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Stochastic ratcheting of two-dimensional colloids: Directed current and dynamical transitions
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We present results of molecular dynamics simulations for two-dimensional repulsively interacting colloids
driven by a one-dimensional asymmetric and commensurate ratchet potential, switching on and off stochastically.
This drives a time-averaged directed current of colloids, exhibiting resonance with change in ratcheting frequency,
where the resonance frequency itself depends nonmonotonically on density. Using scaling arguments, we obtain
analytic results that show good agreement with numerical simulations. With increasing ratcheting frequency, we
find nonequilibrium reentrant transitions between solid and modulated liquid phases.
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Introduction. A flashing ratchet refers to a time-averaged
directed motion of Brownian particles under the influence
of a spatially periodic and asymmetric potential, with the
potential height varying with time, either deterministically or
stochastically [1–4]. Stochastic ratcheting has been studied
extensively in the context of the active dynamics of molecular
motors [5–8] and the dynamics of colloidal dispersion in
electrical [9–11], magnetic [12,13], or optical drive [14,15];
as a mechanism of particle segregation [16–18] or transport
of cold atoms in optical lattice [19]; and in the motion of flux
quanta [20,21]. While a large body of work has concentrated
on the ratcheting of individual particles, fewer studies have
focused on the effects of interaction [22–26]. Recent studies
of two-dimensional (2D) paramagnetic particles under 1D
magnetic ratchets observed a relation between the overall
dynamics and local particle coordination numbers [13].

In colloidal suspensions, the ratchetlike directed motion
of particles has been achieved using suitable laser poten-
tials [14,15]. Confinement and laser trapping in colloids,
on the other hand, is known to give rise to interesting
mechanical properties and phase transitions [27–32]. Coupling
2D interacting colloids to a 1D time-independent spatially pe-
riodic potential with periodicity commensurate with the mean
particle separation leads to the phenomena of laser-induced
freezing (LIF) and reentrant melting with an increase in the
potential strength. This was demonstrated in experiments using
the standing wave pattern of interfering laser beams [31,32]
and was understood in terms of a dislocation unbinding
theory [33,34].

We consider transport of a 2D system of particles interacting
via soft-core repulsion and driven by a 1D asymmetric flashing
ratchet, using molecular dynamics (MD) simulations in the
presence of a Langevin heat bath. The ratcheting potential
breaks time-reversal symmetry and generates an averaged
directed current along the direction of ratcheting [Fig. 1(a)].
We choose a periodicity of the potential commensurate with the
interparticle separation. At switching frequencies much faster
than the intrinsic relaxation times, the time scale required for
particles to relax over a single valley of the external ratchet
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potential, the system experiences a time-averaged effective
periodic potential, which in the limit of weak asymmetry is
expected to lead to a situation similar to that of LIF. However,
at intermediate switching frequencies the system is driven

FIG. 1. (Color online) (a) Schematic of 2D colloids in 1D asym-
metric ratchet potential periodic in the y direction and constant in
the x direction. The arrow between the (green) corrugated and flat
surfaces denotes switching of the external potential between the on
and off states with rate f . (b) Time-averaged directed current along
the y direction 〈jy〉 as a function of frequency f and density ρ. The
dashed line indicates variation of the maximal current with density.
Superimposed positions of 103 uncorrelated configurations, from
center-of-mass coordinates, are shown at a density of ρ = 1.0 with
ratcheting frequencies (c) f = 0.11, (d) f = 1.67, and (e) f = 10.
The color code denotes the local density of points from red (light)
(high) to blue (dark) (low). The reciprocal lattice vectors G1,2 and the
corresponding lattice planes are indicated in (e).
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out of equilibrium and carries an averaged directed current.
We present the transport properties and the relation between
structure and transport in this system.

In the 2D ratchet system that we study, the averaged
directed current shows nonmonotonic variation with density
and ratcheting frequency, with the maximal current achieved at
their intermediate values. The behavior differs significantly in
the detailed functional dependence from the 1D ratchet. Using
scaling arguments, we derive expressions for the directed
current that fully capture the simulation results. Our study
of 2D ratchet reveals two fascinating properties that are
unlike the 1D ratchet: (i) With increasing ratcheting frequency
we find reentrant nonequilibrium phase transitions between
solid and modulated liquid phases, as the averaged directed
current shows nonmonotonic variation, and (ii) crossover from
ballistic to diffusive transport with density, captured by a
nonmonotonic density dependence of resonance frequency.
Our predictions are amenable to verification in experiments
on, e.g., sterically stabilized colloids driven by suitably tunable
optical or magnetic ratchets [13,14].

Model. As a model colloid, we consider a system of purely
repulsive particles interacting via a shifted and truncated soft-
core potential βU (r) = (σ/r)12 − 2−12 with a cutoff distance
rc = 2σ , so that βU (r) = 0 for r > rc. Here kBT = 1/β

and σ set the energy and length scales, respectively. The
asymmetric ratchet potential Uext(y,t) = V0(t)[sin(2πy/λ) +
α sin(4πy/λ)], where V0(t) switches between U0 and 0 with
a switching rate f , which we also refer to as frequency. We
use the asymmetry parameter α = 0.2 [see Fig. 1(a)]. In all
our simulations we set βU0 = 1. The external potential is
kept commensurate with the density of the particles, such that
λ = ay , with the separation between consecutive lattice planes
ay = √

3a/2 in a triangular lattice at a density ρ = 2/
√

3a2.
Molecular dynamics simulations are performed using the
standard leapfrog algorithm [35] with a time step δt = 0.001τ ,
where τ = σ

√
m/kBT is the characteristic time scale. We

choose the mass of the particles m = 1 and set the temperature
T = 1.0ε/kB by using a Langevin thermostat [36] with an
isotropic friction γ = 1/τ . At each time step, a trial move to
perform switching of the external potential strength between
0 and U0 is performed and accepted with probability f δt . We
used N = 4096 particles in our simulations.

The soft-core particles, in the absence of an external
potential, freeze at a density ρ∗ ≈ 1.01 [see Fig. 1(a) in
the Supplemental Material [37]]. The limit of α = 0 and
V0(t) = U0 corresponds to the equilibrium situation of laser-
induced freezing [33]. At a density close to the liquid-
solid transition, the system freezes into a triangular lattice
solid (LIF) that remelts into a density modulated liquid
with increasing U0 [32,33]. In soft-core particles, the LIF
with βU0 = 1 occurs at ρ = 0.95 [34]. A similar freezing
transition at this density is observed for a weakly asymmetric
ratchet (α = 0.2) of strength βU0 = 1 in the limit of high
switching frequency, much faster than the typical relaxation
time, such that the colloids experience an effective periodic
potential [see Fig. 2(d) in the Supplemental Material [37]].
In the other limit of extremely slow switching, the system
comes to quasiequilibrium with the instantaneous strength
of the external potential and one obtains a slow variation
between a modulated liquid and a solid phase. The most

FIG. 2. (Color online) Average directed current as a function of
switching rate f at particle densities ρ = 0.1 ( ), 0.5 ( ), and 1.0
( ). The solid lines show the fit to Eq. (2).

interesting dynamics takes place at intermediate frequencies.
The ratchet-driven averaged directed current shows resonance
with frequency and nonmonotonic variation with density
[Fig. 1(b)]. At suitable densities, the system shows a dynamical
reentrant transition from a soft solid to modulated liquid to a
solid with an increase in ratcheting frequency [Figs. 1(c)–1(e)
and 5].

Transport properties. The steady-state dynamics is charac-
terized in terms of a space- and time-averaged directed current
of particles flowing along the direction of ratcheting

〈jy〉 = 1

τm

1

LxLy

∫ τm

dt

∫ Lx

dx

∫ Ly

dy jy(x,y,t), (1)

where the time averaging is done over τm = ntp, with tp = 1/f

and n denoting a large number of switchings, chosen to be 200
in all our simulations.

For small switching frequencies f � ν, the inverse of
the intrinsic relaxation time, the system is close to ther-
modynamic equilibrium. The directed current increases as
〈jy〉 ∼ f starting from zero at f = 0 in agreement with
linear response [5,38,39]. The frequency dependence at a
high switching rate was calculated earlier using an asymptotic
expansion to give 〈jy〉 ∼ 1/f [39,40].

In our MD simulations of the 2D system of soft disks, we
observe the same behavior, viz., 〈jy〉 ∼ f at low frequency
and 〈jy〉 ∼ 1/f at very high ratcheting frequencies (Fig. 2).
The asymptotic behavior may be captured by the interpolation
formula g(ν,f ) = νf/(ν2 + f 2). We use a simple ansatz
〈jy〉 = κg(ν,f )ρv0, where κ is a dimensionless proportion-
ality constant and ρv0 has the dimension of current with
v0 an intrinsic velocity. As we show below, the form of v0

and ν allows us to describe the whole density and frequency
dependence of the directed current. The relation

〈jy〉 = κ
νf

ν2 + f 2
ρv0 (2)

shows good agreement with simulation results (Fig. 2). The
above frequency dependence is obeyed even if the ratcheting
wavelength λ is incommensurate with density [see Figs. 2(a)–
2(c) in the Supplemental Material [37]]. A similar frequency
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FIG. 3. (Color online) Resonance frequency f0 as a function of
the density ρ for noninteracting particles (squares) and soft-core
particles (circles). The solid line shows the ballistic form f0 ∼ √

ρ,
while the dashed line shows the diffusive form f0 ∼ ρ(1 − ρ/ρc)
with ρc = 1.07.

dependence was recently found for a stochastic pump model
of the one-dimensional system of interacting particles [41].
Fitting the MD simulation data of Fig. 2 to Eq. (2), we
find the resonance frequencies f = f0 = ν, which show a
nonmonotonic variation with the mean density of colloids ρ

(Fig. 3).
The intrinsic relaxation frequency ν, controlling the be-

havior of time-averaged dynamics, may arise from a ballistic
or diffusive relaxation of the particles over the characteristic
length scale λ. We use a ratcheting potential commensurate
with the density such that λ2 ∼ 1/ρ (for treatment using
an incommensurate potential see the Supplemental Mate-
rial [37]). For underdamped motion, the ballistic time scale
τb for a particle to traverse the potential valley is obtained
from the kinematic relation λ ∼ (U0/λ)τ 2

b , which leads to
τb ∼ (ρU0)−1/2. On the other hand, the relaxation time in
the overdamped diffusive regime is given by τD = λ2/D ∼
(Dρ)−1. The self-diffusion constant D decreases with density
for two-dimensional repulsively interacting particles as D =
D0(1 − ρ/ρc) [42,43] [see Fig. 1(b) in the Supplemental
Material [37]].

In the underdamped case, the velocity scale is set by vb
0 =

λ/τb = U
1/2
0 . Using this and ν = 1/τb in this regime, one finds

〈jy〉 	 κ
f U0

ρU0 + f 2
ρ3/2. (3)

The resonance frequency is then f0 = (ρU0)1/2. On the other
hand, the velocity scale in the overdamped regime may be
obtained using the time scale for free diffusion 1/ρD0 over
the mean interparticle separation λ, vD

0 = D0ρ
1/2. Thus, using

ν = 1/τD , the averaged directed current becomes

〈jy〉 	 κ
f D2

0

D2
0ρ

2(1 − ρ/ρc)2 + f 2
ρ5/2(1 − ρ/ρc). (4)

The corresponding resonance frequency is f0 = D0ρ(1 −
ρ/ρc).

Our simulations show that the resonance frequency, and
therefore the intrinsic relaxation frequency, follows ballistic
behavior f0 ∼ √

ρ at low densities (and for noninteracting

FIG. 4. (Color online) Average particle flux 〈jy〉 as a function of
density ρ for soft-core particles at ratcheting frequencies f = 1.43
( ), 0.71 ( ), and 0.36 ( ).The dot-dashed lines are fit to Eq. (3)
in the regime ρ < 0.5 with fitting parameter κ = 0.04,0.03,0.02 for
the three data sets, respectively. The solid lines are fit to Eq. (4)
in the regime ρ � 0.5 with fitting parameters κ = 0.12,0.05,0.02
and ρc = 1.03,1.05,1.03. The inset shows the same quantity for free
particles at two different ratcheting frequencies f = 0.71 ( ) and
0.36 ( ). The dashed lines are fit to Eq. (3).

particles) and diffusive behavior f0 ∼ ρ(1 − ρ/ρc) at high
densities (Fig. 3). The dynamical behavior changes from
ballistic to diffusive with an increase in density. This may be
understood in terms of what happens to a directed current in
the presence of direction randomizing scattering events. At low
densities, the time- and space-averaged motion of a test particle
with a small number of scattering events remains ballistic on
average. However, at large densities the mean free path is
reduced and consequently a large number of scattering events
randomizes the direction of motion leading to a predominantly
diffusive dynamics.

In Fig. 4 we show the density dependence of the directed
current at various switching frequencies. The plots show
nonmonotonic variation, the low-density limit of which is fully
captured by Eq. (3) and the high-density limit by Eq. (4).
Near the density ρc, the system gets into a jammed state
where the directed current vanishes as 〈jy〉 ∼ ρ5/2(1 − ρ/ρc).
Note that the overall density dependence that we find in the
2D ratchet is quite unlike the 〈j 〉 ∼ ρ(1 − ρ) behavior of
the directed current found in the repulsively interacting 1D
ratchet [26]. The collective dynamics of the 2D ratchet can
be further characterized in terms of the density and ratcheting
frequency dependence of longitudinal and transverse diffu-
sivities Dx,y(ρ,f ) (see Figs. 3 and 4 in the Supplemental
Material [37]).

Dynamical transitions. The reduction of directed current
at high densities and subsequent jamming is associated with
freezing of the system into a triangular lattice solid. Our MD
simulations show that similar structural transitions are also as-
sociated with a change in current as a function of ratcheting fre-
quency [Fig. 1(b)], a fully dynamical effect. In Figs. 1(c)–1(e)
we plot the superimposed positions of 103 uncorrelated config-
urations from the center-of-mass frame for a system at a mean
density ρ = 1.0 and ratcheting frequencies f = 0.11,1.67,10.
This suggests a frequency-dependent reentrant transition from
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FIG. 5. (Color online) Amplitude of the steady-state structure
factor for the reciprocal lattice vectors (a) G1 and (b) G2 as a function
of ratcheting frequency f for densities ρ = 0.98 ( , ), 0.99 ( , ),
1.00 ( , ), 1.01 ( , ), and 1.02 ( , ).

a triangular lattice solid (f = 0.11) to a density modulated
liquid (f = 1.67) to again a triangular lattice solid (f = 10)
order. Note from Fig. 2 that the modulated liquid at ρ = 1.0 and
f = 1.67 corresponds to the resonance frequency in directed
current.

The interplay of structure and dynamics is further quantified
with the help of the time-averaged steady-state structure factor
S(G) = 〈 1

N2

∑
i,j exp[−G · (ri − rj )]〉 with reciprocal lattice

vectors G1 = (0,±2π/ay) and G2 = (±2π/a,±2π/
√

3a)
[see Fig. 1(e)]. In Fig. 5 we show the frequency dependence
of |S(G1,2)| at various densities. The presence of a ratcheting
potential keeps |S(G1)| > |S(G2)| corresponding to stronger
density modulation in the y direction. The nonmonotonic
variation of |S(G1)| with frequency quantifies a reduction
followed by an increase in this density modulation. At very
high frequencies, the solid order parameter |S(G2)| > 0.31
for densities ρ � 0.96, signifying freezing into a triangular
lattice structure [see Figs. 1(a) and 2(d) in the Supplemental
Material [37]], reminiscent of the LIF transition [34]. The
solid order parameter |S(G2)| at densities ρ � 1 shows
significant nonmonotonic variation with frequency, pointing

to a dynamical reentrant transition from a solid to a modulated
liquid to a solid phase. Thus the ratcheting frequency provides
a means to structural control during transport and may be
utilized in experiments.

Summary and outlook. Our study of a 2D system of
soft-core particles under 1D ratchet drive has shown an
interesting relation between transport properties and structural
phases. Using scaling arguments, we obtained the density
and ratcheting frequency dependence of the averaged directed
current 〈jy〉, which fully captured the simulation results. The
resonance frequency of 〈jy〉 showed a curious crossover from
ballistic to diffusive behavior with increasing density, related
to a reduction of the mean free path. Within a range of densities,
we found a dynamical reentrant transition from the solid to the
modulated liquid to the solid phase with increasing ratcheting
frequency. The fact that the ratcheting frequency provides
control over both the emergent directed current and structural
phases may have useful applications.

Our predictions may be verified in experiments on repul-
sively interacting colloids confined within glass plates, e.g.,
using magnetic ratcheting [13] or optical ratcheting [14] in a
suitably modified 2D laser trapping setup [32]. For example,
polysterene beads have a density of 1.05 g/cm3, i.e., a bead of
diameter of σ ≈ 5 μm has mass m ≈ 6.9 × 10−14 Kg. Given
kBT = 4.2 × 10−21 Nm at room temperature, the unit of time
τ = σ

√
m/kBT ≈ 0.02 s. Thus the dimensionless frequency

range of f = 0.1 to 100 studied here corresponds to a range of
5 Hz to 5 KHz and the resonance at f0 ≈ 1 means a frequency
of 50 Hz.
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[22] I. Derényi and T. Vicsek, Phys. Rev. Lett. 75, 374 (1995).
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