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Convex hull of a Brownian motion in confinement
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We study the effect of confinement on the mean perimeter of the convex hull of a planar Brownian motion,
defined as the minimum convex polygon enclosing the trajectory. We use a minimal model where an infinite
reflecting wall confines the walk to one side. We show that the mean perimeter displays a surprising minimum
with respect to the starting distance to the wall and exhibits a nonanalyticity for small distances. In addition, the
mean span of the trajectory in a fixed direction θ ∈]0,π/2[, which can be shown to yield the mean perimeter by
integration over θ , presents these same two characteristics. This is in striking contrast to the one-dimensional
case, where the mean span is an increasing analytical function. The nonmonotonicity in the two-dimensional
case originates from the competition between two antagonistic effects due to the presence of the wall: reduction
of the space accessible to the Brownian motion and effective repulsion.

DOI: 10.1103/PhysRevE.91.050104 PACS number(s): 05.40.Jc, 05.40.Fb

How does one characterize the territory covered by a
Brownian motion in two dimensions? This question naturally
arises in ecology where the trajectory of an animal during
the foraging period is well approximated by a Brownian
motion [1,2] and one needs to estimate the home range of
the animal, i.e., the two-dimensional (2D) space over which
the animal moves around over a fixed period of time [3]. The
most versatile and popular method to characterize the home
range consists of drawing the convex hull, i.e., the minimum
convex polygon enclosing the trajectory of the animal [4,5].
The size of the home range is then naturally estimated by the
mean perimeter or the mean area of the convex hull.

For a single planar Brownian motion of duration t and
diffusion constant D, the mean perimeter 〈L(t)〉 = √

16πDt

and the mean area 〈A(t)〉 = πDt were computed exactly in
the mathematics literature quite a while back [6–8]. Very
recently, there has been a growing number of articles in both
the physics [9–15] and the mathematics literature [16–19]
generalizing these results in various directions. In particular,
adapting Cauchy’s formula [20] for closed 2D convex curves
to the case of random curves, a general method was recently
proposed [9,10] to compute the mean perimeter and the mean
area of the convex hull of any arbitrary stochastic process in
two dimensions. In cases where the process is isotropic in
two dimensions, the mean perimeter and the mean area of
its convex hull can be mapped onto computing the extremal
statistics of the corresponding one-dimensional component
process [9,10]. This procedure was then successfully used
to compute exactly the mean perimeter and the mean area
of a number of isotropic 2D stochastic processes such as N

independent Brownian motions [9,10], random acceleration
process [11], and branching Brownian motion with absorption
with applications to epidemic spread [12] and for anomalous
diffusion processes [14].

All these results pertain to isotropic stochastic processes
in the unconfined 2D geometry. However, in many practical
situations, the stochastic process takes place in a confined
geometry. For example, the home range of animals living in
a habitat can get limited by the presence and development
of urban areas nearby that may impede the free movement

of animals. How does the confinement of the allowed space
affect the size of the home range? Beyond this ecological
motivation, determining the mean perimeter of the convex hull
in confinement is a key question in the context of Brownian
motion theory.

In this Rapid Communication, we address this important
issue in a simple minimal model that allows an exact solution.
We consider a single planar Brownian motion in the presence
of a reflecting infinite wall that confines the Brownian motion
in the positive half space [see Fig. 1(a)]. This can simply model
the habitat of an animal bordering, on one side, a highway or
a river that the animal cannot cross. In the presence of this
reflecting wall, various properties of the Brownian motion can
be calculated analytically (e.g., [21,22]). For instance, it is
easy to solve the Fokker-Planck equation to derive the full
probability distribution of the position of the particle and all
its moments, including, e.g., the mean square displacement.
However, these standard methods are neither sufficient nor
relevant for the computation of the mean perimeter of the
convex hull of the particle up to time t . The observable we
are interested in, namely, the perimeter of the convex hull, is a
nonlocal history dependent quantity, and calculating even its
first moment is nontrivial. One of the main objectives of this
Rapid Communication is to demonstrate how to compute this
quantity in the presence of a reflecting wall.

We show that the presence of the wall breaks the isotropy of
the 2D space in a way that, even in this simple setting, induces
a nontrivial effect on the convex hull of the Brownian motion.
We compute analytically the mean perimeter 〈L(d)

2D(t)〉 of the
convex hull of the Brownian motion of duration t , starting at
an initial distance d from the wall. We show that it exhibits a
scaling form, at all times t ,〈

L
(d)
2D(t)

〉 = √
D tL̃2D

(
d√
D t

)
, (1)

where L̃2D(x) is a nontrivial scaling function that we
compute explicitly and is plotted in Fig. 1(b). We find a
surprising, and rather striking, nonmonotonic behavior of the
scaling function L̃2D(x), revealing a minimum at a certain
characteristic scaled distance [see Fig. 1(b)]. Moreover, the
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FIG. 1. (Color online) What is the influence of confinement on
the convex hull of a 2D Brownian motion? Considering the minimal
model of a reflecting confining infinite wall [see (a)], we show that
the mean perimeter of the convex hull turns out to be a nonmonotonic
function of the initial distance d to the wall [see (b)]. This is in
striking contrast to the monotonic behavior of the mean span, which
is the 1D analog of the mean perimeter of the convex hull [see (c)].
(a) Convex hull of a Brownian trajectory of starting point O and
diffusion coefficient D. (b) Mean rescaled perimeter 〈L(d)

2D(t)/
√

Dt〉
of the convex hull as a function of the rescaled distance to the wall
x = d/

√
Dt : analytical (solid line) and simulation (dots) results (see

Appendix C for details). The inset presents the different geometrical
parameters involved in the calculation. (c) Mean rescaled span
〈L(d)

1D(t)/
√

Dt〉 of a (semi)confined 1D Brownian motion as a function
of the rescaled distance x = d/

√
Dt to the reflecting point.

scaling function also exhibits an unexpected singularity as
x → 0, L̃2D(x) ∼ −a [x/ ln(1/x)]3/2 with the prefactor
a = 8

√
2 π3/[3�(3/4)]. We demonstrate that both the non-

monotonicity and the small x singularity of the scaling function
are purely 2D effects and are, in fact, absent in one dimension
[as shown in Fig. 1(c)].

One dimension. To get insight into the scaling function for
the mean perimeter and to appreciate the fact that its nonmono-
tonicity and singularity at x = 0 are indeed induced by the 2D
geometry, it is useful to first compute the analogous quantity in
the one-dimensional (1D) setting, which is interesting in itself.
In one dimension, the corresponding quantity is the mean span
〈L(d)

1D(t)〉 of a Brownian motion on a semi-infinite line, starting
at a distance d from a reflecting origin [see inset of Fig. 1(c)].
It can be expressed as〈

L
(d)
1D(t)

〉 = 〈M(d)
right(t)

〉+ 〈M(d)
left(t)

〉
, (2)

where 〈M(d)
right(t)〉 and 〈M(d)

left(t)〉 denote the mean maximal
extensions of the walk up to time t to the right and to the left,
respectively.

For convenience, we shift the reflecting wall to −d

and consider the walk starting at the origin S. We
compute the right and the left parts separately, start-
ing with the right. After integration by parts, it is
found that 〈M(d)

right(t)〉 = ∫∞
0 dy (1 − S

(d)
right(t |y)), where

S
(d)
right(t |y) = Prob[M(d)

right(t) � y] is the cumulative distri-

bution of M(d)
right(t), given that the particle starts at the origin.

In turn, the cumulative distribution S
(d)
right(t |y) is just the

probability that the walker starting at the origin stays within
the box [−d,y] up to time t , i.e., the survival probability of the
walker with a reflecting wall at −d and an absorbing wall at
y > 0. In contrast, for the left side, the maximal displacement
can, at most, be d due to the presence of the reflecting
wall, and one finds 〈M(d)

left(t)〉 = ∫ 0
−d

dy [1 − Sleft(t |y)], where
Sleft(t |y) is the survival probability of a walker in the semi-
infinite region [y,∞[ with an absorbing wall at −d < y < 0.
These survival probabilities can be computed using standard
techniques [21,23]. They are best expressed in terms of
Laplace transforms with respect to t . Denoting by f̂ (p) =∫∞

0 f (t) e−p t dt the Laplace transform of a function f (t), we
find

〈
M̂(d)

right(p)
〉 = ∫ +∞

0
dy

(
1

p
− Ŝ

(d)
right(p|y)

)
,

(3)〈
M̂(d)

left(p)
〉 =

∫ 0

−d

dy

(
1

p
− Ŝleft(p|y)

)
,

where

Ŝ
(d)
right(p|y) = 1

p

⎛
⎝1 −

cosh
(√

p

D
d
)

cosh
[√

p

D
(y + d)

]
⎞
⎠ ,

(4)
Ŝleft(p|y) = 1

p
(1 − e

√
p

D
y).

Inverting the Laplace transforms, we get

M̃right(x) ≡
〈
M(d)

right(t)√
Dt

〉

= 2√
π

−4
+∞∑
n=1

(−1)n

4n2 − 1

(
e−n2x2

√
π

−nxerfc (nx)

)
,

(5)

M̃left(x) ≡
〈
M(d)

left(t)√
Dt

〉
= 2√

π

(
1 − e− x2

4
)+ x erfc

(x

2

)
,

(6)

with x = d/
√

Dt denoting the scaled distance. This gives,
from Eq. (2), 〈L(d)

1D(t)〉 = √
D t L̃1D( d√

D t
), where the 1D

scaling function, L̃1D(x) = M̃right(x) + M̃left(x), is plotted in
Fig. 1(c). The scaling function increases monotonically with x

from L̃1D(x → 0) = √
π (when the walker starts at the wall)

to L̃1D(x → ∞) = 4/
√

π (where the walker does not feel the
wall and one recovers the mean span of the walker in the
absence of the wall).
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Several conclusions can be drawn from these expres-
sions [see Fig. 1(c)]: (i) The presence of the reflecting
wall preserves the diffusive scaling of the mean perimeter
∼√

D t . (ii) However, for fixed d and late times,
〈L(d)

1D(t)/
√

Dt〉 → L̃1D(x → 0) = √
π , which is lower than

4/
√

π obtained in the absence of confinement (d → ∞). (iii)
The mean perimeter is minimized when the walker starts from
the reflecting wall, and (iv) it is an increasing analytic function
of the distance from the reflecting wall.

We show below that in two dimensions, while points (i) and
(ii) continue to hold, (iii) and (iv) are no longer valid. Our main
results are indeed the nonmonotonicity of the mean perimeter
of the convex hull in two dimensions and its nonanalyticity
for small starting distances from the reflecting wall. These two
features are in striking contrast to the one-dimensional case
derived above (see Fig. 1).

Two dimensions. We now turn to the 2D case, where
we consider a Brownian motion in a semi-infinite medium
(delimited by a reflecting wall) starting at a distance d from
this wall [see Fig. 1(a)]. To compute the mean perimeter of
the convex hull of the walk of duration t , we follow the
general setup developed in Refs. [9,10]. By adapting Cauchy’s
formula [20] for the perimeter of closed convex curves to
random curves, it was shown that the mean perimeter of
the convex hull of any two-dimensional stochastic process,
including that of a Brownian motion, can be expressed as [9,10]〈

L
(d)
2D(t)

〉 = ∫ 2π

0
dθ 〈M(d)(θ,t)〉, (7)

where M(d)(θ,t) is the maximal projection of the trajectory of
the walker up to time t in the direction θ . As in the 1D case,
it is useful to express the mean in terms of the cumulative
distribution of M(d)(θ,t),

〈M(d)(θ,t)〉 =
∫ +∞

0
dM [1 − S(d)(t |M,θ )], (8)

where the cumulative distribution S(d)(t |M,θ ) can be identified
to the survival probability up to time t of the walker in the semi-
infinite plane, bounded additionally by an absorbing infinite
wall at distance M from the starting point, perpendicular to
the direction θ [see inset of Fig. 1(b)]. It then defines an
infinite wedge of top angle α/2 = π/2 − θ with one absorbing
edge and one reflecting edge. However, by adding a twin
wedge symmetrically around the reflecting edge, the survival
probability of the walker in the original wedge is the same as
in the “doubled” wedge with twice the top angle α = π − 2 θ ,
but with two absorbing edges. The survival probability of a
Brownian walker, starting initially at the polar coordinates
(r0,ϕ0), inside a wedge of angle α with two absorbing edges
is [21]

S(t |r0,ϕ0) = r0√
πDt

e− r2
0

8Dt

+∞∑
m=0

sin
( (2m+1)πϕ0

α

)
2m + 1

×
[
I (2m+1)π

2α
− 1

2

(
r2

0

8Dt

)
+ I (2m+1)π

2α
+ 1

2

(
r2

0

8Dt

)]
, (9)

where Iν(z) is the standard modified Bessel function.
The initial position (r0,ϕ0) can be expressed in terms
of the original variables M , d, and θ [see inset of
Fig. 1(b)]. For convenience, we introduce two new

dimensionless variables as u ≡ M/
√

Dt = r0 sin ϕ0/
√

Dt

and x ≡ d/
√

Dt = r0 sin(α/2 − ϕ0)/
√

Dt , where we recall
that α = π − 2θ . Then it follows that

r0√
Dt

= 1

cos θ

√
x2 + 2xu sin θ + u2, (10)

ϕ0 = arccos

(
x + u sin θ√

u2 + 2xu sin θ + x2

)
. (11)

Plugging the result for the survival probability in Eq. (9) [with
r0 and ϕ0 expressed as functions of u and x via Eqs. (10)
and (11)] into Eq. (8), we get

M̃(θ,x) ≡
〈M(d)(θ,t)√

Dt

〉

=
∫ +∞

0
du

{
1 −

√
x2 + 2xu sin θ + u2

√
π cos θ

e− x2+2xu sin θ+u2

8 cos2 θ

×
∞∑

m=0

sin
[
(2m + 1)π

α
arccos

(
x+u sin θ√

u2+2xu sin θ+x2

)]
2m + 1

×
[
Iν

(
x2 + 2xu sin θ + u2

8 cos2 θ

)

+Iν+1

(
x2 + 2xu sin θ + u2

8 cos2 θ

)]}
, (12)

with ν = (2m + 1)π/(2α) − 1/2. Integrating over θ in Eq. (7)
then provides our final result for the mean rescaled perimeter
(MRP):

L̃2D(x) ≡
〈

L
(d)
2D(t)√
Dt

〉
=
∫ 2π

0
dθ M̃(θ,x), (13)

with M̃(θ,x) given explicitly in Eq. (12). As expected, the
MRP is a function of only one parameter, the rescaled distance
to the wall x = d/

√
Dt .

Interestingly, we show in Appendix A that the MRP, given
in Eqs. (13) and (12) for arbitrary x = d/

√
Dt , simplifies a

great deal in the important case of x = 0 for a Brownian motion
starting from the reflecting wall (or, equivalently, starting at
any fixed distance but for large times):

M̃(θ,0) = 2
√

π
cos θ

π − 2θ
. (14)

As a simple check, we recover, for θ = 0 (i.e., in the direction
parallel to the reflecting wall), the result for the nonconfined
case M̃(0,0) = 2/

√
π . Indeed, the potential reflections on

the wall do not affect the walk in the parallel direction. For
θ = π/2, outwards orthogonally to the wall, we recover the 1D
result obtained above M̃(π/2,0) = √

π , which is higher than
in the nonconfined case. Indeed, the wall pushes the trajectories
farther in this direction. Finally, it is straightforward to obtain
the MRP of the convex hull by integrating over the angle θ .

L̃2D(0) = 2
√

π Si(π ) = 6.56495 . . . , (15)

where Si(z) = ∫ z

0
sin x

x
dx . Note that the MRP for a walk

starting from the reflecting wall still grows as
√

D t , but
the prefactor 6.56495 . . . is lower than the nonconfined value√

16 π = 7.08982 . . . .
As x increases from zero, the scaling function L̃2D(x)

in (13), supplemented by (12), first decreases, achieves a min-
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imum, and then increases again before eventually saturating
to the constant

√
16 π corresponding to the nonconfined case

[see Fig. 1(b) for a plot]. This nonmonotonic behavior can
already be understood by analyzing the x → 0+ limit. From
Eq. (12), one can show that for small x (see Appendix B for
details)

M̃(θ,x) − 2
√

π
cos θ

π − 2θ
+ sin θx

=
{ √

π

2
cos θ
π−2θ

x2 + O(x3) for θ > 0,

C(θ ) x2ν0+2 + O(x2) for θ < 0,
(16)

where ν0 = θ/(π − 2θ ) and the amplitude C(θ ) has a compli-
cated expression (see Appendix B), which is negative for all
θ < 0. Interestingly, the leading order correction term in (16)
is nonanalytic only for θ < 0. Using Laplace’s method, the
integration over θ finally leads to

L̃(x) − 2
√

π Si(π ) ∼
x
1

−8
√

2π3

3�
(

3
4

) ( x

ln(1/x)

) 3
2

. (17)

Let us make a few remarks: (i) While, for any fixed θ , M̃(θ,x)
has a nonzero linear term in x for small x, the linear term
disappears when integrated over θ . (ii) Strikingly, the MRP
is nonanalytic as x → 0 (contrary to the 1D case), and (iii) it
starts decreasing from a value at x = 0 which is lower than its
x → ∞ limit, so it must display a minimum, as confirmed in
Fig. 1(b).

The existence of this surprising minimum can be quali-
tatively discussed by identifying the temporal regimes of a
Brownian motion starting at a distance d from the reflecting
wall: (i) At short times (i.e., x � 1), the walker does not see
the reflecting wall, and the unconfined value of the MRP 4

√
π

is recovered. (ii) After a time of order d2/D (i.e., x � 1), the
reflecting wall starts impacting the trajectory by progressively
reducing the space effectively accessible to the Brownian
motion and thus decreasing the MRP. (iii) Next, these reflected
trajectories start contributing to the outwards part of the convex
hull (with respect to the plane). This effective repulsion is an
antagonistic effect of the wall that turns out to increase the
MRP. Finally, contrary to the 1D case, the MRP displays a
complex behavior with x, involving a minimum. In addition,
this minimum is global, implying in particular that the MRP is
no longer minimized when the Brownian motion starts from
the wall, but for a nontrivial value of x ≈ 0.3.

Insights on this minimum may further be gained by
considering the mean span in direction θ given by
〈M(d)(θ,t)〉 + 〈M(d)(−θ,t)〉 involved in (7), whose small x

development is obtained by combining the two forms of (16).
Knowing that the mean span in direction θ at x = 0 is lower
than its large x limit and that it starts decreasing [C(θ ) < 0], it
displays a minimum for θ �= 0 and θ �= π/2 (see Fig. 2). After
integration over θ , the nonmonotonicity remains.

FIG. 2. (Color online) Mean span in direction θ as a function
of the rescaled distance x for different values of θ . Like the mean
perimeter of the convex hull, this quantity displays a minimum with
respect to x for all directions except parallel or perpendicular to the
wall.

In conclusion, we have studied analytically the mean
perimeter of the convex hull of a Brownian motion in one
and two dimensions in the presence of a reflecting wall at
the origin. In two dimensions, this confinement leads to a
striking nonmonotonic and nonanalytic (for small distances)
behavior of the mean perimeter as a function of the scaled
starting distance from the wall. The nonmonotonicity in 2D
originates from the competition between two antagonistic
effects due to the presence of the wall: reduction of the space
accessible to the Brownian motion and effective repulsion.
While these two effects are also at work in one dimension,
they do not lead to a nonmonotonicity. Our work opens up
several interesting questions for future studies. It would be
interesting to know whether this nonmonotonicity persists in
d > 2 dimensions. Computing the mean area of the convex
hull in two dimensions in the presence of a reflecting wall
remains challenging. Finally, it would be interesting to study
other forms of confinements, for instance, a Brownian motion
in an enclosed space or in the presence of an external confining
potential.

Support from European Research Council Starting Grant
No. FPTOpt-277998 is acknowledged. S.N.M. acknowledges
support from ANR Grant No. 2011-BS04-013-01 WALKMAT.

APPENDIX A: DERIVATION OF M̃(θ,0)

We start from Eq. (12) in the main text and first rewrite the
1 on the right hand side (inside the integral) as

u√
π cos θ

e
− u2

8 cos2 θ

+∞∑
m=0

(−1)m

2m + 1
2

e
u2

8 cos2 θ√
2π u2

8 cos2 θ

= 1. (A1)

A change in variables and the introduction of a regularization
parameter β yield

M̃(θ,0) = 4√
π

cos θ

∞∑
m=0

(−1)m

2m + 1

∫ +∞

0
dv e−βv

(√
2

π

ev

√
v

− Iν(v) − Iν+1(v)

)
︸ ︷︷ ︸

A(β,m)

∣∣∣∣∣∣
β=1

, (A2)
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where A(β,m) can be shown to be given by

A(β,m) =
√

2

β − 1
− (β +

√
β2 − 1)−ν√

β2 − 1

− (β +
√

β2 − 1)−ν−1√
β2 − 1

. (A3)

Using next that
∞∑

m=0

(−1)ma− (2m+1)π
2α

+ 1
2

2m + 1
= √

a arctan(a− π
2α ) (A4)

and taking the limit β → 1 give the mean extension in the
direction θ ,

M̃(θ,0) = 2
√

π
cos θ

π − 2θ
. (A5)

APPENDIX B: ASYMPTOTIC EXPANSION OF M̃(θ,x)
FOR SMALL DISTANCES

We give here the main steps for the derivation of the small x
development ofM̃(θ,x) stated in Eq. (16) in the main text. The
linear term in x (for −π/2 < θ < π/2) and the quadratic term
(for 0 < θ < π/2) are obtained by integration over u of the
small x development of the survival probability. In turn, these
integrals can be carried out by introducing, as performed in the

calculation of the order 0 of M̃(θ,x), a regularization factor
β [see Eq. (A2)]. The integrals involved can be calculated
straightforwardly. However, for −π/2 < θ < 0, this method
produces a diverging coefficient for the quadratic term, which
reveals a nonanalytic behavior whose calculation is presented
below.

The term T0 responsible for the divergence is

T0 =
∫ +∞

0
du

{
2

π
−

√
u2 + 2xu sin θ + x2

√
π cos θ

e
− u2+2xu sin θ+x2

8 cos2 θ

× cos

[
π

α
arccos

(
u + x sin θ√

u2 + 2xu sin θ + x2

)]

× Iν0

(
u2 + 2xu sin θ + x2

8 cos2 θ

)}
,

(B1)

with ν0 = θ/(π − 2θ ). The asymptotic behavior of T0 can
be conveniently analyzed by introducing the new variable of
integration

z = u2 + 2xu sin θ + x2

x2 cos2 θ
. (B2)

It leads to

T0 =
∫ 1/ cos2 θ

1
dz

x cos θ

2
√

z − 1

{
2

π
− x√

π

√
z cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
e− x2z

8 Iν0

(
x2z

8

)}

+
∫ +∞

1
dz

x cos θ

2
√

z − 1

{
2

π
− x√

π

√
z cos

[
π

α
arccos

(√
z − 1√

z

)]
e− x2z

8 Iν0

(
x2z

8

)}

≡ I1 + I2. (B3)

The first integral I1 can be written as

I1 = −2x

π
sin θ − x2 cos θ

2
√

π

∫ 1/ cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
e− x2z

8 Iν0

(
x2z

8

)
. (B4)

The second integral I2 cannot be split as it leads to two diverging contributions. Subtracting to the integrand the order 0 given by∫ +∞

0
dz

x cos θ

2
√

z

[
2

π
− x√

π

√
z e− x2z

8 Iν0

(
x2z

8

)]
= 4 ν0

cos θ√
π

, (B5)

we obtain

I2 = 4 ν0
cos θ√

π
+
∫ +∞

1
dz

x cos θ

π

(
1√

z − 1
− 1√

z

)
− x2 cos θ

2
√

π

∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}

× e− x2z
8 Iν0

(
x2z

8

)
−
∫ 1

0
dz

x cos θ

2
√

z

[
2

π
− x√

π

√
z e− x2z

8 Iν0

(
x2z

8

)]
. (B6)

This finally yields

T0 = 4θ cos θ√
π (π − 2θ )

− 2x

π
sin θ + C(x,θ ), (B7)
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with

C(x,θ ) = x2 cos θ

2
√

π

{∫ 1

0
dz e− x2z

8 Iν0

(
x2z

8

)
−
∫ 1/ cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
× e− x2z

8 Iν0

(
x2z

8

)

−
∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
e− x2z

8 Iν0

(
x2z

8

)}
. (B8)

The constant and linear terms of Eq. (B7) contribute to give the constant and linear terms of Eq. (16) of the main text. As for the
last term, we use the development of the integrand of Eq. (B8) for small x,

e− x2z
8 Iν0

(
x2z

8

)
∼

x→0

x2ν0zν0

16ν0�(1 + ν0)
+ O(x2+2ν0 ) (B9)

to obtain

C(x,θ ) ∼
x→0

C(θ )x2+2ν0 + O(x2), (B10)

where

C(θ ) = cos θ

2
√

π16ν0�(1 + ν0)

(
1

1 + ν0
−
∫ 1/ cos2 θ

1
dz

√
z

z − 1
cos

[
π

α
arccos

(
−

√
z − 1√

z

)]
zν0

−
∫ +∞

1
dz

{√
z

z − 1
cos

[
π

α
arccos

(√
z − 1

z

)]
− 1

}
zν0

)
. (B11)

Replacing ν0 and α with their values θ/α and π − 2θ finally leads to the small x development of M̃(θ,x) for −π/2 < θ < 0 [see
Eq. (16) of the main text].

M̃(x) = 2
√

π cos θ

π − 2θ
− sin θ x + C(θ )x2+ 2θ

π−2θ + O(x2). (B12)

APPENDIX C: NUMERICAL SIMULATIONS

We computed the mean perimeter of the convex hull of a Brownian motion via numerical simulations. We constructed Gaussian
random walks of 105 steps with a time step 	τ = 10−3 when the walker is farther than a distance d � 0.2 from the wall. When
the walker approaches the wall, we take an adapted time step quadratic in the distance d to the wall 	τ = (0.1 d + λ)2 with
λ = 0.01. The parameter λ should not be too small to prevent the computation time from diverging. The convex hull is then
constructed using the Graham scan algorithm (see Ref. [24]) for each Brownian walk, with its perimeter calculated and averaged
over 105 realizations. Agreement is found with our analytical prediction [see Fig. 1(b)].
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