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Scaling regimes of a semiflexible polymer in a rectangular channel
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We derive scaling relations for the extension statistics and the confinement free energy for a semiflexible
polymer confined to a channel with a rectangular cross section. Our motivation is recent numerical results [Gupta
et al., J. Chem. Phys. 140, 214901 (2014)] indicating that extensional fluctuations are quite different in rectangular
channels compared to square channels. Our results are of direct relevance for interpreting current experiments
on DNA molecules confined to nanochannels, as many experiments are performed for rectangular channels with
large aspect ratios, while theoretical and simulation results are usually obtained for square channels.
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Introduction. Conformations of semiflexible polymers
confined to nanochannels are presently intensively investi-
gated since it has emerged that nanochannel confined DNA
molecules offer possibilities both for biological applications
and as a model system for experimental polymer physics
[1–10]. These studies, and the theoretical and simulation
results which have accompanied them, have shown that
semiflexible polymers such as DNA exhibit a much richer
spectrum of behaviors under confinement than do flexible
polymers [11–16].

Since it is convenient to fabricate nanochannels with a
fixed height but varying widths, many experimental studies
[1–5,8,17–19] of confined DNA are performed in rectangular
channels (width DW, height DH) with aspect ratios far from
unity, DW �DH. However, most simulation and theoretical
studies [5,12–16,20–22] are restricted to channels with square
cross sections, DW =DH. A common procedure is to analyze
the experimental results in terms of the “effective channel size”√

DWDH, simply disregarding the influence of the aspect ratio.
Recently, Gupta et al. [8] have shown that the variance

of the extension of the DNA molecule does depend on the
aspect ratio, but a theoretical explanation for this intriguing
result is lacking. This motivated us to analyze how the aspect
ratio influences the extension statistics of confined semiflexible
polymers. At first sight this appears to be a difficult problem,
because it is governed by a large number of length scales:
the contour length L of the polymer, its effective width
w, its Kuhn length �K [23], its global persistence length g

(the orientational correlation length of the confined chain,
defined in Refs. [11,16]), the typical contour-length separation
between intrachain collisions lcc, the typical contour-length
separation between collisions with the floor and the ceiling of
the channel lch, the typical contour-length separation between
collisions with the vertical walls of the channel lcw, and the
channel width DW and height DH. There are many different
confinement regimes corresponding to different orderings of
these length scales, potentially resulting in a very complicated
phase diagram (Fig. 1). Little is known about this phase
diagram for rectangular channels, except in the limit of very
strong confinement [11,24,25]. To interpret a given experiment
it is necessary to determine which regime in the phase diagram
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it corresponds to, and what the resulting scaling relations for
the extension statistics are.

In this Rapid Communication we summarize the results of
our analysis, based on the mean-field theory for the extension
of an unconfined semiflexible polymer [26]. It is well known
how this theory must be adapted to describe the extension
of semiflexible polymers confined to square channels with
DW =DH ≡D [11]: for a wide channel and a long polymer,
the polymer is divided into a series of spherical blobs of size
D. One assumes that mean-field scaling holds for each blob
and concludes that the extension of the confined polymer
scales as D−2/3. We generalize this analysis to rectangular
channels. To this end it is necessary to consider a hierarchy of
blobs (inset of Fig. 1). For the special case of a flexible chain,
this approach was used by Turban to compute its extension in
a rectangular channel [27]. We emphasize that this is a much
simpler problem since a flexible chain exhibits only a single
confinement regime, as opposed to the semiflexible polymer,
as pointed out above.

An important result of our analysis is that the scalings
can be simply summarized, despite the fact that the phase
diagram Fig. 1 exhibits many different regimes. First, we find
that the average extension is approximately independent of
channel aspect ratio, provided that at least one of the channel
dimensions is significantly larger than the Kuhn length of the
polymer. This is an important finding because it implies that
it is reasonable to analyze the average extension of nanocon-
fined DNA molecules in terms of the effective channel size√

DWDH. Second, we find that the extension variance depends
strongly on both channel dimensions separately; it would be
incorrect to analyze it in terms of the effective channel size.
We find that the variance increases rapidly as the aspect ratio
increases far beyond unity. Our theoretical results for the
variance explain the findings of Ref. [8]; they also make it clear
that square channels are much preferred for applications where
extensional fluctuations are required to be as small as possible.
Third, we compute the free energy of confinement; it is ap-
proximately determined by the smallest confining dimension.
These scaling predictions were derived under the mean-field
approximation of Flory [26], but in certain parameter regimes
(regimes IIa and IIb in Fig. 1), the results are supported by
an asymptotically exact theory that was developed for square
channels [22], but can be generalized to rectangular channels.

We have summarized these results in a table in the
Supplemental Material [28], also including results for very
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FIG. 1. (Color online) Phase diagram of different scaling regimes
for the extension statistics of a semiflexible polymer confined to
a channel with a rectangular cross section. The scaling in regime
I is given by Eqs. (7) and (8). The scaling in regime II is given
by Eqs. (16) and (17). The vertical gray lines distinguish different
scaling regimes of the confinement free energy (see text). Results
for regime III have been derived elsewhere [11,16,24,25] and are
discussed in the Supplemental Material [28]. Inset: An illustration of
the hierarchy of blobs analyzed in regime I. In regime Ia, the smaller
blobs are spherical blobs of size Rblob ≈ DH. In regimes Ib and Ic
they are cylindrical, of height DH and width Rblob > DH.

strong confinement that were derived by other authors. For
other observables (e.g., dynamics, statistics of circular poly-
mers, probability of knot formation), the scaling properties
remain to be determined, but the distinctions between the
regimes we derive here must also apply to them.

Method. We assume that the polymer is described by
the self-avoiding wormlike chain model [23] with Kuhn
length �K and effective width w < �K. The centerline of the
polymer is confined to a rectangular channel of height DH and
width DW � DH. We analyze the conformational fluctuations
of the confined polymer in terms of a hierarchy of blobs
assuming that the self-avoiding random walks obey Flory’s
mean-field theory [26] in two and three spatial dimensions. To
summarize this theory, assume that the polymer consists of N

independent segments of length � and excluded volume v. In
d = 2,3 dimensions the mean-field result for the average of
the extension R of the polymer is [26]

R ≈ (N3�2v)1/(d+2). (1)

Here the symbol ≈ indicates a scaling relation, ignoring factors
of order unity. The variance of the extension is determined
by self-similarity. The self-avoiding polymer in two or three
dimensions has only one macroscopic length scale (R) [23].
Thus, the standard deviation of the extension must scale as the
average extension [29]:

σR ≈ R ≈ (N3�2v)1/(d+2). (2)

As we show below, the analysis of the extension statistics
of the confined polymer must proceed by different steps,
depending on the relation between the contour-length scales
�K,g,lcc,lch,lcw, defined in the Introduction. The global persis-
tence length g only differs appreciably from the Kuhn length
�K at very strong confinement (regime III in Fig. 1). Theories
for this regime have been derived elsewhere [11,16,24,25], and
are briefly discussed in the Supplemental Material [28].

Extension statistics. Consider the separation of scales

�K � lcc � lch � lcw � L. (3)

How do the average extension and its standard deviation de-
pend upon DW and DH? Since lcc � lch, the polymer exhibits
three-dimensional Flory scaling before its first collision with
the channel walls. The first collision with the ceiling or the floor
must occur when a section of contour length lch has formed a
spherical Flory blob of diameter DH. Applying Eq. (1) with
N = lch/�K, � = �K and v ≈ �2

Kw [30] yields

DH ≈ (
l3
chv

/
�K

)1/5 ⇔ lch ≈ [
D5

H

/
(�Kw)

]1/3
. (4)

The resulting blobs perform a two-dimensional self-avoiding
walk until they have formed a circular “superblob” of di-
ameter DW (we follow the terminology of Ref. [27]). This
two-dimensional random walk is illustrated in the inset of
Fig. 1. The number of small spherical blobs constituting
one superblob can be estimated from Eq. (1) with d = 2,
and � = DH since each small spherical blob constitutes an
independent segment of the walk. We assume that the small
blobs do not overlap, thus the two-dimensional excluded area
of the random walk of small blobs approximately equals the
area of a circle of diameter DH; in other words, v ≈ D2

H in this
context. Equation (1) results in

DW ≈ (
N3

blobsD
4
H

)1/4 ⇔ Nblobs ≈ (DW/DH)4/3. (5)

The contour length stored within a superblob equals lcw,

lcw ≈ Nblobslch ≈ [
D4

WDH
/

(�Kw)
]1/3

. (6)

There are L/lcw superblobs that line up along the channel
[Fig. 1 (inset)]. Each superblob has average diameter DW with
fluctuations of the same order. The average extension and its
fluctuations are therefore given by

R ≈ (L/lcw)DW ≈ L[�Kw/(DHDW)]1/3, (7)

σ 2
R ≈ (L/lcw)D2

W ≈ L
(
�KwD2

W

/
DH

)1/3
. (8)

Equation (7) was recently derived in Ref. [31], but without
specifying under which conditions the derivation is valid. We
now answer this question. The inequality lcc � lch requires
that ideal scaling within a blob of size DH results in a large
number of intrachain collisions within the blob

(DH/�K)4v
/
D3

H ≈ DHw
/
�2

K � 1 ⇔ DH � �2
K

/
w. (9)

This corresponds to regime Ia in Fig. 1.
The inequality lcw � lch is satisfied if DW � DH. However,

the scaling relations (7) and (8) reproduce exactly the well-
known relations for square channels as the limit DW → DH

is taken, commonly referred to as “de Gennes scaling” [32].
Thus de Gennes scaling for square channels is simply a special
case of the more general scaling relations derived above
for rectangular channels. Yet attempting to generalize from
square to rectangular channels by simply replacing D by the
geometrical average (DHDW)1/2 gives the wrong prediction
for the variance of the extension, as Eq. (8) shows.

Now consider a different ordering of length scales:

�K � lch � lcc � lcw � L. (10)
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This corresponds to DH � �2
K/w, while DW remains large

(regime Ib in Fig. 1). Are the scaling relations (7) and (8)
modified in this regime? Since lch � lcc, the polymer must
exhibit ideal scaling even after the first collision with the
ceiling or the floor of the channel. This scaling persists
approximately until the first intrachain collision, which occurs
after a contour length lcc. This length scale is estimated by
assuming that such a section of the polymer will form a
cylindrical blob with height DH and diameter Rblob ≈ √

lcc�K,
and by setting the expected number of collisions within the
blob to unity:

(lcc/�K)2�2
Kw

R2
blobDH

= lccw

�KDH
≈ 1 ⇔ lcc ≈ �KDH

w
. (11)

These blobs perform a two-dimensional self-avoiding walk
until the first collision with the sidewalls [Fig. 1 (inset)]. Flory
scaling for the N = lcw/lcc blobs of size � ≈ Rblob ≈ √

lcc�K

and excluded area v ≈ R2
blob ≈ lcc�K yields

lcw ≈ [
D4

WDH
/

(�Kw)
]1/3

. (12)

This is the same as in regime Ia, Eq. (6). From this point,
the derivation of the extension statistics follows that of regime
Ia. We infer that the scalings, Eqs. (7) and (8), hold also in
regime Ib.

Further decreasing DH below �K one enters a different
regime (labeled Ic in Fig. 1). It corresponds to this ordering of
length scales:

lch � �K � lcc � lcw � L. (13)

In this case the polymer runs almost completely parallel to the
floor of the channel but can otherwise rotate freely. While the
expression for the excluded volume of a Kuhn length segment
must change because of confinement, the scaling v ≈ �2

Kw

still holds. To see this, consider two Kuhn length segments.
Although they undulate slightly in the vertical direction
according to Odijk’s theory [11], the segments are always
almost horizontally aligned. Consider the two-dimensional
projection of these segments, where the vertical direction has
been projected out. Assuming that these projections overlap,
the probability that the segments overlap in three-dimensional
space is approximately w/DH. Thus, the excluded volume
is given by v ≈ wA, where A ≈ �2

K is the excluded area of
the two-dimensional projections [30]. The result v ≈ �2

Kw

follows. Now, exactly the same steps as in the derivation
of the extension statistics in regime Ib can be carried out in
this regime, leading to identical scaling predictions [Eqs. (7)
and (8)]. The prefactors differ between the regimes, however.

Since the steps in the above derivation are different between
regime Ia and regimes Ib and Ic, it is at first glance surprising
that the scaling predictions for the extension are identical for
these regimes. But note that the scaling analysis is formulated
in terms of blobs that obey Flory’s mean-field scaling. As long
as mean-field theory is used throughout, the final prediction
for the extension must be independent of the way in which the
blobs are arranged. Since in mean-field theory the repulsive
effect of self-avoidance is directly determined by the number
of monomers within the volume spanned by the polymer, this
also explains why the scaling of the extension is a function of

the cross section only, independent of the aspect ratio of the
channel.

What about the variance of the extension? Combining
mean-field theory with the universality of self-avoiding ran-
dom walks [29] shows that the contour length contained in one
superblob [Fig. 1 (inset)] is identical for these regimes, and
that each blob experiences size fluctuations of order DW. The
variance of the extension is given by summing the variances of
each blob, yielding σ 2

R ≈ NsuperblobsD
2
W ≈ L(�KwD2

W/DH)1/3.
Thus the variance increases as the aspect ratio increases.
This demonstrates that rectangular channels are in fact quite
different from square ones in this regime.

If the excluded volume of the polymer is so small that the
polymer experiences multiple collisions with sidewalls, floor,
and ceiling between each intrachain collision, then we obtain
different scaling relations. Consider the following ordering of
length scales:

�K � lch � lcw � lcc � L. (14)

Under these conditions the polymer obeys ideal scaling until
a blob forms that fills the channel cross section, and is
further elongated along the channel direction, until it reaches
an extension Rblob ≈ √

lcc�K. From ideal scaling it follows
that lch ≈ D2

H/�K and lcw ≈ D2
W/�K. The length scale lcc is

estimated in a similar way as Eq. (11) is obtained:

(lcc/�K)2�2
Kw

RblobDHDW
≈ 1 ⇔ lcc ≈

(
�KD2

HD2
W

w2

)1/3

. (15)

The conditions of Eq. (14) thus correspond to �K � DH �
DW � (DH�2

K/w)1/2 (regime IIa in Fig. 1). In this regime, the
polymer arranges itself into a line of L/lcc blobs of size Rblob:

R ≈ (L/lcc)Rblob ≈ L[�Kw/(DHDW)]1/3, (16)

σ 2
R ≈ (L/lcc)R2

blob ≈ L�K. (17)

We see that the scaling of the average extension agrees
with Eq. (7). The reason is that both equations were derived
assuming mean-field statistics within each blob, and as noted
above, the ordering of the blobs does not influence the
prediction for the average extension. However, note that the
scaling of the standard deviation, Eq. (17), differs from Eq. (8).
We see that σR does not depend upon either DW,DH, or w.

For the special case of square channels, regime IIa has
been studied under the name “extended de Gennes regime”
[12,14,21,22]. Figure 1 shows that the limits of this regime
are more restrictive for rectangular than for square channels:
even if a square channel with side length either DH or DW is in
regime IIa, the rectangular channel with side lengths DH and
DW may not be.

Finally, consider the ordering of length scales

lch � �K � lcw � lcc � L, (18)

corresponding to DH � �K � DW � (DH�2
K/w)1/2. This

regime is denoted as IIb in Fig. 1. The steps needed to derive
the scaling relations for the extension are identical to those
summarized above, and again lead to Eqs. (16) and (17),
albeit with different prefactors than for regime IIa. The scaling
for the extension in regime IIb was previously derived by
Odijk [11].
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Comparison with results of computer simulations. Our
results give a qualitative explanation for the surprising
observation of Gupta et al. [8], who found in simulations
that while the average extension of a confined polymer was
relatively insensitive to the aspect ratio of the confining
channel, the variance increased with aspect ratio (see Fig. 5 in
Ref. [8]). They performed simulations and experiments with
a fixed channel height DH = 100 nm and channel widths in
the range DW = 100–1000 nm, and compared these against
simulations of square channels with matching effective
channel size. For their simulations, they used a polymer with
�K = 137.4 nm and w = 18.7 nm. Thus, while the square
channels are all approximately in regime IIa, the channels
with fixed height cross over into regime Ib as the aspect
ratio increases significantly above unity (Fig. 1). While our
prediction for mean extension shows the same scaling in these
regimes, the variance is independent of DH and DW in regime
IIa but increases as D

2/3
W in regime Ib, qualitatively explaining

the results of Gupta et al. That the agreement is only qualitative
is not surprising, considering that the conditions for regime
Ib are only marginally satisfied, and that the contour length
of λ-DNA which their simulations mimic is not quite long
enough to enter the asymptotic regime where R ∝ L [8].

Accuracy of mean-field theory. The results that we derived
for regimes I and II are based on Flory’s mean-field theory.
This theory is thought to be correct in two dimensions but
is known to be only approximate in three dimensions [33].
Using the scaling R ∝ L0.588 in three dimensions would
lead to modified scaling predictions for regime Ia (but not
for the other regimes): R ∝ D−0.37

H D
−1/3
W , σ 2 ∝ D−0.37

H D
2/3
W

(and Fc ∝ D−1.70
H , see below).

For square channels in regime IIa, we have recently shown
both that the scalings of mean-field theory are exact in this
regime, and that there are rigorous bounds for the prefactors
[22]. These results were derived by mapping the statistics of
the extended de Gennes regime to a one-dimensional model
known as the weakly self-avoiding random walk. Since the
same mapping can be performed for rectangular channels,
these exact results are valid throughout regime IIa. The
scalings of Eqs. (16) and (17) can thus be rigorously proven.
The rigorous bounds for the prefactors are included in the
table in the Supplemental Material [28]. As in regime IIa, it

is in principle possible to map the statistics of regime IIb
to a solved one-dimensional model. The existence of the
mapping shows that also in this regime, the scalings of the
extension statistics are exact. Computing the exact parameters
of the mapping would require performing an integral over the
monomer density profile in the Odijk regime, which we have
not attempted.

Free energies. Apart from the statistics of the extension, the
free energy of confinement Fc is of experimental relevance,
as it determines the force that must be applied to introduce a
polymer into a channel. For the polymer confined to a channel,
this free energy can be estimated by kT times the number of
collisions with the walls, or

Fc/(kT ) ≈ L/lch + L/lcw ≈ L/lch. (19)

For regime Ia, we obtain a scaling prediction for Fc by inserting
Eq. (4) into Eq. (19), yielding Fc ≈ L(�Kw/D5

H)1/3. For all
other regimes, the free energy of confinement agrees with
known results for ideal polymers [24,34], with the agreement
becoming exact in the asymptotic limit where the inequalities
defining the respective regimes are perfectly satisfied. These
predictions for Fc are included in the table in the Supplemental
Material [28].

Conclusions. Recent experiments on DNA in rectangular
nanochannels are performed at high aspect ratio, yet most ana-
lytical and simulation results pertain to square channels. These
analytical results are often applied to rectangular channels by
matching the cross-sectional area of the rectangular channel
to that of the square one. Our theory shows that this matching
allows one to predict the average DNA extension under fairly
general assumptions. We also show that this procedure fails
to correctly predict the scalings of other observables, such as
the variance. Our theory explains recent numerical results for
the extension variance in rectangular channels [8], and shows
that square channels are most useful for biological applications
where it is beneficial that the extension variance is small. We
expect that the results summarized here can be generalized to
other observables, such as the statistics of circular DNA, knot
formation, and DNA dynamics [3,35].
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