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Dynamics of driven flow with exclusion in graphenelike structures
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We present a mean-field theory for the dynamics of driven flow with exclusion in graphenelike structures, and
numerically check its predictions. We treat first a specific combination of bond transmissivity rates, where mean
field predicts, and numerics to a large extent confirms, that the sublattice structure characteristic of honeycomb
networks becomes irrelevant. Dynamics, in the various regions of the phase diagram set by open boundary
injection and ejection rates, is then in general identical to that of one-dimensional systems, although some
discrepancies remain between mean-field theory and numerical results, in similar ways for both geometries.
However, at the critical point for which the characteristic exponent is z = 3/2 in one dimension, the mean-field
value z = 2 is approached for very large systems with constant (finite) aspect ratio. We also treat a second
combination of bond (and boundary) rates where, more typically, sublattice distinction persists. For the two rate
combinations, in continuum or late-time limits, respectively, the coupled sets of mean-field dynamical equations
become tractable with various techniques and give a two-band spectrum, gapless in the critical phase. While for
the second rate combination quantitative discrepancies between mean-field theory and simulations increase for
most properties and boundary rates investigated, theory still is qualitatively correct in general, and gives a fairly
good quantitative account of features such as the late-time evolution of density profile differences from their
steady-state values.
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I. INTRODUCTION

In this paper we consider the dynamic evolution, as well
as selected steady-state properties, of a generalization of the
totally asymmetric simple exclusion process (TASEP) to two-
dimensional honeycomb structures. A previous publication [1]
focused mainly on the evaluation of steady-state currents for
several variations of such structures.

The TASEP, in its one-dimensional (1D) version, exhibits
many nontrivial properties including flow phase changes,
because of its collective character [2–8]. The TASEP and
its generalizations have been applied to a broad range of
nonequilibrium physical contexts, from the macroscopic level
such as highway traffic [9] to the microscopic, including
sequence alignment in computational biology [10] and current
shot noise in quantum-dot chains [11].

In the time evolution of the 1D TASEP, the particle number
n� at lattice site � can be 0 or 1, and the forward hopping
of particles is only to an empty adjacent site. In addition to
the stochastic character provided by random selection of site
occupation update [12,13], the instantaneous current J� �+1

across the bond from � to � + 1 depends also on the stochastic
attempt rate, or bond (transmissivity) rate, p�, associated with
it. Thus

J� �+1 =
{
n�(1 − n�+1) with probability p�,

0 with probability 1 − p�.
(1)

In Ref. [11] it was argued that the ingredients of (1D) TASEP
are expected to be physically present in the description of
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electronic transport on a quantum-dot chain; namely, the
directional bias would be provided by an external voltage
difference imposed at the ends of the system, and the exclusion
effect by on-site Coulomb blockade.

Apart from the importance of generalizing fundamental dy-
namic studies of the linear chain TASEP to higher-dimensional
lattices and structures, the present work, and in particular its
emphasis on honeycomb structures, is partly motivated by
recent progress in the physics of graphene and its quasi-1D
realizations, such as nanotubes and nanoribbons [14]. Of
course the TASEP, as described above, does not provide a
realistic description of electronic transport in carbon allotropes
under an applied bias. However, in the transport context the
lattice topology affects how currents combine, and how they
are microscopically located, whether classical or quantum. It
will be seen that these features show up in the model we treat
by such effects as the sublattice structure seen, e.g., in steady
states for the uniform hexagonal lattice (Secs. II B and III C),
and as consequent band doubling in the corresponding spec-
trum. An interesting effect, which we exploit, is the similar
behavior arising in topologically trivial linear systems from
alternating bond rates (Sec. III C).

Although the model is classical, so it does not display
quantum interference effects, it is the simplest cooperative
driven model, with consequent qualitative properties reflecting
aspects of Coulomb blockade phenomenology in real experi-
ments.

In Ref. [1] we probed for the existence of similar specific
signatures by examining the behavior of steady-state currents
for nanotubes and nanoribbons, against varying system sizes,
and for diverse combinations of bond transmissity rates, as well
as distinct sets of boundary conditions along the flow direction,
namely periodic (such as to make the system ringlike) and
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open (with assorted values for injection and ejection rates at
the ends, to be recalled in detail below).

The latter case of open systems, with open boundary con-
ditions at the ends, is by far the most challenging, richest, and
most illuminating one, so it (alone) is the case here considered.
As in Ref. [1], the present study makes complementary use of
mean-field analysis and numerical simulations.

In Sec. II a mean-field theory is presented which describes
the time evolution of ensemble-averaged site occupations
under TASEP rules, and applies both to the two-dimensional
structures under specific consideration here and to their linear
chain counterparts. Section III deals with numerical tests of the
theory given in Sec. II. In Sec. IV, we summarize and discuss
our results.

II. MEAN-FIELD THEORY

For analytic tractability we shall only consider cases where
mean flow direction is parallel to one of the lattice directions,
and bond rates are independent of coordinate transverse to the
flow direction. These configurations have no bonds orthogonal
to the mean flow direction; thus they fall easily within the
generalized TASEP description to be used, where each bond
is to have a definite directionality, compatible with that of
average flow.

Also, we consider structures with an integer number of
elementary cells (one bond preceding a full hexagon) along
the mean flow direction. See Fig. 1.

From Ref. [1] we have to expect a two-sublattice character
in general, each being of similar character to those for chains.
For a special choice of the bond rates defined in Fig. 1 [p = 2q;
see the discussion of Eqs. (2)–(5) below] the steady-state
sublattices reduce in mean field to that of an equivalent
uniform-rate chain [1].

Throughout this paper only axially symmetric boundary
conditions will be considered, and no rate disorder will be
allowed for. Then, in general, the (mean) dynamic configura-
tions are translationally invariant in the direction transverse to
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FIG. 1. Schematic sections of a nanotube, showing (top to
bottom) injection region, midsection, and ejection region. Average
flow direction is from top to bottom of the figure. Bond rates are p = 1
for bonds parallel to average flow direction; q otherwise. Injection
(α) and ejection (β) rates are shown next to corresponding (injection
and ejection) sites. Periodic boundary conditions across are omitted
for clarity.

the tube axis. Consistent with this, we denote the average
occupations at sites labeled by the longitudinal coordinate
� (1 � � � N ) by x(�,t) and y(�,t) with � odd and even,
respectively, corresponding to the two sublattices (see Fig. 1).

Using mean-field factorization, the currents on the two
different types of bond are

J� �+1 = px�(1 − y�+1) (� odd), (2)

K� �+1 = qy�(1 − x�+1) (� even). (3)

Then the general equations for ẋ�, ẏ� at interior sites � are

ẋ� = 2K�−1 � − J� �+1 (� odd), (4)

ẏ� = J�−1 � − 2K� �+1 (� even). (5)

From boundary injection and ejection at sites � = 1 and N ,
both on the x sublattice (� odd), incoming and outgoing
currents are

α(1 − x1) ≡ J1, (6)

2KN ≡ xNβ. (7)

In the steady state where ẋ� = ẏ� = 0, all �, these discrete
equations specify discrete current balance, making J� �+1 and
2K� �+1 equal and bond independent (=J̄ , say), and making x�

and y� reduce to steady-state values x̄�, ȳ�, where

α(1 − x̄1) = J̄ = βx̄N . (8)

The distinct steady-state sublattice characteristics are seen in
the (in general) distinct �-dependent density profiles x̄�, ȳ�,
which are provided by Mobius map relationships between x̄�

and ȳ�+1 resulting from specified J̄ and K̄ (=J̄ /2).
From Eqs. (2)–(5), it is easy to see (and was exploited

in Ref. [1]) that the sublattice distinction goes away for the
special case p = 2q. Here the nanotube steady state is that of
an equivalent linear chain, having density profile in general
with tanh or tan dependences on �.

The value of a continuum approach to the mean-field dy-
namics of the uniform linear chain is well known [4,6,13], and
it exploits a linearization of the continuum mean-field dynamic
equations using the Cole-Hopf transformation [15,16]. We
show in Sec. II A that this technique can also be successfully
used for the nanotube with rates 2q = p = 1 (for convenience)
and axial symmetry.

In Ref. [1] it was shown that for the general case p �= 2q,
Mobius maps still apply, from which steady-state density
profiles are again predicted to be of tanh or tan form, but
in general different on the two sublattices. Even though on
each sublattice separately continuum viewpoints can still apply
(e.g., not too far from critical conditions), standard Cole-Hopf
transformations no longer linearize the coupled nonlinear
dynamic equations. Nevertheless, in Sec. II B, (i) we are there
able to use another linearization procedure, on the discrete
equations for the dynamics, which gives an asymptotically
exact representation of the mean-field dynamics at very late
times; and (ii) furthermore, we can exploit arguments (see the
Appendix) based on the existence of two separate relaxation
time scales, from which it follows that a continuumlike picture
is in fact feasible for not very short times. It will be seen that
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this, combined with simulation, can give a particularly clear
and direct probe of critical dynamics.

A. Continuum approach for p = 2q = 1

In this case, no longer needing to distinguish sublattices,
the notation ρ(�,t) can now be used for the density profile.
The continuum version of the bond current is then

J ∼ ρ(1 − ρ) − 1

2

∂ρ

∂�
(9)

from which one arrives at the following form of the steady-state
profile:

ρ̄ = 1

2
+ 1

2
Z tanh[Z(� − �0)], (10)

from J̄ = const = (1 − Z2)/4, with Z real or pure imaginary
depending on whether the steady-state current is less or greater
than the critical value Jc = 1/4. The resulting continuum
dynamic equation

∂ρ

∂t
= − ∂

∂�

[
ρ(1 − ρ) − 1

2

∂ρ

∂�

]
(11)

is easily reduced to a linear (diffusion) equation for the variable
u, by the Cole-Hopf transformation [15,16]

ρ − 1

2
= 1

2

∂

∂�
ln u. (12)

A general solution reducing as t → ∞ to the steady-state
profile ρ̄ given in Eq. (10) is

u = ū + �, (13)

where

ū = cosh[Z(� − �0)]e
1
2 Z2t , (14)

� =
∑

ζ

(aζ eζ� + a−ζ e
−ζ�)e

1
2 ζ 2t , (15)

where the sum is over ζ ′s, in general complex, satisfying
Reζ 2 < ReZ2. For the validity of the continuum approxi-
mation, Z and all effective ζ ′s arising should be small. The
boundary conditions, Eqs. (6) and (7), which determine them
can be rewritten as (for all t)

ρ(0,t) = α, (16)

ρ(N + 1,t) = 1 − β, (17)

where ρ(0,t) and ρ(N + 1,t) are the extrapolations of the
solution, Eqs. (12)–(15), of the dynamic equations to the
fictitious sites immediately outside of the system boundaries.
These then have to be satisfied by the steady-state part
ρ̄ = (1/2) + (1/2)∂ ln ū/∂�, as well as by the time-dependent
parts of the extended ρ. The requirements on ρ̄ give Z, �0, in
particular requiring Z real for α < 1/2 or β < 1/2, or Z pure
imaginary for α > 1/2 and β > 1/2. From the time-dependent
parts the boundary conditions then require ∂ ln �/∂� equal to
μ1 ≡ 2α − 1 and μ2 ≡ 1 − 2β at � = 0 and � = L ≡ N + 1,
respectively. That leads to

a−ζ

aζ

= ζ − μ1

ζ + μ1
= e2ζL

(
ζ − μ2

ζ + μ2

)
, (18)

giving both the allowed complex wave vectors ζ , and the ratio
of associated amplitudes. Initial conditions then in principle
complete the determination of all amplitudes, by the analog of
Fourier analysis.

Some special cases will be of interest in what follows,
namely α = β and α + β = 1.

For α = β, the open boundary condition restrictions make
�0 = L/2, and, for α = β < 1/2, Z is real, say Z ≡ K , with
K = 1 − 2α + O(e−(1−2α)L)—so the dynamics is relaxation
to the steady state of the low current phase, having a kink in
the middle of the system, while, for α = β > 1/2, Z is pure
imaginary, say Z ≡ iQ, with Q = (2/L)((π/2) − π/[L(2α −
1)]), and the relaxation is towards the high current phase steady
state.

For the critical subcase α = β = 1/2, one has Z = 0, ζn =
nπi/L ≡ iqn, a−ζ = aζ ≡ an. So for this case ū = 0 and u =
� = ∑

n an(eζn + e−ζn )e
1
2 ζ 2

n t making

ρ(�,t) = 1

2
− 1

2

∑L
n=1 qnan sin(qn�)e− 1

2 q2
n t∑L

n=0 an cos(qn�)e− 1
2 q2

n t
. (19)

A given initial profile ρ(�,0) would complete the determination
of ρ(�,t) by providing the coefficients an, by the equivalent
of Fourier cosine analysis of exp[

∫ �

0 d�′(2ρ(�′,0) − 1))] in the
present case.

For an initially empty lattice, for example, this gives

an = 2

L

[1 − (−1)n exp(−L/2)]

1 + q2
n

≈ 2

L

[
1 + q2

n

]−1
. (20)

Then, for late times t � (L/π )2,

ρ ≈ 1

2
− 1

2
q1 sin

(
π�

L

)
exp

[
− 1

2

(
π

L

)2

t

]
, (21)

while for early times 1 	 t 	 (L/π )2

ρ ≈ 1

2
− ∂

∂�
ln I (�,t), I (�,t) =

∫ π

0
dζ

cos(ζ�)e− 1
2 ζ 2t

1 + ζ 2
,

(22)

making I (�,t)
√

t essentially a function of �/
√

t , and ρ linear
in � [ρ ≈ (1/2) − (�/2t)] up to � ∼ O(

√
t). This is of course

related to the buildup of density from the injection site, and is
evident in simulation results shown in Sec. III; see Fig. 2.

For α + β = 1, the boundary restrictions on the steady
state are consistent with Z = 1 − 2α ≡ λ, and �0 → ∞ for
λ > 0 and �0 → −∞ for λ < 0 (kinks far outside of the
system). From the other boundary restrictions, ζn = nπi/L,
and a−ζn

/aζn
= (ζn + λ)/(ζn − λ). These make the steady state

ū proportional to exp[−λ� + 1
2λ2t] and

�

ū
≡ S =

L∑
n=1

(
aζn

eζn� + a−ζn
e−ζn�

)
eλ�e

1
2 (ζ 2

n −λ2)t . (23)

Then the time-dependent density profile becomes

ρ = 1

2
+ 1

2

∂

∂�
ln u

= 1

2
+ 1

2

∂

∂�
ln[ū(1 + S)] = α + 1

2

∂S/∂�

1 + S
. (24)
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FIG. 2. (Color online) Linear chain with N = 41 sites (L = N +
1), α = β = 1/2. Double-logarithmic plot of (negative) initial slopes
(S) of short-time density profiles against time t (points). Continuous
line is the mean-field prediction S = 1/(2t); see Eq. (50). The vertical
dashed line indicates the approximate limit of validity of the short-
time regime (see text).

In this case the relaxation is towards the constant (factorizable)
steady-state profile ρ̄� = α; at very late times one has

ρ − α ≈ 1

2

∂S

∂�
=

L∑
n=1

(
iλ − nπ

L

)
aζn

sin

(
nπ�

L

)
eλ�

× exp

[
− 1

2
(λ2 + (nπ/L)2)t

]
, (25)

where λ = 1 − 2α. For α = 1/2, Eqs. (24) and (25) reduce to
Eq. (19).

The late-time results in Eqs. (21) and (25) above, and others
to be given in Sec. II B [especially Eqs. (47) and (48)] can give
guidance beyond the mean-field regime used to obtain them.
The correspondence, within mean field, between chain and
nanotube for the case p = 2q (given for the steady state in
Ref. [1] and extended here to dynamics) implies the same
mean-field exponents, and this is seen also for 2q �= p below;
see Sec. II B. In particular, the functional dependences on �/

√
t

and t/L2 seen above [in Eq. (21), and in the equivalent Eq. (25)
for λ = 0] correspond to the mean-field value 2 of the dynamic
critical exponent z. But one can reasonably expect the (wide)
nanotube to have different critical exponents from those known
for the chain, since the two have different dimensions.

The simulation method in Sec. III is able to exhibit these
differences, and the mean-field analytic results suggest a direct
method to find them, by exploiting the late-time behavior, in
particular by using the slowest-relaxing mode.

The results in Eq. (21) and (25) (the latter, from just
the n = 1 term) provide mean-field examples of that mode,
and suggest that its isolation, by working at late times,
particularly when the system is relaxing to a uniform steady
state [using ρ(�,t) − ρ̄�], can give the most unencumbered way
of numerically investigating the critical dynamics. Finite-size
scaling using fitting forms for ρ(�,t) − ρ̄(�), like in Eq. (21)

or in the n = 1 mode of Eq. (25), but with the time-dependent
factor replaced by exp[−ctL−z] are suggested: the general
form f (�/L,t/Lz) could, from the last surviving eigenmode
of the evolution operator e−Ht , go over to a factorizable form
having an e−t/τ time-dependent factor, with τ ∼ Lz, and a
spatially dependent factor with nodes near � = 0, L (from
boundary conditions) and a symmetric form [like in Eq. (21)]
or with an extra factor eλ� as in Eq. (25), the latter in cases
with ρ̄ �= 1/2. These ideas are exploited in Sec. III, both for
the chain and for the nanotube.

B. Discrete late-time method, for p �= 2q

Here we develop an analytic method for the late-time
dynamics, which is applicable for general rates α, β, p,
q where sublattices are distinct and remain so even in the
eventual steady state. Unlike Sec. II A using the continuum
approach, the method proceeds from the discrete mean-field
dynamic equations and linearizes them by working to first
order in differences of site densities from steady-state values.

The discrete steady-state densities are determined by the
Mobius maps introduced in Ref. [1], which result from
steady-state internal current balance, together with boundary
conditions, as explained after Eq. (7). If these densities are site
dependent the difference dynamical equations resulting from
the linearization procedure have site-dependent coefficients,
making them in general intractable. For

α = 2q(1 − β) (p ≡ 1), (26)

the steady-state densities given by the Mobius mappings can
be uniform on each sublattice, while in general remaining
distinct.

The analysis now to be given treats that case, at general
q, for which the coupled linear difference equations have
constant coefficients. Their solutions are linear combinations
of factorizable solutions, involving a secular relation between
the frequency and complex wave vectors involved. The
boundary conditions determine the allowed values of the
complex wave vectors and relationships between amplitudes
of degenerate components.

The uniform steady-state density profile values x̄, ȳ on
the two sublattices correspond to fixed points of the discrete
Mobius maps. Such fixed points are directly available from the
basic internal and boundary current balance equations

α(1 − x̄) = x̄(1 − ȳ) = 2qȳ(1 − x̄) = βx̄ . (27)

Provided α = 2q(1 − β) these result in

x̄ = α

α + β
, ȳ = 1 − β. (28)

An important subcase to be distinguished and developed later
in this section is the critical situation, where the two fixed
points for each sublattice Mobius map coincide [corresponding
to Z = 0 in the continuum steady-state description in Eq. (10);
see Sec. II A].

Starting from the discrete mean-field dynamical Eqs. (4)
and (5) the linearization procedure, valid for sufficiently late
times, is implemented by inserting x� = x̄ + δ�, y� = ȳ + ε�

and including only terms up to first order in δ�, ε�.
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The zeroth order terms involving only x̄ and ȳ are those
appearing in the steady state current balance, so they cancel.
The resulting coupled linear difference equations for the time-
dependent δ�, ε� are solved by superpositions of factorizable
solutions of the form

δ� = gζ exp(ζ� − λt) (29)

ε� = hζ exp(ζ� − λt) (30)

for specific ζ - and λ-dependent ratios hζ /gζ provided ζ and λ

satisfy the secular relation

λ2 − rλ + S(ζ ) = 0 , (31)

where

r = 1 + 2q + (1 − 2q)(x̄ − ȳ) ;

S(ζ ) = S0 − (S+ e ζ + S− e−ζ ) (32)

with

S0 = 2q(1 − x̄ − ȳ) + 4qx̄ȳ

S+ = 2qx̄ȳ (33)

S− = 2q(1 − x̄)(1 − ȳ).

To fit the boundary conditions at all times it is necessary to
combine degenerate modes, i.e., modes with ζ1 �= ζ2 such that
λ(ζ1) = λ(ζ2). A sufficient condition for this is S(ζ1) = S(ζ2),
from which

e ζ1+ζ2 = S−
S+

≡ e2φ . (34)

Then, with ηi ≡ ζi − φ, the degeneracy condition becomes
η1 = −η2. That allows the superposition of degenerate modes
for δ� to be written as

δ� =
∑

η

(gφ+η eη� + gφ−η e−η�) eφ� e−λ(η+φ)t , (35)

and similarly for ε� (where hφ±η replace gφ±η).
The secular relation between λ and ζ can be rewritten as

one between λ and η using

S(ζ = η + φ) = S0 − S (η) where

S (η) =
√

S+ S− (eη + e−η) . (36)

For the boundary conditions to be maintained by the full time-
dependent profiles x� = x̄ + δ�, y� = ȳ + ε�, the differences
δ�, ε� have both to vanish at � = 0 and � = L at all times.
That requires gφ+η + gφ−η = 0 = hφ+η + hφ−η and e2ηL = 1,
so the allowed η’s are ηn = πni/L ≡ iqn.

Consequently the space- and time-dependent sublattice
density profiles are, to linear order,

x�(t) = x̄ +
∑

n

Gn sin qn� eφ�e−λnt , (37)

y�(t) = ȳ +
∑

n

Hn sin qn� eφ�e−λnt , (38)

where

qn = nπ

L
, e2φ =

(
1 − x̄

x̄

)(
1 − ȳ

ȳ

)
(39)

and λn satisfies

λ2
n − rλn + S0 − S (iqn) = 0, (40)

where r and S0 are given in Eqs. (32) and (33), and

S (iqn) = 4q
√

x̄ȳ(1 − x̄)(1 − ȳ) cos qn, (41)

with x̄, ȳ given by Eq. (28).
The coefficients Gn and Hn (2igφ−η and 2ihφ+η, respec-

tively) are in principle determined by initial states. For initial
states x�(0), y�(0) in the linearization regime, they are the
coefficients in the Fourier sine series for x�(0) − x̄, y�(0) − ȳ,
respectively.

The very late-time behavior, from the decay of the last
surviving time-dependent mode, is described by x�(t) − x̄,
y�(t) − ȳ both proportional to sin(π�/L) eφ� e−λ1t , with φ

from Eq. (39) and λ1 = 1
2 [r −

√
r2 − 4(S0 − S (iq1))] from

Eqs. (39)–(41).
In general, the distinct sublattices give rise to a two-branch

spectrum, which makes the late-time dynamics for the cases
with 2q �= p very different from that with 2q = p discussed
in Sec. II A. The spectrum is in general gapped even in the
infinite-system limit (limL→∞ λ1 > 0) as a consequence of
nonzero φ; the gap goes away (as φ → 0) only in the critical
cases, which we now discuss.

The critical steady state has constant (coincident fixed
point) values x∗, y∗ for x̄, ȳ, related to a critical current
Jc on the bonds with rate p, and to critical boundary rates
(αc,βc) by current balance equations of type Eq. (27), where
each current is Jc such that the corresponding sublattice
Mobius maps each have coincident fixed points. With p =
1, that requires [Jc(1 − 2q) − 2q]2 = 16q2Jc, which makes
x∗ + y∗ = 1, hence

φ = 0, S0 = 2S+ = 2S− = 2qx∗y∗. (42)

That in turn makes

S(ζ ) = S(η) = 4qx∗y∗(1 − cosh ζ ) (43)

and the development in Eqs. (31)–(41) simplifies. The results
for the time-dependent density profiles become, to linear order,

x�(t) = x∗ +
∑

n

Gn sin qn� e−λnt , (44)

y�(t) = y∗ +
∑

n

Hn sin qn� e−λnt , (45)

where

λn = 1

2
[r ±

√
r2 − 16qx∗y∗(1 − cos qn)] ≡ λ±(qn). (46)

So, φ = 0 has produced a gapless spectrum in infinite system
limit, for the critical system, and we now have the analog of
acoustic and optic modes.

For the finite critical system, the very late behavior of
the profiles on each sublattice is (using the slowest relaxing
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“acoustic” mode, n = 1, with λ−)

x�(t) = x∗ + G sin
π�

L
e−λ−(π/L)t , (47)

y�(t) = y∗ + H sin
π�

L
e−λ−(π/L)t , (48)

with

λ−

(
π

L

)
∼ S(ζ )

r
∼ 4qx∗y∗

r

(
1 − cos

π

L

)
∝

(
π

L

)2

. (49)

The condition α = 2q(1 − β) for uniform steady-state densi-
ties, presently applying, reduces for q = 1/2 to α + β = 1,
which is a case discussed for general λ = 1 − 2α in Sec. II A.
That case becomes critical for λ = 0, and then the present
formulation with φ = 0 together with the resulting Eqs. (42)–
(49) all apply to it (reproducing results in that section).

A particular important special case is that for the uniform-
rate nanotube, where p = q = 1 and x∗ = 2 − √

2, y∗ =√
2 − 1, αc = 2(

√
2 − 1), and βc = 2 − √

2 (from Ref. [1]),
agreeing with Eqs. (27) and (28).

The distinction, one or two bands (from 2q equal to p or not)
is a special feature of the nanotube coming from its possible
sublattice character, and shared with the TASEP chain with
alternating bond rates p, 2q, which has equivalent mean-field
steady state and dynamics.

III. NUMERICS

With open boundary conditions at the ends, a nanotube
with Nr elementary cells parallel to the flow direction, and
Nw transversally, has N (n)

s = Nw × (4Nr + 1) sites and N
(n)
b =

Nw × (6Nr + 2) bonds (including the injection and ejection
ones).

When dealing with strictly 1D geometries, for ease of
pertinent comparisons with nanotubes we generally took
systems with a number of sites N = 4M + 1, M being an
integer.

Here we shall only use so-called bond update procedures,
defined in Ref. [1] and briefly recalled below. For a description
of the closely related site update process, and pertinent
comparisons with bond update, see Ref. [1].

For a structure with Nb bonds, an elementary time step
consists of Nb sequential bond update attempts, each of these
according to the following rules: (1) select a bond at random,
say, bond ij , connecting sites i and j ; (2) if the chosen bond
has an occupied site to its left and an empty site to its right,
then (3) move the particle across it with probability (bond
rate) pij . If the injection or ejection bond is chosen, step (2)
is suitably modified to account for the particle reservoir (the
corresponding bond rate being, respectively, α or β).

Thus, in the course of one time step, some bonds may be
selected more than once for examination and some may not be
examined at all. This constitutes the random-sequential update
procedure described in Ref. [12], which is the realization
of the usual master equation in continuous time [12]. In
our simulations, the goal for 1D uniform systems is to have
numerically generated profiles approach the exact steady-state
ones given by the operator algebra described in Ref. [5],
which are an important baseline in our work and, as recalled
in Ref. [12], correspond to random-sequential update. For

consistency, and ease of comparison between different sets
of results within the paper, we also use random-sequential
update for all other cases, namely honeycomb geometries and
nonuniform 1D systems. Note that other types of update are
possible (e.g., ordered-sequential or parallel), the resulting
steady-state phase diagrams in 1D being similar in all cases
(but not identical: even the average stationary current differs
in either case; see Table 1 in Ref. [12]).

For specified initial conditions, we generally took ensemble
averages of local densities and/or currents over 106–107

independent realizations of stochastic update up to a suitable
time tmax, for each of those collecting system-wide samples at
selected times.

For uniform 1D systems and nanotubes with p = 2q, the
exact steady-state density profiles {x̄�}, known in 1D for any
α, β, and N [5], are used as a baseline from which to subtract
our late-time simulational results {x�(t)}, thus focusing on
the evolution of difference profiles δx�(t) ≡ x�(t) − x̄�. For
nanotubes with p �= 2q, or chains with nonuniform rates, both
cases considered in Sec. III C, no such guidance is available.
One must then resort to numerically generated steady-state
profiles.

A. p = 2q, α = β = 1/2

We started by checking the predictions given in Sec. II A
for the time-dependent density profiles of a 1D system starting
from an empty lattice. Equation (22) predicts that for short
times t 	 (L/π )2,

ρ(�,t) ≈ 1

2
− �

2t
, (50)

near the injection edge, up to � ∼ O(
√

t). For a chain with
N = 41 sites, we evaluated the initial slope ∂ρ/∂�||�=0 at
assorted short times, from straight-line fits of ensemble-
averaged densities at the three leftmost sites. Results are
shown in Fig. 2. One sees that agreement between theory and
numerics is rather satisfactory, especially if, drawing on the
last two paragraphs of Sec. II A, and on previous knowledge
of the anomalous scaling for 1D systems at (α,β) = (1/2,1/2),
one restricts oneself to data for t � (L/π )3/2 [as opposed to
t � (L/π )2 from the mean-field picture leading to Eq. (22)].

Next we checked the late-time behavior, both for 1D
systems and for nanotubes. Figure 3 shows a fit of Eq. (21)
to the ensemble-averaged density profile for a 1D system,
starting from an empty lattice at t = 0. While the quality of fit
is good, with χ2 per degree of freedom (χ2

dof) equal to 1.35, one
sees that small systematic deviations still remain near the left
(injection) edge. Going over to later times in order to evince
the suppression of such deviations would necessitate much
narrower error bars (since one would be analyzing profiles
much closer to the asymptotic regime), and consequently much
longer simulations, than in our current setup.

Nevertheless, we now show that it is possible to extract
rather accurate estimates of the dynamic exponent z from our
data in present form, by once again referring to the ideas
sketched in the last two paragraphs of Sec. II A. Specifically,
we rewrite Eq. (21) as

ρ(�,t) = 1

2
− a′(L) sin

(
π�

L

)
exp

{
− c

t

Lz

}
, (51)

052102-6



DYNAMICS OF DRIVEN FLOW WITH EXCLUSION IN . . . PHYSICAL REVIEW E 91, 052102 (2015)

FIG. 3. (Color online) Linear chain with N = 29 sites, α = β =
1/2. Plot of late-time density profile, starting with an empty lattice at
t = 0. Continuous line is the fit to a sine form; see Eq. (21) and text.

i.e., while assuming factorization of the � and t dependences,
we allow z to be a variable parameter. For fixed L and a set of
suitable t values, fitting numerically generated profiles to the
sine dependence in Eq. (51) produces a sequence of estimates
of

a∗(L,t) ≡ a′(L) exp

{
− c

t

Lz

}
; (52)

the latter set is then fitted to

a∗(L,t) = a0(L) exp{−c′(L)t}, (53)

with a0(L), c′(L) as fitting parameters. Finally, varying L one
fits the corresponding sequence of c′(L) to a power law in L,
thus extracting z.

We proceeded as just outlined for the following: (i) 1D
systems, starting with an empty lattice; (ii) 1D systems, starting
with a “sinelike” profile, i.e.,

n�(0) =
{

1, � � N
4 or � � 3N

4 ,

0, N
4 < � < 3N

4 ,
(54)

in order to check how sensitive the small late-time systematic
deviations, referred to above, were to the choice of initial
condition; (iii) nanotubes with Nw = 14 elementary cells
across and varying length Nr ; and, finally, (iv) nanotubes with
Nw = Nr cells, i.e., aspect ratio equal to unity. In the latter
two cases, sinelike initial profiles were used.

For (i)–(iii) we took N = 29, 41, 53, and 69 (corresponding,
for nanotubes, to Nr = 7, 10, 13, and 17) and, for each of
these, five N - (or L)-dependent values of t in the late-time
approach to steady state. We found that using a sinelike profile
as initial condition does slightly improve the quality of profile
fits to Eq. (21). For example, in the corresponding case to that
illustrated in Fig. 3, we found χ2

dof = 0.91, about a third less
than for an empty-lattice start.

By following the fitting procedures delineated above our
final results were z = 1.51(1) in case (i) and z = 1.54(1)
in case (ii). The main diagram in Fig. 4 illustrates how
well the numerically evaluated coefficients a∗(L,t) follow

FIG. 4. (Color online) Main diagram: log-linear plot of a∗(L,t)
of Eq. (52) against t for linear chain with N = 29 sites. The con-
tinuous line connects numerically obtained points. Initial condition:
sinelike. Inset: double-logarithmic plot of c ′(L) of Eq. (53) against
L ≡ N + 1. The continuous line is a fit of data to c ′(L) ∼ L−z, with
z = 1.51. Initial condition: empty lattice.

an exponential decay in time. That, as well as the smooth
power-law fit of c ′(L) against L shown in the inset, gives
strong support to the ansatz described in Eqs. (51)–(53).

Analysis of case (iii) for the nanotube produced a less
clearcut picture concerning the final estimate of z. Although
the exponential decay in time of the a∗(L,t) still holds to
excellent accuracy, resulting in the coefficients c ′(L) listed
under the heading (a) Nw = 14 in Table I, a single power-law
fit of the latter against L gives z = 1.76(2). By drawing
on ideas for successively iterating sequences of finite-size
approximants of quantities of interest [17], we produced a set
of two-point fits of data for pairs (L1,L2) = (30,42), (42,54),
and (54,70). Plotting such set against 2/(L1 + L2), we arrived
at the following extrapolated values for 2/(L1 + L2) → 0:
z = 1.58(1) for a linear fit and z = 1.51(2) for a parabolic fit;
see Fig. 5.

TABLE I. For nanotubes with p = 2q = 1, (α,β) = (1/2,1/2),
late-time coefficients c ′(L) of Eq. (53), obtained by the fitting
procedure described in the text, for varying system lengths L.
(a) Fixed width Nw = 14 hexagons; (b) aspect ratio = 1.

L c ′(L)

(a) Nw = 14
30 0.008 59(12)
42 0.004 58(2)
54 0.002 91(3)
70 0.001 85(2)

(b) Aspect ratio = 1
34 0.006 70(2)
50 0.003 40(3)
66 0.002 03(1)
90 0.001 13(1)
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FIG. 5. (Color online) Nanotube with p = 2q = 1 at critical
point (α,β) = (1/2,1/2). Points are estimates of dynamical exponent
z resulting from two-point fits of c ′(L) in Table I for pairs of
successive lengths (L1,L2), against 2/(L1 + L2). Squares: fixed width
Nw = 14. Circles: fixed aspect ratio (A.R.) = 1. Full lines: linear
fits. Dashed line: parabolic fit (for Nw = 14 only) (see text). Initial
condition: sinelike in all cases.

In case (iv) we took Nr = Nw = 8, 12, 16, and 22. The
sequence of coefficients c ′(L), obtained along the same lines
already described, is given in Table I, under the heading (b)
Aspect ratio = 1. As shown in Fig. 5, by iterating two-point fits
for pairs of successive lengths one gets an increasing sequence
of estimates of z against increasing L. A straight-line fit
gives an extrapolated z = 2.04(4). So this indicates that, while
keeping Nw > 1 fixed, one gets essentially one-dimensional
(critical) behavior; allowing for a constant aspect ratio of order
unity, one picks (asymptotically) the true two-dimensional
dynamics. Furthermore, numerics indicate that the latter is
characterized by the mean-field exponent z = 2.

Going back to the data for fixed Nw, for the nanotube with
p = 2q = 1, (α,β) = (1/2,1/2) there appears to be a slow
crossover towards z = 3/2 behavior against increasing system
size, which does not have a parallel in strictly 1D systems.

We have checked this scenario by investigating a steady-
state quantity which is well known to display signatures of
anomalous scaling, namely the cumulants of the integrated
current [11,18]. Denoting by J the steady-state average current
through a specified bond, say the one linking sites � and � + 1,
and J� �+1(t ′) its instantaneous value, the associated integrated
charge is Q̃� �+1(t) ≡ ∫ t

0 J� �+1(t ′)dt ′. Usually one removes the
linear term, and considers

Q(t) ≡ Q̃(t) − J t, (55)

so 〈Q(t)〉 ≡ 0. For 1D TASEP at (α,β) = (1/2,1/2) the
second-order cumulant 〈〈Q2〉〉 of the integrated current
has been shown [11,18] to exhibit anomalous scaling, i.e.,
〈〈Q2(t)〉〉 ∼ t1/z with z = 3/2 along a time “window” of
width determined by system size [“normal” scaling would
correspond to 〈〈Qn(t)〉〉 ∼ t for all n]. In Fig. 6 we show

FIG. 6. (Color online) Points represent numerically evaluated
second cumulant 〈〈Q2(t)〉〉 of integrated steady-state current vs time
t , for (α,β) = (1/2,1/2). 1D: linear chain, N = 600 (adapted from
Ref. [18]). NT: nanotube of width Nw = 12 hexagons, N = 41, with
bond rates p = 2q = 1. Lines indicate power-law dependence with
exponents as shown (see text).

data for both 1D systems, and for a nanotube with Nw = 12,
Nr = 10 (N = 41). The apparent behavior ∝t0.57 exhibited for
200 � t � 5 × 104 by the latter is consistent with 〈〈Q2(t)〉〉 ∼
t1/z, using the effective exponent z = 1.76(2) found from a
global analysis of the c ′(L) for fixed Nw of Table I.

Still for the nanotube, one can see behavior compatible with
〈〈Q2(t)〉〉 ∼ t2/3 for 5 × 104 � t � 2 × 105, until it crosses
over to normal scaling 〈〈Q2(t)〉〉 ∼ t (of course the latter also
takes place for 1D systems; see the corresponding data in
Fig. 6). The narrowness of the t2/3 window is most likely
related to the relatively small (longitudinal) system size N

[11,18].
So in the quasi-one-dimensional limit for the p = 2q

nanotube at criticality, the evidence provided both by dynamics
[from the scaling of the c ′(L) of Eq. (53) against L] and steady
state [from the scaling of 〈〈Q2(t)〉〉 against t] consistently
points to an apparent z � 1.76 for relatively short systems,
and/or short times (the latter, after full onset of the steady-state
regime), followed by a crossover towards z = 3/2 in this case.

B. p = 2q, α + β = 1

For α + β = 1, away from the critical point which was the
subject of Sec. III A, we took a point in the low current phase
of 1D TASEP, namely α = 0.3, β = 0.7.

Considering 1D systems, starting from an empty lattice, we
adapted Eq. (25) for very late times such that only the n = 1
term in that equation still survives. In order to investigate
density profiles in this regime we write

ρ(�,t) = 0.3 − a(L,t) sin

(
π�

L

)
eb�, (56)

where a(L,t) incorporates the exponential time dependence
in Eq. (25), and the factor b in Eq. (56) is predicted to be
b = λ = 0.4. In Fig. 7, for 1D TASEP with N = 29, curve (I)
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FIG. 7. (Color online) Linear chain with N = 29 sites, α = 0.3,
β = 0.7, and p = 2q = 1. Plot of late-time density profile, starting
with an empty lattice at t = 0. Curve (I) is a fit to a sine plus
exponential form, with a and b of Eq. (56) as adjustable parameters;
curve (II) is the prediction from Eq. (25), adjusted to the empty-lattice
initial condition, and using only n = 1; see text.

[full red line] shows the best fit of Eq. (56) to the simulational
results given there, corresponding to a = 35(4) × 10−5, b =
0.144(6), with χ2

dof = 1.8. Curve (II) [dashed blue line] is the
prediction of Eq. (25) with λ = 0.4, with the {aζn

} adjusted
to an empty-lattice initial condition and using only the n = 1
term.

Although their overall shape is similar, curves (I) and (II)
significantly differ in (a) the depth and, to a lesser extent,
location, of the minimum on the right-hand side, and (b) the
nearly horizontal segment stretching almost midway through
the system, exhibited by curve (II), which has no counterpart in
curve (I). While making t ≈ 110 in Eq. (25), instead of “simu-
lation time” t = 120 reproduces the minimum value shown by
numerical data (its location, however, remaining unchanged
within one lattice spacing), point (b) is a permanent feature
of the theoretical prediction which reflects the large value of
λ = 0.4 in the profile’s exponential � dependence in Eq. (25).

The discrepancy between the optimally adjusted value of
the exponential prefactor b of Eq. (56), on the one hand,
and the theoretical prediction of λ = 1 − 2α on the other, is
undoubtedly significant. This indicates that, although simple
adaptations enable it to give an accurate description of the
critical systems of Sec. III A, the mean-field theory given
above does not quantitatively account for the effects of a char-
acteristic inverse length λ �= 0 in a similarly straightforward
way. We have found [19] that a formulation including the
effects of stochastic domain-wall hopping [20–22] on early-
and late-time profiles can account for most of the quantita-
tive mismatches between mean-field theory predictions and
simulational results for noncritical cases.

However, in the present work we limit ourselves to
analyzing the extent to which the mean-field theory of Sec. II
can provide useful clues to the actual behavior of numerically
generated samples. Thus here we attempt a procedure similar
to that described in Sec. III A for extraction of the dynamical
exponent.

FIG. 8. (Color online) For systems with α = 0.3, β = 0.7, plots
of c0(L) against 1/L, with c0(L) defined via a(L,t) = a0 exp ( −
c0(L)t), the a(L,t) being given by fitting Eq. (56) to late-time profiles.
Upper diagram: 1D systems. Lower diagram: nanotubes with p =
2q = 1; squares: fixed width Nw = 14; circles: fixed aspect ratio
(A.R.) = 1.

In addition to 1D systems, and similar to Sec. III A, we
considered nanotubes both (1) with Nw = 14 elementary cells
across and varying length Nr , and (2) with unit aspect ratio
(Nw = Nr cells). The time dependences predicted respectively
in Eqs. (21), related to the critical (“gapless”) phase and (25)
for the “massive” or “gapped” phase, differ in that the decay
rate in the latter has an L independent term, the gap [equal to
λ2/2], related to the characteristic inverse length λ.

In an attempt to give similar relative importance, when
compared to the gap contribution, to the finite-size dependence
to the exponential time decay we used Nr = 2, 3, 4, and 5,
corresponding to N = 9, 13, 17, and 21 sites.

Again, we generated each a(L,t) from adjusting late-time
profiles to Eq. (56), by allowing both a and b there to vary. We
saw that the fitted value of b generally stayed between 0.15
and 0.28.

We then fitted sequences of varying-L data for a(L,t) to
the n = 1 term of Eq. (25), i.e., a(L,t) = a0 exp ( − c0(L)t),
with c0(L) = c + d/Lz.

Allowing z to vary freely gave a large amount of scatter
(0.5 � z � 3.5) among fits of four-L data for the three
different geometries (chains, and nanotubes with either Nw =
14 or unit aspect ratio). We then recalled that, for 1D systems in
the low-current phase α < 1/2 or β < 1/2 (except on the co-
existence line α = β < 1/2) the effective exponent governing
the approach to steady state is z′ = 1 [13]. This is in contrast
to the result from a rigorous Bethe ansatz calculation [23],
namely z = 0, and can be explained by a mean-field continuum
formulation related to kinematic-wave propagation [13]. Thus
we plotted our data for c0(L) against 1/L, i.e., keeping z′ = 1
fixed. The results are shown in Fig. 8. It is seen that the
numerical data for the sequences of c0(L) fall reasonably
well onto a straight line consistent with z = 1, for all three
geometries considered. From the vertical axis intercepts one
gets respectively c = 0.009(5) (1D), c = 0.02(1) (nanotube
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FIG. 9. (Color online) Steady-state sublattice densities against
position along flow direction for nanotube p = q = 1 (squares: xnt ,
ynt ) at α = 2(

√
2 − 1), β = 2 − √

2, and for chain with alternating
bond rates p, 2q with p = q = 1/2 (circles: x1d , y1d ) at α = √

2 − 1,
β = 1 − √

2/2 (see text). Horizontal dashed lines show mean-field
predictions applying for both cases: x∗ = 2 − √

2, y∗ = √
2 − 1.

with Nw = 14), and c = 0.0046(44) (nanotube with unit aspect
ratio). These are all definitely much lower than the mean-field
prediction λ2/2 = 0.08. It seems plausible from these data that
the gap will vanish for very large nanotubes with finite aspect
ratio (remaining finite in the quasi- and strictly 1D cases).
However, the relatively poor quality of the fits [χ2

dof = 0.36,
10, and 0.14, listed for each geometry in the same order as the
c values] indicates that a statement of this sort would have to
be tested more extensively.

C. p �= 2q

Initially, we investigate the nanotube with p = q = 1
at αc = 2(

√
2 − 1), βc = 2 − √

2. These rates satisfy the
conditions specified in Eqs. (26)–(28), for which the Mobius
mapping predicts uniform steady-state densities on each
sublattice, though in general they remain distinct; namely, in
this case they are x∗ = 2 − √

2, y∗ = √
2 − 1.

For comparison, we consider also the chain with alternating
bond rates p, 2q with p = q = 1/2. The mean-field Mobius
mapping for this case coincides with that for the p = q =
1 nanotube, provided the injection and ejection rates are
suitably renormalized, i.e., α = √

2 − 1, β = 1 − √
2/2. The

respective steady-state sublattice densities are then predicted
to coincide, though of course the rate of approach to steady
state on the alternate-bond chain is half that for the nanotube.

We took Nw = 14, Nr = 10 for the nanotube, and N = 41
sites for the chain so both have the same number of sites along
the flow direction. For the remainder of this section, in both
cases we always started with an empty lattice.

Figure 9 shows that the mean-field prediction of flat
sublattice density profiles in steady state is not fulfilled in
numerical simulations. Also, the sublattice profiles for the
nanotube and the alternating-bond chain do not coincide, at
variance with the fact that they share the same description

FIG. 10. (Color online) Late-time difference profiles, δx�(t) ≡
x�(t) − x∗

� , and similarly for δy�(t), against position along flow
direction for nanotube p = q = 1 at αc = 2(

√
2 − 1), βc = 2 − √

2,
for t = 500. The dashed line is the fit of δx�(t) to a sine form; see
Eqs. (57) and (58). The full line is a fit of δx�(t) to a sine-plus-
exponential form; see Eq. (59) and text.

via mean-field mapping. However, the mean-field mapping
predicts the steady-state sublattice densities to within at most
4% (for x∗) or 16% (for y∗) of numerical results. Since the
predicted densities are themselves separated by just over 40%,
one can unequivocally ascribe each predicted sublattice profile
to the correct numerically generated subset of results.

We defer further discussion of such discrepancies, and
others which also pertain to steady-state aspects, to Sec. III D
below. For the moment we investigate, for nanotubes with
p = q = 1, the very late-time behavior of the density profiles.
Allowing for the observed nonuniformity of their limiting
steady-state shapes, Eqs. (47) and (48) for a system at
criticality should translate into

x�(t) = x∗
� + G′ sin

π�

L
e−λ−(π/L)t , (57)

y�(t) = y∗
� + H ′ sin

π�

L
e−λ−(π/L)t , (58)

where now the position-dependent x∗
� , y∗

� are to be numerically
obtained from steady-state simulation data.

Results for the difference profiles, δx�(t) ≡ x�(t) − x∗
� and

the similarly defined δy�(t), for the nanotube with p = q = 1,
α = 2(

√
2 − 1), and β = 2 − √

2 are exhibited in Fig. 10.
Late-time data were taken at t = 500 (for comparison, the
corresponding steady-state densities shown in Fig. 9 were
taken at t = 2500).

It is seen that the spatial dependence of δx�(t) and δy�(t)
is indeed very close to that anticipated in Eqs. (57) and (58),
although the numerical results show a slight skew. The fit to
a sine form shown as a dashed line in Fig. 10 corresponds
to χ2

dof = 49, which is unsatisfactory. We then allowed for a
nonzero gap, by returning to the more general expressions
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Eqs. (37) and (38). Fitting to the n = 1 term of Eq. (37), i.e.,

δx�(t) = −a(t)eφ� sin

(
π�

L

)
, (59)

we found the full-line curve depicted in Fig. 10, with φ =
−0.022(1) and χ2

dof = 3.2. The small, but definitely nonzero,
estimate of φ is in line with the steady-state results shown in
Fig. 9 in that both indicate the approximate, rather than exact,
character of the mean-field description for p �= 2q.

Furthermore, the difference profiles are almost entirely
sublattice independent, a feature which is not obviously forth-
coming from the theory of Sec. II B. It can be shown (see the
Appendix) that this results from the existence of two distinct
relaxation rates: one which is very fast, size independent
[which brings the sublattice profiles to shapes rather close to
their steady-state ones] and a slower one, with characteristic
times of the usual Lz form. In the (not very short)-time regime
for which the latter applies the sublattice distinction disappears
for difference profiles, and the dynamics can be described in an
effective continuum approximation through linear equations
resulting from a Cole-Hopf transformation. For example,
difference profiles taken at t = 250 for the system considered
in Fig. 10 already exhibit a degree of sublattice independence
very similar to that shown in the figure. Using Eqs. (57)
and (58) for simplicity, defining G′′(t) ≡ G′e−λ−(π/L)t , one
finds by fitting numerical data G′′(250)/G′′(500) ≈ 4.4, which
corresponds to λ−(π/L) ≈ 6 × 10−3. Direct evaluation via the
theoretical prediction Eq. (49), using the mean-field values for
x∗, y∗, r from Eqs. (28) and (32) gives λ−(π/L) = 1.0 × 10−3.

Turning now to noncritical systems, proceeding along the
lines followed above one can again adapt Eqs. (37) and (38)
to make allowance for the position dependence of steady-state
profiles, for systems away from criticality but with α and β

obeying Eq. (26).
For α = 0.4, β = 0.8 the numerically obtained steady-state

profiles turned out to be nearly flat down to 3–4 parts in 1000,
with x� ≈ 0.324 and y� ≈ 0.209, except very near the system’s
ends. These values are rather close to the mean-field ones
predicted via Eq. (28), namely x� = 1/3, y� = 1/5. The late-
time difference profiles obtained in the way described above,
at t = 100, are displayed in Fig. 11. Fitting to Eq. (59) gives
a fairly good account of the behavior of δx�(t) against �; also,
the sublattice independence of difference profiles is obeyed
to a good extent, though some slight discrepancies remain
near the ejection end. From Eqs. (28) and (37)–(41), theory
predicts that the coefficient φ in the position dependence of
late-time density profiles should be φ = (ln 8)/2 = 1.04 . . . ,
and that for the time dependence the slowest decay rate should
be λT

1 = 0.166 . . . .
The fitting curve shown in Fig. 11 corresponds to φ =

0.34(1). A measure of self-consistency of the latter can be
gained by pointing out that, if φL � 5–6 the minimum of
Eq. (59) is located at � ≈ L − (1/φ). Visual inspection of
Fig. 11 confirms that numerical data indeed behave in this
way. On the other hand, the mismatch between predicted and
observed values of φ is a rather extreme illustration of the
limitations of mean-field mapping predictions for p �= 2q,
already evident, e.g., in the density profiles of Fig. 9.

We checked the theoretical prediction for λ1 by comparing
difference profiles at t = 80 with those for t = 100. Referring

FIG. 11. (Color online) Late-time difference profiles, δx�(t) ≡
x�(t) − x∗

� , and similarly for δy�(t), against position along flow
direction for nanotube p = q = 1 at α = 0.4, β = 0.8, for t = 100.
The full line is the fit of δx�(t) to a sine plus exponential form, using
only the n = 1 term of Eq. (37) (in an adapted form to allow for the
position dependence of steady-state profiles; see text).

to Eq. (59), one gets a(100)/a(80) = 0.08 ± 0.05, broadly
compatible with e−20λT

1 = 0.03615 . . . .

D. Factorization in steady state

It was seen in Sec. III C that numerical results for steady-
state density profiles on nanotubes and alternating-bond chains
with p �= 2q are at variance with the predictions of mean-
field Mobius mapping. Mismatches of similar order have
been found between mean-field results and numerical work
regarding steady-state currents in graphenelike structures with
p �= 2q [1].

In the following, we expand on comments made in Ref. [1],
regarding the issue of factorization in steady state.

It is known for the strictly one-dimensional TASEP that,
along α + β = 1, the correlations vanish, i.e., the probabilities
for occupation variables on different sites factorize [5]. As a
consequence of this, along that line the mean-field mapping
produces exact results. For nanotubes one can then check for
factorization (or its absence), in order to test the extent to which
the predictions given via Mobius mappings are accurate.

A direct test can be implemented by considering the
(connected) correlation function,

Cij ≡ 〈Jij 〉 − pij 〈τi〉(1 − 〈τj 〉), (60)

where 〈Jij 〉 is the average current across a chosen bond ij with
rate pij , connecting sites i, j with respective mean occupations
〈τi〉, 〈τj 〉. Factorization then corresponds to Cij ≡ 0 for all
bonds ij .

We have found that for the nanotube with p = 1, q = 1/2
Cij vanishes to the accuracy of simulation (typically 1 part
in 105) on (and only on) the line α + β = 1, the same as
in the strictly one-dimensional case. This is a nontrivial
higher-dimensional generalization of a well-known result for
the linear chain. On the other hand, with p = 1 = q = 1, we
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FIG. 12. (Color online) Nanotube with Nw = 14, Nr = 10: Cij

of Eq. (60), averaged over transverse coordinate, against position
along flow direction. Full symbols: x sublattice. Empty symbols: y

sublattice. For p = q = 1, (αc,βc) = (2(
√

2 − 1),2 − √
2).

followed the predicted factorization line, Eq. (26), and found
that in simulations of similar accuracy, the factorization is no
better than 1 part in 102. This is illustrated in Fig. 12, where
data taken at the respective predicted critical points, namely
α = β = 1/2 [p = 2q = 1] and α = 2(

√
2 − 1), β = 2 − √

2
[p = q = 1], are shown. For p = q = 1, data are shown
also for (α,β) = (0.4,0.8), i.e., further along the predicted
factorization line Eq. (26).

Still with p = q = 1 we thoroughly scanned the (α,β)
parameter space, and found no evidence either of uniform
sublattice profiles or of vanishing of Cij .

IV. DISCUSSION AND CONCLUSIONS

We have presented a mean-field theory for the dynamics
of driven flow with exclusion in graphenelike structures, and
numerically checked its predictions.

For the special combination of bond rates p = 2q in the
nanotube geometry, Eqs. (2)–(5) show that the sublattice
distinction goes away in mean field. So a continuum picture
can apply, giving Eq. (11) for which a time-dependent solution
is found by using the Cole-Hopf transformation.

For the special boundary rates α = β = 1/2 which cor-
respond to criticality in the 1D chain with uniform rates,
predictions for the early- and late-time behavior of density
profiles are made respectively in Eqs. (22) and (21). These are
borne out by numerics to very good accuracy; see Figs. 2 and 3.
We focused on late-time behavior, for both 1D and nanotube
geometries, and showed that by systematically analyzing the
results of density profile fits to Eq. (21) it was possible
[see Eqs. (51)–(53)] to extract rather accurate estimates of
the dynamic exponent z. For strictly 1D systems, we find
z = 1.51(1), in excellent agreement with the anomalous value
z = 3/2 which is known [2,3,6] to apply in that case. For
nanotubes, we found strong indications (see Fig. 5) that the
limiting behavior for very long length depends on whether
one considers (quasi-1D) systems of fixed width, or squarelike

ones with constant aspect ratio; while the former exhibit z

again close to 3/2, the latter are characterized by z consistent
with the mean-field value of 2 (within error bars). In the
standard language of critical phenomena, this would mean
that the upper critical dimensionality for TASEP dynamics is
certainly Dc � 2.

On the factorization line α + β = 1 where steady-state pro-
files are uniform both for uniform-rate chains and nanotubes
with p = 2q [1], we took α = 0.3, away from criticality. The
main distinguishing feature here, relative to the critical case,
is the opening of a gap of amplitude λ2/2 = (1 − 2α)2/2,
associated with the characteristic length λ−1. The predicted
effects of this on late-time profile shapes are spelled out in
Eq. (25), which is qualitatively supported by numerical data
(see Fig. 7).

However, the quantitative effects, on the density profiles,
of having λ �= 0 are not accurately described by the present
mean-field theory. Partly because of this, attempts to extract
the dynamical exponent z, by procedures similar to those
followed in the gapless case, met with the difficulties described
in Sec. III B.

We then resorted to an overall consistency check, based on
keeping fixed the effective exponent value z′ = 1 which holds
for the low-current phase in 1D systems [13]. The resulting
fits of numerical estimates of the coefficients appearing in the
exponential time decay factor of Eq. (25), shown in Fig. 8,
produce a reasonably self-consistent picture.

For nanotubes with p �= 2q (and chains with alternating
bonds), Fig. 9 illustrates that predictions for steady-state
profiles from mean-field mapping are not as accurate as for p =
2q, or for uniform chains. In particular, numerically generated
profiles display a distinctive degree of nonuniformity along
the predicted factorization line.

Since dynamics concerns the evolution from initial to steady
state, rather than the detailed (time-independent) properties of
the latter, we adapted our original formulation to allow for the
observed nonuniformity of the sublattice-dependent limiting
profile shapes; see Eqs. (57) and (58) for critical systems, and
Eq. (59) for the off-critical case. We found that for late times
the difference profiles thus defined behave in a very close way
to that predicted by the theory of Sec. II B; see respectively
Figs. 10 and 11.

This latter remark deserves to be qualified, inasmuch
as it refers strictly to the functional forms displayed in
Eqs. (57) and (58), or Eq. (59) [respectively sine, or sine
plus exponential] rather than to numerical values of the
associated parameters [ respectively G′, H ′, or a(t),φ ] which
we estimate via best-fitting procedures. Although this is not
as stringent a test of mean-field theory as would be the
case if the theory-predicted parameter values were used,
working this way allows one to separate possible shortcomings
of the mean-field approximation in functional forms versus
those in parameters. Furthermore, one can have a quantitative
estimate (through χ2 values) of discrepancies in mean-field
functional forms, rather than the qualitative impressions from
the comparisons with full predictions coming from theory;
one can also get quantitative estimates of parameters affected
by fluctuation effects absent from mean-field theory, with the
hope that modest generalizations (like domain-wall theory)
might more accurately provide such parameters.
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An additional feature of the late-time difference profiles
is that they are almost entirely sublattice independent. This
property has been shown (see the Appendix) to result from
the coexistence of two distinct relaxation rates: a very fast,
size-independent one, and a slower one with characteristic
times of the usual Lz form. The latter applies, within an
effective continuum picture, to the Goldstone modes resulting
from particle number conservation. If one accepts that an
accurate description of TASEP via mean-field mapping goes
together with full applicability of a continuum approximation,
this would then explain why the late-time density differences
generally fall in line with mean-field, continuumlike, predic-
tions.

Detailed comparison of theoretical predictions from
Sec. II B to numerical results beyond overall profile shapes
turns out to not be as accurate as for p = 2q. For the
system considered in Fig. 10 theory gives for the exponential
time-decay coefficient of Eq. (49) λ−(π/L) = 1 × 10−3, while
adjusting to numerical data gives λ−(π/L) ≈ 6 × 10−3. Simi-
larly, for the noncritical system corresponding to Fig. 11, using
the theoretical prediction for λ1 of Eqs. (37) and (38) would
give a ratio of difference-profile coefficients at t = 100 and
t = 80 equal to 0.03615 . . . , while this same ratio is estimated
from numerical data as 0.08 ± 0.05.

Finally, in Sec. III D we showed that a direct test of
factorization of correlation functions in steady state produces a
clear correspondence between uniformity of observed steady-
state profiles, on the one hand, and numerical evidence of
vanishing of correlations, on the other.
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APPENDIX : FAST TRANSIENT EQUALIZATION
OF SUBLATTICES

For our purposes here, it is convenient to adopt the following
notation: sites on the x sublattice have even site label, with
mean occupation x2�; for the y sublattice, with odd labels one
has the mean occupation y2�+1. Bond rates are p and p′ ≡ 2q.

Thus the mean-field defining equations for currents and
occupations, and their evolution, Eqs. (2)–(5), become

J2� 2�+1 = px2�(1 − y2�+1), (A1)

K2�−1 2� = p′y2�−1(1 − x2�), (A2)

ẋ2� = K2�−1 2� − J2� 2�+1, (A3)

ẏ2�+1 = J2� 2�+1 − K2�+1 2�+2. (A4)

Eqs. (A3) and (A4) give

∂

∂t
(x2� + y2�+1) = K2�−1 2� − K2�+1 2�+2. (A5)

When a continuum picture applies, the right-hand side of
Eq. (A5) becomes like a space derivative of K and is then
small, so x2� + y2�+1 becomes a slow variable; similarly for
y2�−1 + x2�.

On the other hand, any linear combination ax2� + by2�+1

with a �= b decays rapidly towards zero. This implies that the
rapid decay is towards “adiabatic” values of x2�,y2�+1 such
that all K2�−1 2� − J2� 2�+1 and J2� 2�+1 − K2�+1 2�+2 are zero.
That is,

K2�−1 2� = J2� 2�+1 = J2� 2�+1 = K2�+1 2�+2 = · · · = C(t).

(A6)

The function C(t) is the adiabatically evolving “conserved
current” related to the particle conservation represented by the
set of equations (A5) for all �. Those equations determine the
adiabatic evolution of the conserved densities.

After the very fast transients have died out the profiles
on the two sublattices still differ from their steady-state
values x̄2�,ȳ2�+1 by amounts δx2�(t),δy2�+1(t); as shown in
the following, such differences are essentially the same for
either sublattice, as their approach to zero is governed by a
single continuumlike evolution equation.

The fast time scales for the evolution of ax2� + by2�+1

with a �= b, coming from equations without nearly canceling
currents, and so without conserved or spatial derivative aspects,
have rates set just by p and p′, and not by wave vectors or
system size L. So they are of order one, rather than a power of
L or wavelength.

In the subsequent evolution (after the initial transient
regime) (i) we can interpolate the density variables between
the sites of their sublattice, making very little error and (ii) use
the resulting “continuumization” of sites to find the conserved
current differences in terms of spatial derivatives: e.g., ỹ2� is
the interpolation of the odd sublattice variables y2�−1,y2�+1;
similarly for x̃2�+1. So,

K2�−1 2� − K2�+1 2�+2 = p′[y2�−1(1 − x2�)

− y2�+1(1 − x2�+2)]

≈ p′
(

− 2
∂

∂�

)
[̃y2�(1 − x̃2�+1)], (A7)

and similarly for differences of adjacent J ’s.
Combining Eqs. (A5) and (A7) [and their counterparts for

y2�−1 + x2� and J2�−2 2�−1 − J2� 2�+1, respectively], omitting
the subscripts and tilde signs, redefining � as an “average”
coordinate shared by a pair of adjacent x- and y-sublattice
sites, and defining ρ(�) = 1

2 (x� + y�), one gets

∂ρ

∂t
= −

(
p + p′

2

)
∂

∂�

[
ρ(1 − ρ) − 1

2

∂ρ

∂�

]
. (A8)

This is now the form which the Cole-Hopf transformation
linearizes.
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