1 + 
ηkα
, (99)

where η =
√

Dα
||/Dα and Dα characterizes anomalous dif-

fusion in the transverse direction. For α = 1, one retrieves
Eq. (66).

When both lateral and transverse motions are anomalous,
the above trick does not work, and a numerical inversion of
the Laplace transforms in Eqs. (97) and (98) is needed to
compute the spread harmonic measure by Eq. (11), which
incorporates ρ


z0
(t) and G

||
t (y0,y) in the time domain. Even

when lateral and transverse CTRWs are characterized by the
same α and Dα , the computation is difficult. It is worth
stressing that the process with two independent CTRWs for
lateral and transverse directions is not equivalent to a single
CTRW with independent displacements in these directions. In
fact, every CTRW is characterized by random displacements
and random waiting times. In the former case of two CTRWs,
lateral and transverse displacements are independent and occur
at different waiting times (independent from each other). In
turn, for a single CTRW, lateral and transverse displacements
are still independent, but they occur at the same moments. This
subtle difference changes the spread harmonic measure. For
a single CTRW, the probability distribution of the stopping
points is still described by the spread harmonic measure
density derived for Brownian motion because long trapping
events do not affect spatial displacements. Roughly speaking,
the spread harmonic measure ignores the fact that the arrival to
the stopping position by a CTRW may take much longer than
by Brownian motion. Figuratively speaking, Brownian motion
and CTRW generate the same spatial path but move along it
at different paces.

To illustrate the difference between these two situations,
we consider an example of CTRW with α = 2/3, d = 1, and

 = 0, for which the inverse Laplace transforms in Eqs. (97)
and (98) can be found explicitly:

ρ0
z0

(t) = (z0/
√

Dα)
3
2

3πt
3
2

K 1
3

[
2

(
z0/3√
Dαt2/3

) 3
2
]
,

G
||
t (y0,y) = (|y − y0|/

√
Dα)

1
2

2π
√

Dα

√
t

K 1
3

[
2

( |y − y0|/3√
Dαt2/3

) 3
2
]
.

(100)

Substituting these expressions into Eq. (11) yields, after
simplifications, the harmonic measure density

ω0
z0

(y) = 3
√

3

4π

z0

z2
0 + z0|y| + y2

. (101)

This expression differs from the Cauchy distribution (52) for
Brownian motion. We conclude that the distribution of first
arrivals of CTRW onto a flat surface is affected by distinct
waiting times for lateral and transverse motions. The same
conclusion holds for the spread harmonic measure.

052108-11



DENIS S. GREBENKOV PHYSICAL REVIEW E 91, 052108 (2015)

D. Several extensions

In conclusion, we mention several extensions of the above
results.

(i) The convolution (11) includes all stopping times from 0
to infinity. For some applications, it may be convenient to
consider a restricted range [tmin,tmax] of stopping times at
which the distribution of stopping points is determined (e.g.,
tmin can mimic a delay between the beginning of experiment
and switching on a camera, while tmax can be the duration
of experiment). However, the related integrals have to be
computed numerically.

(ii) Throughout the paper, we considered unrestricted lateral
motion in �|| = Rd . Using the method of images, the above
analysis can be extended to a half-space Rd−1 × R+ or a
hyperoctant Rd

+ (or any Cartesian product of R and R+)
with an absorbing surface [e.g., the diffusion propagator
on the positive semiaxis reads Gt (x0,x) − Gt (−x0,x), where
Gt (x0,x) is given by Eq. (12)]. For instance, one can easily
compute the spread harmonic measure on a half-cylinder.

(iii) In addition to diffusion inside and outside a circular
cylinder, one can compute the spread harmonic measure for
diffusion between two coaxial cylinders. Due to the rotational
symmetry, the eigenvalues and eigenfunctions of the Laplace
operator are known explicitly [26,61,62,76]. The effect of
curvature of the cylindrical surface can be investigated.

(iv) For both cylinders and slab domains, one can include
a drift or an external potential in the transverse direction. For
instance, the probability density of the first-passage time at the
origin of the semiaxis for a drifted particle with speed v is [26]

ρ0
z0

(t) = z0√
4πDt3

exp

(
− (z0 + vt)2

4Dt

)
. (102)

Integrating this density with the Gaussian propagator (12) for
the lateral motion yields the harmonic measure density in the
drifted case. For a partially reflecting boundary, one deduces

ρ

z0

(t) = De−(z0+vt)2/(4Dt)


2

×
{


√
πDt

− K
[

z0√
4Dt

+
√

Dt




(
1 − v


2D

)]}
,

(103)

in analogy with Eq. (77). Another explicit formula for the first-
passage time density is known for the harmonically trapped
particles on the semiaxis [91],

ρ0
z0

(t) = z0[sinh(t/τ )]−
3
2√

4πDτ 3
exp

(
− z2

0

4Dτ

e−t/τ

sinh(t/τ )
+ t

2τ

)
,

(104)
where τ = kBT /(kD) is the trapping time (expressed through
the harmonic potential strength k, the Boltzmann constant kB ,
and the absolute temperature T ). The exit time problem of a
harmonically trapped particle from an interval was reviewed
in [92]. In cases when only the Laplace transform of ρz0 (t) is
available, Eq. (14) can be used to compute the spread harmonic
measure density.

(v) According to Eq. (43), the harmonic measure density in
a half-spaceRd × R+ decays as a power law: ω0

z0
(y) ∝ |y|−d−1

at large |y|. As a consequence, the probability density of

excursion distances r = |y| (once averaged over the angular
part) decays as r−β , with the scaling exponent β = 2. The
probability density of the stopping times also exhibits a
power-law decay, ρ0

z0
(t) ∝ t−α , with α = 3/2. The statistics

of the first-passage times and the excursion distances over
irregular boundaries were shown to decay as power laws as
well, with α = (df − de + 4)/2 and β = df − de + 3, where
df is the fractal dimension of the boundary and de is the
embedding dimension (here, de = d + 1) [93]. For a smooth
boundary, df = de − 1, from which α = 3/2 and β = 2 are
retrieved. An extension of the above scaling relations to the
spread harmonic measure on irregular boundaries presents an
interesting perspective. Some multifractal properties of the
spread harmonic measure distribution on fractal boundaries
were already studied [59].

IV. CONCLUSION

In this paper, we obtained various analytical representations
of the spread harmonic measure density in Euclidean domains,
in which Brownian motion can be split into independent lateral
and transverse displacements. This measure characterizes the
spatial distribution of the stopping position of the lateral
motion under the stopping criterion set by the transverse
motion. For slab domains Rd × [0,L], we derived both the
series and integral representations of the spread harmonic
measure density ω


z0,L
(y) and showed its exponential decay at

large distances |y|. In turn, long-time excursions in a half-space
(L = ∞) were shown to lead to a slower, power-law decay. In
this case, we argued that the spread harmonic measure could
be interpreted as the average of the harmonic measure over
exponentially distributed starting points. The mean traveled
distance 
 of the transverse motion in the vicinity of the
surface was related to both the macroscopic and microscopic
parameters of Laplacian transfer. It was shown to determine
the size of the interfacial region (around the first arrival point)
on which reaction mainly occurs, and to control the spreading
effect due to multiple reflections on the surface. We discussed
the relation between the spread harmonic measure density, the
Dirichlet-to-Neumann operator and the Green function, the
modeling of diffusion near a reflecting boundary by surface
diffusion, as well as several extensions, such as diffusion
in cylindrical domains, limited duration of experiment, and
anomalous diffusion.
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APPENDIX: CONVERGENCE AND PRACTICAL
IMPLEMENTATION

We briefly discuss the convergence of the main results and
their practical implementation. At the same time, rigorous
mathematical statements and proofs, as well as challenges
related to irregular domains, remain beyond the scope of the
paper.
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For any bounded transverse domain �⊥, the series (20) and
similar expansions converge exponentially for any |y| > 0.
In fact, the asymptotic growth of the Laplacian eigenvalues
(λm → ∞ as m → ∞) implies that z = η

√
λm|y| becomes

large enough so that the modified Bessel function Kd
2 −1(z)

decays exponentially according to Eq. (25). This ensures the
converges of the series (20) given that the coefficients cm(z0)
exhibit a power-law dependence on m (or λm). In practice, if
|y| is too small, a very large number of terms is needed to get
accurate results that would make the computation inefficient.
In this case, integral representations are more convenient.

Note that the limiting value |y| = 0 would require a more
subtle analysis of the series (20). If one needs to compute
ω


z0
(0), it is easier to substitute G

||
t (y0,y) from Eq. (12) at

y0 = y = 0 into Eq. (11) to get

ω

z0

(0) =
∫ ∞

0
dt(4πD||t)−d/2ρz0 (t) = 〈τ−d/2〉z0

(4πD||)d/2
. (A1)

In other words, ω

z0

(0) is proportional to the moment of order
−d/2 of the stopping time τ . This moment is finite for any
starting point z0 inside the transverse domain �⊥ (i.e., not on
the boundary ∂�⊥). In fact, the above integral converges at
large times since the probability density ρz0 (t) is normalized,
and at short times due to its very rapid decay:

ρz0 (t) ∝ exp

(
−|z0 − ∂�⊥|2

4D⊥t

)
(t → 0) (A2)

(here |z0 − ∂�⊥| is the distance from z0 to the boundary ∂�⊥
or its “target region” S).

All integral representations of ω

z0

(y) are equally well-
converging. For instance, the integrand of the second relation
in Eq. (14) behaves like kd−1 as k → 0 [given that the Laplace
transform LD||k2{ρz0 (t)} approaches 1 due to the normalization
of ρz0 (t)], and decays exponentially as k → ∞ [that follows
from the asymptotic behavior (A2)]. This exponential decay
is clearly seen, for instance, in Eqs. (47), (48), (45), and (61).
In practice, the upper limit of the integrals is truncated by
a large enough number to ensure that the remaining part
is negligible. For a prescribed precision ε, the integral in
Eq. (61) (or similar) can be truncated to αmax such that
sinh α(1−z0/L)

sinh α

 e−αz0/L < ε for α � αmax. The finite integral

from 0 to αmax can then be computed by Gauss quadratures or
other numerical methods. When |y| is very large, the Bessel
function J d

2 −1(α|y|/L) rapidly oscillates that may require very
fine discretizations and thus slow down computations. In this
case, the series expansions are more suitable. Combining these
complementary representations is an efficient way to compute
the probability density ω


z0
(y).

When the starting point z0 belongs to the boundary ∂�⊥,
some of the above arguments fail. For instance, the harmonic
measure density degenerates to the Dirac distribution δ(y), and
the convergence analysis of series and integral representations
should be refined. While this point is less relevant for the
spread harmonic measure density (which does not degenerate
to a singular distribution), the discussion of convergence issues
in this case is beyond the scope of the paper.

[1] F. C. Collins and G. E. Kimball, Diffusion-controlled reaction
rates, J. Colloid Sci. 4, 425 (1949).

[2] G. Wilemski and M. Fixman, General theory of diffusion-
controlled reactions, J. Chem. Phys. 58, 4009 (1973).

[3] H. Sano and M. Tachiya, Partially diffusion-controlled recom-
bination, J. Chem. Phys. 71, 1276 (1979).

[4] A. Szabo, K. Schulten, and Z. Schulten, First passage time
approach to diffusion controlled reactions, J. Chem. Phys. 72,
4350 (1980).

[5] M. Tachiya, Theory of diffusion-controlled reactions: Formula-
tion of the bulk reaction rate in terms of the pair probability,
Radiat. Phys. Chem. 21, 167 (1983).

[6] G. H. Weiss, Overview of theoretical models for reaction rates,
J. Stat. Phys. 42, 3 (1986).

[7] A. V. Barzykin and M. Tachiya, Diffusion-influenced reac-
tion kinetics on fractal structures, J. Chem. Phys. 99, 9591
(1993).

[8] M.-O. Coppens, The effect of fractal surface roughness on
diffusion and reaction in porous catalysts: From fundamentals
to practical applications, Catal. Today 53, 225 (1999).

[9] O. Bénichou, M. Coppey, M. Moreau, and G. Oshanin, Kinetics
of diffusion-limited catalytically activated reactions: An exten-
sion of the Wilemski-Fixman approach, J. Chem. Phys. 123,
194506 (2005).

[10] J. M. Schurr, The role of diffusion in enzyme kinetic, Biophys.
J. 10, 717 (1970).

[11] D. Shoup and A. Szabo, Role of diffusion in ligand binding to
macromolecules and cell-bound receptors, Biophys. J. 40, 33
(1982).

[12] S. F. Burlatsky and G. Oshanin, Diffusion-controlled reactions
with polymers, Phys. Lett. A 145, 61 (1990).

[13] D. Holcman and Z. Schuss, Stochastic chemical reactions in
microdomains, J. Chem. Phys. 122, 114710 (2005).

[14] P. C. Bressloff, B. A. Earnshaw, and M. J. Ward, Diffusion
of protein receptors on a cylindrical dendritic membrane with
partially absorbing traps, SIAM J. Appl. Math. 68, 1223 (2008).

[15] C. Loverdo, O. Bénichou, R. Voituriez, A. Biebricher, I.
Bonnet, and P. Desbiolles, Quantifying hopping and jumping in
facilitated diffusion of DNA-binding proteins, Phys. Rev. Lett.
102, 188101 (2009).

[16] P. C. Bressloff and J. Newby, Stochastic models of intracellular
transport, Rev. Mod. Phys. 85, 135 (2013).

[17] O. Bénichou and R. Voituriez, From first-passage times of
random walks in confinement to geometry-controlled kinetics,
Phys. Rep. 539, 225 (2014).

[18] K. R. Brownstein and C. E. Tarr, Importance of classical
diffusion in NMR studies of water in biological cells, Phys.
Rev. A 19, 2446 (1979).

[19] A. Coy and P. Callaghan, Pulsed gradient spin echo nuclear
magnetic resonance for molecules diffusing between partially
reflecting rectangular barriers, J. Chem. Phys. 101, 4599
(1994).

052108-13

http://dx.doi.org/10.1016/0095-8522(49)90023-9
http://dx.doi.org/10.1016/0095-8522(49)90023-9
http://dx.doi.org/10.1016/0095-8522(49)90023-9
http://dx.doi.org/10.1016/0095-8522(49)90023-9
http://dx.doi.org/10.1063/1.1679757
http://dx.doi.org/10.1063/1.1679757
http://dx.doi.org/10.1063/1.1679757
http://dx.doi.org/10.1063/1.1679757
http://dx.doi.org/10.1063/1.438427
http://dx.doi.org/10.1063/1.438427
http://dx.doi.org/10.1063/1.438427
http://dx.doi.org/10.1063/1.438427
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1016/0146-5724(83)90143-7
http://dx.doi.org/10.1016/0146-5724(83)90143-7
http://dx.doi.org/10.1016/0146-5724(83)90143-7
http://dx.doi.org/10.1016/0146-5724(83)90143-7
http://dx.doi.org/10.1007/BF01010838
http://dx.doi.org/10.1007/BF01010838
http://dx.doi.org/10.1007/BF01010838
http://dx.doi.org/10.1007/BF01010838
http://dx.doi.org/10.1063/1.465491
http://dx.doi.org/10.1063/1.465491
http://dx.doi.org/10.1063/1.465491
http://dx.doi.org/10.1063/1.465491
http://dx.doi.org/10.1016/S0920-5861(99)00118-2
http://dx.doi.org/10.1016/S0920-5861(99)00118-2
http://dx.doi.org/10.1016/S0920-5861(99)00118-2
http://dx.doi.org/10.1016/S0920-5861(99)00118-2
http://dx.doi.org/10.1063/1.2109967
http://dx.doi.org/10.1063/1.2109967
http://dx.doi.org/10.1063/1.2109967
http://dx.doi.org/10.1063/1.2109967
http://dx.doi.org/10.1016/S0006-3495(70)86331-7
http://dx.doi.org/10.1016/S0006-3495(70)86331-7
http://dx.doi.org/10.1016/S0006-3495(70)86331-7
http://dx.doi.org/10.1016/S0006-3495(70)86331-7
http://dx.doi.org/10.1016/S0006-3495(82)84455-X
http://dx.doi.org/10.1016/S0006-3495(82)84455-X
http://dx.doi.org/10.1016/S0006-3495(82)84455-X
http://dx.doi.org/10.1016/S0006-3495(82)84455-X
http://dx.doi.org/10.1016/0375-9601(90)90278-V
http://dx.doi.org/10.1016/0375-9601(90)90278-V
http://dx.doi.org/10.1016/0375-9601(90)90278-V
http://dx.doi.org/10.1016/0375-9601(90)90278-V
http://dx.doi.org/10.1063/1.1849155
http://dx.doi.org/10.1063/1.1849155
http://dx.doi.org/10.1063/1.1849155
http://dx.doi.org/10.1063/1.1849155
http://dx.doi.org/10.1137/070698373
http://dx.doi.org/10.1137/070698373
http://dx.doi.org/10.1137/070698373
http://dx.doi.org/10.1137/070698373
http://dx.doi.org/10.1103/PhysRevLett.102.188101
http://dx.doi.org/10.1103/PhysRevLett.102.188101
http://dx.doi.org/10.1103/PhysRevLett.102.188101
http://dx.doi.org/10.1103/PhysRevLett.102.188101
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1016/j.physrep.2014.02.003
http://dx.doi.org/10.1016/j.physrep.2014.02.003
http://dx.doi.org/10.1016/j.physrep.2014.02.003
http://dx.doi.org/10.1016/j.physrep.2014.02.003
http://dx.doi.org/10.1103/PhysRevA.19.2446
http://dx.doi.org/10.1103/PhysRevA.19.2446
http://dx.doi.org/10.1103/PhysRevA.19.2446
http://dx.doi.org/10.1103/PhysRevA.19.2446
http://dx.doi.org/10.1063/1.467447
http://dx.doi.org/10.1063/1.467447
http://dx.doi.org/10.1063/1.467447
http://dx.doi.org/10.1063/1.467447


DENIS S. GREBENKOV PHYSICAL REVIEW E 91, 052108 (2015)

[20] P. N. Sen, L. M. Schwartz, P. P. Mitra, and B. I. Halperin,
Surface relaxation and the long-time diffusion coefficient in
porous media: Periodic geometries, Phys. Rev. B 49, 215
(1994).

[21] P. W. Kuchel, A. J. Lennon, and C. Durrant, Analytical solutions
and simulations for spin-echo measurements of diffusion of
spins in a sphere with surface and bulk relaxation, J. Magn.
Reson. B 112, 1 (1996).

[22] S. Godefroy, J.-P. Korb, M. Fleury, and R. G. Bryant, Surface
nuclear magnetic relaxation and dynamics of water and oil in
macroporous media, Phys. Rev. E 64, 021605 (2001).

[23] A. Valfouskaya, P. M. Adler, J.-F. Thovert, and M. Fleury,
Nuclear magnetic resonance diffusion with surface relaxation
in porous media, J. Coll. Int. Sci. 295, 188 (2006).

[24] D. S. Grebenkov, NMR survey of reflected Brownian motion,
Rev. Mod. Phys. 79, 1077 (2007).

[25] S. Ryu and D. L. Johnson, Aspects of diffusive-relaxation
dynamics with a nonuniform, partially absorbing boundary in
general porous media, Phys. Rev. Lett. 103, 118701 (2009).

[26] S. Redner, A Guide to First Passage Processes (Cambridge
University Press, Cambridge, 2001).

[27] First-Passage Phenomena and Their Applications, edited by
R. Metzler, G. Oshanin, S. Redner (World Scientific, Singapore,
2014).

[28] Z. Schuss, Brownian Dynamics at Boundaries and Interfaces:
In Physics, Chemistry, and Biology (Springer, New York, 2013).

[29] R. de Levie, The influence of surface roughness of solid
electrodes on electrochemical measurements, Electrochim. Acta
10, 113 (1965).

[30] L. Nyikos and T. Pajkossy, Fractal dimension and fractional
power frequency-dependent impedance of blocking electrodes,
Electrochim. Acta 30, 1533 (1985).

[31] T. Pajkossy, Electrochemistry at fractal surfaces, J. Electroanal.
Chem. 300, 1 (1991).

[32] P. Meakin and B. Sapoval, Random-walk simulation of the
response of irregular or fractal interfaces or membranes, Phys.
Rev. A 43, 2993 (1991).

[33] T. C. Halsey and M. Leibig, Random walks and the double layer
impedance, Europhys. Lett. 14, 815 (1991).

[34] T. C. Halsey and M. Leibig, The double layer impedance at a
rough surface. Theoretical results, Ann. Phys. (N.Y.) 219, 109
(1992).

[35] B. Sapoval, General formulation of Laplacian transfer across
irregular surfaces, Phys. Rev. Lett. 73, 3314 (1994).

[36] M. Filoche and B. Sapoval, Can one hear the shape of an
electrode? II. Theoretical study of the Laplacian transfer, Eur.
Phys. J. B 9, 755 (1999).

[37] D. S. Grebenkov, M. Filoche, and B. Sapoval, Mathematical
basis for a general theory of Laplacian transport towards
irregular interfaces, Phys. Rev. E 73, 021103 (2006).

[38] J. B. Garnett and D. E. Marshall, Harmonic Measure (Cam-
bridge University Press, Cambridge, 2005).

[39] J. B. Garnett, Applications of Harmonic Measure (Wiley, New
York, 1986).

[40] P. Meakin, Fractals, Scaling and Growth far from Equilibrium
(Cambridge University Press, Cambridge, England, 1998).

[41] T. Vicsek, Fractal Growth Phenomena, 2nd ed. (World Scien-
tific, Singapore, 1992).

[42] B. Sapoval, Transport Across Irregular Interfaces: Fractal Elec-
trodes, Membranes and Catalysts, in Fractals and Disordered

Systems, edited by A. Bunde and S. Havlin (Springer, Berlin,
1996).

[43] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[44] N. G. Makarov, On the distortion of boundary sets under
conformal mappings, Proc. London Math. Soc. 51, 369 (1985).

[45] B. B. Mandelbrot and C. J. G. Evertsz, The potential distribution
around growing fractal clusters, Nature (London) 348, 143
(1990).

[46] C. J. G. Evertsz and B. B. Mandelbrot, Harmonic measure
around a linearly self-similar tree, J. Phys. A 25, 1781 (1992).

[47] N. G. Makarov, Fine structure of harmonic measure, St.
Petersburg Math. J. 10, 217 (1999).

[48] B. Duplantier, Harmonic measure exponents for two-
dimensional percolation, Phys. Rev. Lett. 82, 3940 (1999).

[49] D. S. Grebenkov, What makes a boundary less accessible, Phys.
Rev. Lett. 95, 200602 (2005).

[50] D. S. Grebenkov, A. A. Lebedev, M. Filoche, and B. Sapoval,
Multifractal properties of the harmonic measure on Koch
boundaries in two and three dimensions, Phys. Rev. E 71, 056121
(2005).

[51] D. A. Adams, L. M. Sander, E. Somfai, and R. M. Ziff, The
harmonic measure of diffusion-limited aggregates including rare
events, Eur. Phys. Lett. 87, 20001 (2009).

[52] D. S. Grebenkov, Partially Reflected Brownian Motion: A
Stochastic Approach to Transport Phenomena, in Focus on
Probability Theory, edited by L. R. Velle (Nova Science,
Hauppauge, NY, 2006), p. 135.

[53] D. S. Grebenkov, Residence times and other functionals of
reflected Brownian motion, Phys. Rev. E 76, 041139 (2007).

[54] A. Singer, Z. Schuss, A. Osipov, and D. Holcman, Partially
reflected diffusion, SIAM J. Appl. Math. 68, 844 (2008).

[55] F. Rojo, H. S. Wio, and C. E. Budde, Narrow-escape-time
problem: The imperfect trapping case, Phys. Rev. E 86, 031105
(2012).
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