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Unraveling the puzzling intermediate states in the Biham-Middleton-Levine traffic model
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The Biham-Middleton-Levine (BML) traffic model, a cellular automaton with eastbound and northbound cars
moving by turns on a square lattice, has been an underpinning model in the study of collective behavior by cars,
pedestrians, and even internet packages. Contrary to initial beliefs that the model exhibits a sharp phase transition
from freely flowing to fully jammed, it has been reported that it shows intermediate stable phases, where jams and
freely flowing traffic coexist, but there is no clear understanding of their origin. Here, we analyze the model as
an anisotropic system with a preferred fluid direction (northeast) and find that it exhibits two differentiated phase
transitions: the system is either longer in the flow direction (longitudinal) or perpendicular to it (transversal).
The critical densities where these transitions occur enclose the density interval of intermediate states and can
be approximated by mean-field analysis, all derived from the anisotropic exponent relating the longitudinal and
transversal correlation lengths. Thus, we arrive at the interesting result that the puzzling intermediate states in
the original model are just a superposition of these two different behaviors of the phase transition, solving by the
way most mysteries behind the BML model, which turns out to be a paradigmatic example of such anisotropic
critical systems.
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In the recent urbanization era, society faces an inevitable
increase of traffic congestion, turning its attention to urban
road networks. Nowadays, it is widely assumed that a proper
understanding of the mechanisms leading jamming processes
is indispensable for improving the efficiency of transportation
systems. The Biham-Middleton-Levine (BML) model [1] is,
perhaps, the simplest traffic cellular automaton able to exhibit
self-organization, pattern formation, and phase transitions
[1–4]. Although the BML model oversimplifies the city traffic
in a way that does not directly resemble an urban network
(i.e., with cars at the nodes and not at the links), much
extensive research on flux and collective behavior has been
based on it, not just for car traffic (see [5,6] and references
in [7,8]) but also for pedestrian traffic [9,10] and information
packages on the Internet [11]. For more than a decade, it
has been believed that at a certain critical car density ρc,
the system exhibits what seems to be a first order phase
transition between two phases: a free-flowing phase, where
all cars move freely at all time steps (the average velocity
of cars v = 1), and a completely jamming phase, where no
car moves at all (v = 0). The value of ρc decreases with
increasing system size, possibly reaching the value ρc = 0
as the system size approaches infinity. Then, it was thought
that the BML model would be similar to other well-known
systems in statistical physics exhibiting phase transitions, e.g.,
percolation. However, all these conventional beliefs started to
be reconsidered since Yung [12] and D’Souza [13,14] realized
the existence of intermediate stable phases where free-flowing
and jamming phases coexist (see Fig. 1). The structure of
these states is highly regular, with jams’ wave fronts moving
through freely flowing traffic in a wide density region, and
the value of the average velocity (0 < v < 1) is extremely
sensitive to the aspect ratio of the underlying lattice [15].
Thus, instead of a phase transition as a function of car density,
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the system would exhibit two bifurcation points, limiting
a region where intermediate phases would coexist between
the two conventional phases above. Even though these states
have been described and their asymptotic speeds have been
predicted [13,15], the exact locations of the bifurcation points
are very difficult to determine, and no one knows what truly
happens as the system size goes to infinity. Moreover, the
origin of the intermediate states remain an unsolved puzzle.

In this Rapid Communication we focus on the clear
existence of a preferred direction in the model dynamics. Most
previous studies have overlooked this feature, even though,
as we will show, it is the key for unraveling the puzzling
intermediate states of the BML model. The presence of
anisotropy has been fundamental in the analysis of force
networks in granular matter [16,17] and flocking in collective
animal behavior [18]. Classical theoretical models with this
feature are the next-nearest-neighbor Ising model (ANNNI)
[19] and the driven lattice gas model [20]. The anisotropy
should be naturally reflected in the phase transition of BML,
making it, in principle, more akin to the anisotropic equiv-
alent in percolation: directed percolation (DP) [21,22]. By
performing an anisotropic scaling analysis on the BML model
phase transition [23,24], we found that the jamming process
behaves distinctively as two separated phase transitions along
different directions; namely, the system is longer either in
the direction of traffic flow (longitudinal system) or in the
transversal direction (transversal system). Our main result
is that the puzzling intermediate states in the BML model
on square lattices emerge just as a superposition of these
two different transitions, solving, by the way, most mysteries
behind the BML model.

Model. The original BML model considers two types of
cars: eastbound (yellow) and northbound (black), moving
on a two-dimensional square lattice with periodic boundary
conditions. Each lattice site is in one of three states: empty,
occupied by a yellow car, or occupied by a black one. The cars
are initially randomly distributed over the lattice sites with
spatial density ρ (usually taken to be the same, ρ/2, for both
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FIG. 1. (Color online) (a) Average velocity 〈v〉 vs density ρ

(circles) for a BML model on a 45◦-rotated 256 × 256 lattice [as
depicted in (b), with eastbound cars in yellow (light gray) and
northbound cars in black]. The mean-field approach for longitudinal
systems (dashed red line) and the numerical prediction for an infinite
transverse system (blue solid line) are also included for comparison.
Typical configurations for (c) free flow, (d) intermediate states, (e)
one global jam, and (f) random jams are also included.

north- and eastbound cars). The fully deterministic dynamics
is as follows: On even (odd) steps, all eastbound (northbound)
cars synchronously attempt to advance one lattice site toward
the east (north). If the site eastward (northward) of a car is
currently empty, it advances. Otherwise, it remains stationary.
The system exhibits, therefore, a preferred northeast direction
for the flux.

To study the system as an anisotropic one, we explicitly
rotated the lattice 45◦, so we could control the system lengths
along the longitudinal (L‖) and transversal (L⊥) directions
to the car flow. Although this rotation changes the boundary
conditions, the system still exhibits the same three phases
observed in the original BML model (see Fig. 1). In anisotropic
systems, clusters show different correlation lengths along the
longitudinal and transversal directions, ξ‖ and ξ⊥, respectively,

which scale with different exponents as ξ‖ ∼ (ρ − ρc)
− 1

ν‖ and

ξ⊥ ∼ (ρ − ρc)−
1

ν⊥ [21,23]. An anisotropy exponent, relating
the different scalings of the two correlation lengths, is
defined as the ratio θ = ν‖

ν⊥
. According to [23–25], when

the longitudinal and transversal lengths are related by the

constraint L⊥ ∼ L
1
θ

‖ , the system behaves as it were effectively
isotropic, and standard finite-size scaling (FSS) theory applies
again for all percolation quantities, just in terms of the length
scale L‖. Especially, the transition width and the percolation
threshold (both obtained by fitting the transition curve with an
error function [26]) scale as

�
(
L‖,L

1
θ

‖
) ∼ L

− 1
ν‖

‖ ,
∣∣ρc − 〈

ρc

(
L‖,L

1
θ

‖
)〉∣∣ ∼ L

− 1
ν‖

‖ . (1)

The exponent θ can be estimated numerically from the fact that,
close to the critical point, the two correlations lengths must be
related by ξ‖ ∼ ξ θ

⊥. The symbol 〈·〉 denotes averages over final
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FIG. 2. (Color online) Longitudinal ξ‖ and transversal ξ⊥ corre-
lation lengths from final configurations at densities ρ in the range
[0.49–0.54] for square lattices of different sizes. The power-law fit
gives θ = 1.64(3) for the anisotropy exponent.

jammed configurations starting from different random initial
conditions. With this theory in mind, let us define the parallel
(perpendicular) spatial correlation function [2] as

G‖(⊥)(�r ′) = 1

N

〈 ∑
�r

σ (�r) · σ (�r + �r ′)
〉
, (2)

where σ (�x) = 1 (0) if the site with position �x is occupied
(empty), N is the total number of cars, and �r ′ is a vector in the
direction ‖ (⊥) you want to compute the correlation function
along. The correlation functions are fitted with exponentials
G‖(⊥) ∝ exp(−r/ξ‖(⊥)) to estimate ξ‖(⊥).

Figure 2 presents the correlations lengths computed from
final configurations of the original BML model for different
square lattice sizes at densities close to the threshold transition,
averaging over 50 configurations for each point. A linear
regression yields an estimate of the anisotropy exponent
θ = 1.64 ± 0.03 (Here and everywhere the error bars are 1σ ).
With the exponent θ in hand, we studied the phase transition
for both longitudinal and transversal systems. Longitudinal

ones ran on lattices with sizes L
1
θ

‖ × L‖.
Figure 3(a) shows that velocity begins to decrease smoothly

with increasing ρ until the abrupt onset of full jamming
(v = 0) at a certain ρc‖ . Right there, an approximately uniform
distribution of jams spans the whole system [Fig. 3(a),
inset]. With Eq. (1) in mind, the FSS analysis [Figs. 3(c)
and 3(d)] gives ρc‖ = 0.521(2) and ν‖ = 3.0(3), which would
imply ν⊥ = 1.8(2). Quite differently, transversal systems (i.e.,

lattices with L‖ × L
1
θ

‖ ) in the gridlock phase show a single and
well-localized jam on an empty background [Fig. 3(b)]. These
systems exhibit a sharp phase transition between free-flow and
completely gridlock phases, but at a lower density ρc⊥ . The FSS
analysis [also in Figs. 3(c) and 3(d)] gives ρc⊥ = 0.283(1) and
ν⊥ = 2.2(1), in agreement with the previous result. Hence,
the intermediate states in square lattices [13] emerge as a
consequence of the combination of these two phase transitions
[Figs. 3(a) and 3(b)]. Figure 3(a) also shows a dip at a density
ρ � 0.48, below the transition point. An analysis of the time
series for the average velocity shows that the system has not
stabilized yet and does not stabilize for simulations 10 times
longer, but the point rises monotonically as the simulation
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FIG. 3. (Color online) Finite-size scaling analysis for the phase transition of both longitudinal and transversal systems. (a) Transition
curves for several longitudinal systems, including the mean-field prediction (magenta solid line) and a typical configuration for the jammed
phase (inset). (b) Transition curves for several transversal systems [sizes as in (a), but with L‖ and L⊥ interchanged], including the asymptotic
limit (magenta solid line) obtained from the FSS analysis. (c) Scaling of the transition width �(L‖) for both cases, giving ν‖ = 3.0(3) and
ν⊥ = 1.8(2). (d) Scaling of the finite critical density gives ρc‖ = 0.521(2) and ρc⊥ = 0.283(2). All systems were simulated for at least 1.5 × 106

time steps or until convergence (v = 0 or v = 1).

time increases. Thus, it could be an effect of an extremely
large relaxation time at this density.

The critical densities for both longitudinal and traverse
transitions can be approximated by using a mean-field analysis,
inspired by [27]. Consider the mean velocity of yellow cars
(by symmetry, the reasoning is also valid for black cars). A
yellow car will stop either because it is crossed by a black car
or because it queues behind another yellow car. At a random
initial configuration, the probability that a car is crossed or
queued is ρ2; that is, at the beginning of the simulation the
proportion of stopped cars pstop must be equal to ρ. Let
us define c→↑ (c→→) as the proportion of stopped cars that
are crossed (queued). In previous works [27,28], it has been
assumed that c→↑ = c→→ = 0.5, but we will see that this is
not the case. If pstop ∼ ρ for some time steps, the probability
of a cell being occupied by a stopped crossed (queued) car will
be c→↑ρ2 (c→→ρ2). Since black cars spend, on average, a time
1/v at a site, they will reduce the speed of yellow cars from
unity by c→↑ρ2/v. Similarly, the extra amount of time that a
yellow car stays at a site will be given by 1

v
− 1, reducing the

average speed by c→→ρ2( 1
v

− 1). Hence, a self-consistency
equation for the average speed v will be

v = 1 − c→↑ρ2

v
− c→→ρ2

(
1

v
− 1

)
, (3)

which gives ρc as the critical density at which the equation
ceases to give a real solution.

Consider longitudinal systems first, where a uniform
distribution of longitudinal jams arises. Before solving Eq. (3),
let us study the evolution over time of the quantities involved.
On the one hand, Fig. 4(a) shows the time evolution of pstop for
different values of the car density for a longitudinal system.
At the start, pstop = ρ for every density, as expected. Later on,

pstop declines (grows) for low (high) densities, and this trend
changes near the critical density ρc. Actually, pstop after one
time step equals ρ for ρ � 0.57 in a large system [Fig. 4(b)].
On the other hand, c→↑ = c→→ = 0.5 only at the start, but
after just one time step they change to c→↑ ∼ 0.600(5) and
c→→ ∼ 0.400(5), remaining at those values for some time
steps [Fig. 4(c)]. By replacing these two values into Eq. (3), the
mean-field approach predicts a critical density ρ‖ = 0.563(5),
in agreement with the value obtained from both finite-size
scaling and the behavior change of pstop described above.
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FIG. 4. (Color online) Time evolution of (a) the fraction of
stopped cars pstop and (b) of the fraction of crossed (c→↑) and queued
(c→→) stopped cars in a 1438 × 82 longitudinal system. (c) The
value of pstop after one time step for several densities is also shown.
(d) Schematic representation of the jamming process for transversal
systems.
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Transversal systems, in contrast, collapse into a single big
jam. Thus, the previous reasoning is impractical here because
the local density becomes inhomogeneous during the collapse:
increasing in the vicinity of the growing jam and dropping to
zero elsewhere. Let us consider that the density at the start is
low enough to assume that all cars are moving. At a certain
evolution time the cars have condensed into a thinner region
[red area in Fig. 4(d)] of area Ared, where the density has
reached the critical value ρc‖ for longitudinal systems. All cars
in this region come from a larger region of area Agreen in the
initial configuration [green area in Fig. 4(d)]. Let us assume
that the red area is a fraction of the green one equal to the
fraction of cars that have stopped, Ared/Agreen = pstop. Because
the number of cars does not change, at the critical density

ρgreen = ρred
Ared

Agreen
= ρ2

c‖ , (4)

where we have used the result that pstop = ρ at the critical
density for longitudinal systems. Then, the critical density
for transversal systems will be ρc⊥ = ρ2

c‖ = 0.271(3), which
approximates quite well the value ρc⊥ = 0.283(2) from the
simulations [Fig. 3(d)].

The values for c→→ and c→↑ at t = 1 can also be estimated
from a mean-field analysis. Let us assume the car distribution
is still uniform after one timestep. Remember that the fraction
of cars that stop at ρ = ρc is pstop = ρ [Fig. 3(c)]. The number
of crossed cars at t = 1 will be the contribution of three factors:
the cars that were moving at t = 0 but stopped and are now
crossed (c(t=1)

→↑ (1 − ρ)) , the crossed cars at t = 0 that remain

crossed (c(t=0)
→↑ ρ, because the site ahead of the crossed couple

is occupied) and the queued cars that turned into crossed ones
(c(t=0)

→→
ρ

2 (1 − ρ), which takes place if the site ahead of the
queued couple is empty and a car moving in the other direction
points to the header of the couple). Thus, we have c

(t=1)
→↑ =

c
(t=1)
→↑ (1 − ρ) + c

(t=0)
→↑ ρ + c(t=0)

→→
ρ

2 (1 − ρ). As c
(t=0)
→↑ = c

(t=0)
→↑ =

0.5 and ρ = ρc, then, c
(t=1)
→↑ ≈ 3−ρc

4 ≈ 0.61 and c(t=1)
→→ ≈ 0.39,

very close to the simulation results. Using these values in the
Eq. (3), gives ρ‖ = 0.562(2), also close to the simulations.

Taken together, our results suggest that the puzzling
intermediate states in the BML model on square lattices are,
actually, a consequence of the system’s anisotropy, which
produces two different phase transitions: one for transverse

systems, with ρc⊥ = 0.283(1), and another for longitudinal
ones, with ρc⊥ = 0.521(1). Indeed, the first critical density
corresponds to the lower bifurcation point on square lattices,
reported at ρ = 0.315 [13], contradicting the general belief
that this would go to zero for infinite systems; similarly, the
second critical density perfectly matches the value of ρ = 0.52
reported as the transition point between self-organized jams
and random jams [2,4] within the conventional understanding
of the original BML model. The asymptotic limit of the curves
from simulations on transverse systems [blue solid line in
Fig. 1(a)] and the mean-field curve for longitudinal systems
[Eq. (3) and dashed red line in Fig. 1(a)] perfectly enclose
the zone of intermediate states. In fact, the structure of the
intermediate states can also be explained if one transition
has taken place but not the other. Figure 1(d) shows how an
incipient jam with a structure similar to those of transversal
systems [Fig. 3(b), inset] begins to form, but it not succeed
in blocking everything because the system is too wide. The
cars leaving the jam in both directions create bands of yellow
(light gray) and black stripes. These bands will cross each
other to form another incipient global jam and so on, estab-
lishing the distinctive periodic structure of such intermediate
states.

Despite having studied the critical features of the BML
phase transitions with the DP formalism, the obtained critical
exponents are not compatible with the universality class
of the directed percolation. Instead, the critical behavior
here coincides with that reported for the parity-conserving
universality class [21,22]. The origin of this relationship
remains an open question for future research.

By finding the origin of the intermediate states of the BML
model, we have built a very complete description of such
a fundamental model for traffic flow, illustrating at the same
time the power of the finite-size scaling analysis for anisotropic
systems, where the BML model seems to be a paradigmatic
example. We look forward to seeing many more results of this
enlightening analysis technique in the future.
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