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To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the
combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic
model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of
combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside
from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what
the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions
of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or
without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the
TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known
benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays
between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in
the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system
viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation
wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to
increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes
part in both the thermodynamic and hydrodynamic responses.
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I. INTRODUCTION

Combustion has long been playing a dominant role in
the transportation and power generation. More than 80%
of world energy is from various combustion processes. For
the foreseeable future it will remain to be the major energy
conversion process [1]. At the same time, the low energy
conversion efficiency of existing combustion engines has been
becoming the major source of air pollution and driving force
for climate change [2]. Roughly speaking, there are two kinds
of fuels, the nuclear fuel and the organic fuel. The latter
contains the organic materials such as hydrocarbon natural fuel
and artificial fuel after processing. Various medical wastes [3]
belong to the organic fuel. To achieve low emissions, fuel
lean and high speed combustion, and enable new engine
technologies, in recent years, some new combustion concepts,
such as pulsed and spinning detonation engines [4,5], mi-
croscale combustion [6,7] and nanopropellants [8,9], partially
premixed and stratified combustion [10], plasma assisted
combustion [11–13], and cool flames [14], have been proposed
and developed.

However, there are still a number of problems, for example,
(i) for spinning detonation, the influences of the wall curvature
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and fuel-air mixing on the detonation initiation and propa-
gation modes, (ii) for high pressure stratified combustion,
the ignition to detonation transition at low temperature, (iii)
for plasma assisted combustion, the highly nonequilibrium
energy transfer between electrons, electronically and vibra-
tionally excited molecules, and neutral molecules, (iv) for cool
flames, the hydrodynamics, chemical kinetics, and kinetics-
transport coupling, are challenging our current understanding
[1,15–17]. All these new combustion concepts involve com-
plicated nonequilibrium chemical and transport processes.

For a long time, the main way people know the combustion
process is experimental and theoretical research [18–24]. In
recent five decades, the numerical simulation of combustion
process has achieved great success [24–28]. To simulate a com-
bustion process, the following steps are needed: (i) establish a
physical model; (ii) establish discrete control equations; (iii)
numerical experiments and data analysis. Generally speaking,
for a combustion system, there are three levels of description
which are in the microscopic, mesoscopic, and macroscopic
scales, respectively. The microscopic scale is generally re-
ferred to the description at molecular dynamic (MD) level.
The main numerical tool is the MD simulation. Via study at
this level, the reaction rate equation can be established. The
macroscopic scale is generally referred to the description based
on Navier-Stokes equations. At this level, the mainly con-
cerned are hydrodynamic nonequilibrium (HNE) behaviors,
specifically, the evolutions of the density, temperature, flow
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velocity, and pressure. The mesoscopic description is generally
referred to the description based on the gas kinetic theory, more
specifically, the Boltzmann equation. At this level, we can
study more details of the interfacial structures and the interplay
between the HNE and the thermodynamic nonequilibrium
(TNE) behaviors.

What is used in the most engineering applications is
the macroscopic or hydrodynamic description. The physical
model at this level consists of some specific form of the
hydrodynamic equations coupled with some phenomenolog-
ical reaction rate equation, which is constructed according
to the conservation laws of mass, momentum, and energy,
as well as some suitable simplifications. To establish the
discrete control equations, the first step is to choose a
coordinate system where the coordinate axes should adapt to
the edge of the computational and physical domains. When the
computational domain is rectangular, cylindrical, or conical,
the generally chosen coordinate system can be orthogonal,
cylindrical, or spherical. The second step is to establish a
structured, unstructured, or block-structured grid according to
the specific situation. The third step is to choose or formulate
a discretization scheme. The frequently used schemes include
the finite difference (FD), the finite volume, the finite element,
the finite analytic [29], the boundary element, the integration
transformation, the spectral method, etc.

In the recent three decades, the lattice Boltzmann (LB)
method [30–49] has been becoming a powerful tool to
simulate various complex flows. Due to the importance of
combustion phenomena, one can find a number of LB papers
in literature [50–67]. The pioneering LB model for combustion
systems was given by Succi et al. [50] in 1997. This work is
based on the assumptions of fast chemistry and cold flames
with weak heat release. In the following years, Filippova
and Hänel [51–53] proposed a kind of hybrid scheme for
low Mach number reactive flows. The flow field is solved by
modified lattice Bhatnagar-Gross-Krook (BGK) method and
the transport equations for energy and species are solved by a
FD scheme. Via the LB method, Yu et al. [54] simulated scalar
mixing in a multicomponent flow and a chemical reacting flow.
Yamamoto et al. [55] constructed a LB scheme for combustion
phenomena including the reaction, diffusion, and convection
effects. Lee et al. [58] presented a double-distribution function
LB model to solve the laminar diffusion flames within the
context of Burke-Schumann flame sheet model. In recent
years, Chen et al. [60,61] developed a coupled LB method
for the low Mach number combustion and presented some
meaningful results [62–67].

In brief, LB modeling of combustion phenomena has
long been an interesting topic, but was mainly focused on
low Mach number combustion where the incompressible LB
model works. In those studies, the LB model works as a kind
of alternative scheme to recover the hydrodynamic model.
In those thermal LB models, the temperature T could not
be described by the same distribution function (DF) which
describes the density ρ and flow velocity u. In some LB
models, it was further assumed that the chemical reaction has
no effect on the flow field.

As a special case of combustion, the explosion phenomena
lead to accidents or disasters sometimes. But the controlled
explosion has been widely applied in various engineering

problems, such as explosion painting, explosion cleaning,
explosion working, explosion propulsion, demolition blasting,
blasting mining, blasting excavation, etc. The traditional
computational fluid dynamics (CFD) has been used to simulate
explosion for many years. It is interesting to extend the LB
model to simulate such complex phenomena. As a special
discretization of the Boltzmann equation, the appropriately
designed LB model should possess more kinetic information
which is beyond the description of the Navier-Stokes equa-
tions. For convenience of description, we refer such a LB
kinetic model as to LBKM.

To model a more practical combustion phenomenon, an
appropriate LBKM should be thermal, compressible, and work
for both the low and the high Mach number flows. At the
same time, the chemical reaction and flow behavior should
couple naturally. In such a LBKM, the density ρ, flow velocity
u, temperature T , and relevant higher-order kinetic moments
should be described by the same DF. It should work as a
physical tool to probe both the HNE and TNE [33,44,68].

In recent years, the development of LB models for high
speed compressible flows [69–77] makes it possible to sim-
ulate systems with shock wave. Very recently we presented
two LBKMs for high Mach combustion and detonation
phenomena [78,79]. The first is in Cartesian coordinates [78].
The second [79] is in polar coordinate system and designed
for simulating the explosion and implosion behaviors. Both
the two models are based on the single-relaxation-time (SRT)
BGK-Boltzmann equation. Consequently, the Prandtl number
(Pr), is fixed at 1. To make the Prandtl number flexible, a solu-
tion is to use a multiple-relaxation-time (MRT) version of the
LBKM. Early in 1989, Higuera, Succi, and Benzi developed a
strategy for building suitable collision operators [30], which is
the precursor of MRT models [31,32,74,75,80]. In this work,
we present a MRT-LBKM for low and high Mach number
combustion phenomena. In this model, the viscosity and heat
conductivity can be adjusted independently. More importantly,
the model can be used to track the TNE effects and investigate
the interplay between the HNE and TNE behaviors.

The rest of the paper is organized as follows. In Sec. II,
the MRT-LBKM for combustion phenomena is formulated.
In Sec. III, the Chapman-Enskog analysis is performed. The
validation and verification of the model are presented in
Sec. IV. Some discussions on the physical gains and computing
costs of various LB models are shown in Sec. V. In Sec. VI, the
model is used to probe some fine structures of the detonation
wave. Section VII summarizes and concludes this paper.

II. FORMULATION OF THE LATTICE BOLTZMANN
KINETIC MODEL

The practical combustion process is very complicated. To
study some fundamental behaviors in the combustion system,
in this work we propose a simple LBKM described by the
following equation:

∂fi

∂t
+ viα

∂fi

∂rα

= −M−1
il

[
R̂lk

(
f̂k − f̂

eq

k

) + Âl

] + Ci , (1)

Ci = dfi

dt

∣∣∣∣
C

, (2)
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where i (= 1,2,. . . ,N ) is the index of discrete velocity, N is the
total number of the discrete velocities used in the LBKM, fi

is the discrete distribution function, viα is the α component
of the ith discrete velocity, α = x, y; f̂k = Mkifi (f̂ eq

k =
Mkif

eq

i ) is the moment of the (equilibrium) distribution
function and formally the (equilibrium) distribution function
in the moment space; Mki is the element of the matrix
M connecting the vector of discrete distribution function
f = (f1, f2, . . . ,fN )T , and the vector f̂ = (f̂1, f̂2, . . . , f̂N )T ;
R̂ = MRM−1 = diag(R1,R2, . . . ,RN ) is a diagonal matrix
whose element Rk describes speed of f̂k approaching f̂

eq

k ;
Âl is the lth element of Â = (0, . . . ,0,Â8,Â9,0, . . . ,0)T and is
a modification to the collision operator R̂lk(f̂k − f̂

eq

k ), where

Â8 = ρT
R5 − R8

R5

[
4ux

(
∂ux

∂x
− 1

D + I

∂ux

∂x
− 1

D + I

∂uy

∂y

)

+ 2uy

(
∂uy

∂x
+ ∂ux

∂y

)]
, (3)

Â9 = ρT
R7 − R9

R7

[
4uy

(
∂uy

∂y
− 1

D + I

∂ux

∂x
− 1

D + I

∂uy

∂y

)

+ 2ux

(
∂uy

∂x
+ ∂ux

∂y

)]
. (4)

The reason for this modification is as follows. Although
from the mathematical point of view, the relaxation coefficient
Rk can be independently adjusted for each kinetic mode
(f̂k − f̂

eq

k ), from the physical point of view, coupling may
exist between or among different kinetic modes. To ensure
the MRT model can present correct macroscopic behavior,
one can perform the Chapman-Enskog analysis and analyze
the consistency of the terms describing transportation in the
recovered hydrodynamic equations to find a solution for the
modification to the collision term [75]. This modification is
added so that the LBKM can recover the consistent Navier-
Stokes equations in the hydrodynamic limit. Ci is the chemical
term added to the LB equation and will be given a specific
form in the following part. For convenience of description
below, we introduce Ai = M−1

il Âl . In this work, we consider
a two-dimensional (D = 2) system where the particle mass is
unity. The discrete equilibrium distribution function satisfies
the following relations:∑

f
eq

i = ρ =
∑

fi , (5)

∑
f

eq

i viα = ρuα =
∑

fiviα , (6)

∑
f

eq

i

(
v2

i + η2
i

) = ρ[(D + I )T + u2] =
∑

fi

(
v2

i + η2
i

)
,

(7)

∑
f

eq

i viαviβ = ρ(δαβT + uαuβ), (8)

∑
f

eq

i

(
v2

i + η2
i

)
viα = ρuα[(D + I + 2)T + u2], (9)

∑
f

eq

i viαviβviχ = ρ(uαδβχ + uβδχα + uχδαβ)T

+ ρuαuβuχ , (10)

∑
f

eq

i

(
v2

i + η2
i

)
viαviβ = ρδαβ[(D + I + 2)T + u2]T

+ ρuαuβ[(D + I + 4)T + u2],

(11)

∑
f

eq

i η2
i viαviβ = ρδαβIT 2 + ρuαuβIT , (12)

∑
f

eq

i

(
v2

i + η2
i

)
η2

i = ρIT [u2 + (D + 3I )T ], (13)

∑
f

eq

i

(
v2

i + η2
i

)
v2

i viα = ρuα[u4 + (D + 2)(D + I + 4)T 2

+ (2D + I + 8)u2T ], (14)

∑
f

eq

i

(
v2

i + η2
i

)
η2

i viα = ρuαIT [u2 + (D + 3I + 2)T ],

(15)

where ρ, T , p (=ρT ), and uα are the density, temperature,
pressure, and velocity, respectively. Aside from the transla-
tional degrees of freedom, ηi is a free parameter introduced
to describe the I extra degrees of freedom corresponding
to molecular rotation and/or internal vibration. The internal
kinetic energy per unit volume is E = ρ(D + I )T/2.

Actually, Eqs.(5)–(15) can be uniformly written in a matrix
form, i.e.,

M × feq = f̂eq , (16)

where the boldface symbols feq = (f eq

1 ,f
eq

2 , . . . ,f
eq

N )T

and f̂eq = (f̂ eq

1 ,f̂
eq

2 , . . . ,f̂
eq

N )T denote N -dimensional
column vectors. The matrix M = (M1,M2, . . . ,MN )T ,
Mi = (mi1,mi2, . . . ,miN ), where m1i = 1, m2i = vix , m3i =
viy , m4i = v2

i + η2
i , m5i = v2

ix , m6i = vixviy , m7i = v2
iy ,

m8i = (v2
i + η2

i )vix , m9i = (v2
i + η2

i )viy , m10i = v3
ix , m11i =

v2
ixviy , m12i = vixv

2
iy , m13i = v3

iy , m14i = (v2
i + η2

i )v2
ix , m15i =

(v2
i + η2

i )vixviy , m16i = (v2
i + η2

i )v2
iy , m17i = η2

i v
2
ix , m18i =

η2
i vixviy , m19i = η2

i v
2
iy , m20i = (v2

i + η2
i )η2

i , m21i = (v2
i +

η2
i )v2

i vix , m22i = (v2
i + η2

i )v2
i viy , m23i = (v2

i + η2
i )η2

i vix ,
m24i = (v2

i + η2
i )η2

i viy . Correspondingly, f̂
eq

1 = ρ, f̂
eq

2 =
ρux , f̂

eq

3 = ρuy , f̂
eq

4 =ρ[(D+I )T +u2], f̂
eq

5 =ρ(T +u2
x),

f̂
eq

6 = ρuxuy , f̂
eq

7 = ρ(T + u2
y), f̂

eq

8 = ρux[(D + I + 2)

T + u2], f̂
eq

9 = ρuy[(D + I + 2)T + u2], f̂
eq

10 = 3ρuxT +
ρu3

x , f̂
eq

11 = ρuyT + ρu2
xuy , f̂

eq

12 = ρuxT + ρuxu
2
y , f̂

eq

13 =
3ρuyT + ρu3

y , f̂
eq

14 = ρ[(D + I + 2)T + u2]T + ρu2
x[(D +

I + 4)T + u2], f̂
eq

15 = ρuxuy[(D + I + 4)T + u2], f̂
eq

16 =
ρ[(D + I + 2)T + u2]T + ρu2

y[(D + I + 4)T + u2], f̂
eq

17 =
ρIT 2 + ρu2

xIT , f̂
eq

18 = ρuxuyIT , f̂
eq

19 = ρIT 2 + ρu2
yIT ,

f̂
eq

20 = ρIT [u2 + (D + 3I )T ], f̂
eq

21 = ρux[u4 + (D + 2)
(D + I + 4)T 2 + (2D + I + 8)u2T ], f̂

eq

22 = ρuy[u4 + (D +
2)(D + I + 4)T 2 + (2D + I + 8)u2T ], f̂

eq

23 = ρuxIT [u2 +
(D + 3I + 2)T ], f̂

eq

24 = ρuyIT [u2 + (D + 3I + 2)T ].
Formally, compared with the MRT version of the LBKM for

high speed compressible flows [74,75], the second term Ci in
the right sides of Eq. (1) describes the variation of distribution
function due to the chemical reaction.
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The actual combustion processes are very complicated. In
this work, we consider the simple combustion processes and
present a simple LBKM based on the following assumptions:

(1) The flow behavior is described by a single distribution
function f . The relaxation coefficient Rk can be roughly
regarded as a constant, where k = 1, 2, . . ., N .

(2) The radiative heat loss is negligible.
(3) The reaction process is irreversible and described by

an empirical or semiempirical equation

λ′ = dλ

dt
= F (λ), (17)

where λ = ρp/ρ is the concentration of the reaction product in
the system and denotes the progress of the reaction; ρp is the
density of the reaction product; ρ is the density of the whole
system.

(4) The chemical energy is directly transformed into the
internal energy in the following form:

dE

dt

∣∣∣∣
C

= ρQλ′, (18)

where Q is the amount of heat released by the chemical
reactant per unit mass.

(5) The chemical reaction is slow enough, compared with
kinetic process of approaching thermodynamic equilibrium,
so that

df

dt

∣∣∣∣
C

≈ df eq

dt

∣∣∣∣
C

. (19)

The chemical reaction results only in the increase of local
temperature T and the local density ρ and hydrodynamic
velocity u remain unchanged. Thus,

df eq

dt

∣∣∣∣
C

= ∂f eq

∂T

dT

dt

∣∣∣∣
C

. (20)

The equilibrium distribution function f eq used here reads as

f eq = ρ

(
1

2πT

)D/2( 1

2πIT

)1/2

exp

[
− (v − u)2

2T
− η2

2IT

]
,

(21)

which gives

∂f eq

∂T
= −(1 + D)IT + I (v − u)2 + η2

2IT 2
f eq . (22)

It is easy to get

dT

dt

∣∣∣∣
C

= 2Q

D + I
F (λ) (23)

from the relation E = ρ(D + I )T/2 and Eqs. (17) and (18).
Substituting Eqs. (22) and (23) into (20) gives

Ci = f
eq

i Q
−(1 + D)IT + I (vi − u)2 + η2

i

I (D + I )T 2
F (λ). (24)

Equations (1) can be rewritten as 24 coupled equations in
the two-dimensional case. Consequently, we need a discrete
velocity model (DVM) with at least 24 discrete velocities.
To obtain the high computational efficiency, we choose the
following two-dimensional DVM which only has 24 discrete

13

11

15 16

9

1014

12

i 24=

i 17=

i 18=

i 19=

i 20=

i 21=

i 23=

i 22=

3

2

4

1

56

7 8

FIG. 1. Schematic of the discrete velocity model.

velocities (see Fig. 1):

vi =
{

cyc : (±1,0) for 1 � i � 4,

cyc : (±1,±1) for 5 � i � 8,
(25)

vi =

⎧⎪⎨
⎪⎩

vavi for 1 � i � 8,

vbvi−8 for 9 � i � 16,

vcvi−16 for 17 � i � 24,

(26)

ηi =

⎧⎪⎨
⎪⎩

ηa for 1 � i � 8,

ηb for 9 � i � 16,

ηc for 17 � i � 24,

(27)

where cyc indicates the cyclic permutation. For convenience
of description, we refer the two-dimensional DVM with 24
discrete velocities as to D2V24.

It has been known that the spurious oscillations occurring
near shock wave with finite-difference equations are related to
the dispersion term in the corresponding modified differential
equations. If the sign of the dispersion coefficient, say ν,
is properly adjusted, that is, the sign changes across shock
wave, ν > 0 upstream and ν < 0 downstream, the undesirable
oscillations can be totally suppressed. Therefore, in this work,
the spatial derivatives in Eq. (1) are calculated by adopting
the nonoscillatory and nonfree-parameters dissipative (NND)
finite-difference scheme [81]. The evolution of chemical
process is described by

∂λ

∂t
+ uα

∂λ

∂rα

= ω1p
m(1 − λ) + ω2p

nλ(1 − λ), (28)

where the so-called Cochran’s rate function [82] is adopted
for the description of chemical reaction; ω1, ω2, m, and
n are adjustable parameters. Without losing generality, the
ignition temperature Tig = 1.1 is assumed in this work. Only
when T > Tig can the chemical reaction proceed. And we
choose the parameters m = n = 1. The temporal derivative in
Eq. (28) is solved analytically, and the spatial ones by the NND
scheme [81].

The inverse of the matrix M can be analytically solved
by the software MATLAB2011. It should be pointed out that,
although the complete formulas seems long and complicated,
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in practical simulations, the parameters (va , vb, vc, ηa , ηb, ηc)
are replaced by specific values, then the elements of matrix M
and its inverse M−1 are fixed also by specific values before the
main loop.

III. CHAPMAN-ENSKOG ANALYSIS OF THE MODEL

The Chapman-Enskog analysis shows that, only if feq

satisfies the statistical relation (16) or, specifically, the 11
equations (5)–(15), then the LB equation (1) can recover
the Navier-Stokes model for combustion. We show the main
procedure of the Chapman-Enskog analysis in the following.

From Eq. (1), we get

∂ f̂
∂t

+ ∂

∂rα

(Êα f̂) = −R̂(f̂ − f̂eq) + Â + Ĉ, (29)

where Ĉ = MC, Êα = MvαM−1, and vα = diag(v1α,

v2α, . . . ,vNα) is a diagonal matrix.
Expanding the variables with respect to ε corresponding

the Knudsen number, as

fi = f
(0)
i + f

(1)
i + f

(2)
i + . . . ,

Ai = A1i ,

Ci = C1i , (30)

∂

∂t
= ∂

∂t1
+ ∂

∂t2
,

∂

∂rα

= ∂

∂r1α

,

where the part of distribution function f
(l)
i = O(εl), the

modification term A1i = O(ε), the chemical term C1i = O(ε),
the partial derivatives ∂/∂tl = O(εl) and ∂/∂r1α = O(ε), (l =
1,2, . . .). It is easy to get from the first three subequations of
Eq. (30) that

f̂i = f̂
(0)
i + f̂

(1)
i + f̂

(2)
i + . . . , (31)

Âi = Â1i , (32)

Ĉi = Ĉ1i . (33)

By substituting the last two subequations of (30) and
Eqs. (31)–(33) into (29) and comparing the coefficients of
the same order of ε, we have

O(ε0) : f̂(0) = f̂eq, (34)

O(ε1):

(
∂

∂t1
+ Êα

∂

∂r1α

)
f̂(0) = −R̂f̂(1) + Â + Ĉ, (35)

O(ε2):
∂

∂t2
f̂(0) +

(
∂

∂t1
+ Êα

∂

∂r1α

)
f̂(1) = −R̂f̂(2), (36)

where f(l) = (f (l)
1 , f

(l)
2 , . . . ,f (l)

N )T . Specifically, f(0) is the
matrix for the equilibria of the moments, f(1) and f(2) are the
matrices for the first order and second order deviations from
equilibria.

From Eq. (35), we get

∂f̂
eq

1

∂t1
+ ∂f̂

eq

2

∂x1
+ ∂f̂

eq

3

∂y1
= −R1f̂

(1)
1 + Ĉ1, (37)

∂f̂
eq

2

∂t1
+ ∂f̂

eq

5

∂x1
+ ∂f̂

eq

6

∂y1
= −R2f̂

(1)
2 + Ĉ2, (38)

∂f̂
eq

3

∂t1
+ ∂f̂

eq

6

∂x1
+ ∂f̂

eq

7

∂y1
= −R3f̂

(1)
3 + Ĉ3, (39)

∂f̂
eq

4

∂t1
+ ∂f̂

eq

8

∂x1
+ ∂f̂

eq

9

∂y1
= −R3f̂

(1)
4 + Ĉ4, (40)

∂f̂
eq

5

∂t1
+ ∂f̂

eq

10

∂x1
+ ∂f̂

eq

11

∂y1
= −R5f̂

(1)
5 + Ĉ5, (41)

∂f̂
eq

6

∂t1
+ ∂f̂

eq

11

∂x1
+ ∂f̂

eq

12

∂y1
= −R6f̂

(1)
6 + Ĉ6, (42)

∂f̂
eq

7

∂t1
+ ∂f̂

eq

12

∂x1
+ ∂f̂

eq

13

∂y1
= −R7f̂

(1)
7 + Ĉ7, (43)

∂f̂
eq

8

∂t1
+ ∂f̂

eq

14

∂x1
+ ∂f̂

eq

15

∂y1
= −R8f̂

(1)
8 + Â8 + Ĉ8, (44)

∂f̂
eq

9

∂t1
+ ∂f̂

eq

15

∂x1
+ ∂f̂

eq

16

∂y1
= −R9f̂

(1)
9 + Â9 + Ĉ9. (45)

It is easy to get from Eqs. (5)–(15) and (24) that Ĉ1 = 0,
Ĉ2 = 0, Ĉ3 = 0, Ĉ4 = 2ρλ′Q, Ĉ5 = 2ρλ′Q/(D + I ), Ĉ6 =
0, Ĉ7 = 2ρλ′Q/(D + I ), Ĉ8 = 2ρuxλ

′Q(D + I + 2)/(D +
I ), Ĉ9 = 2ρuyλ

′Q(D + I + 2)/(D + I ). Substituting all the
specific forms of Ĉi and f̂

eq

i into (37)–(45) gives

∂ρ

∂t1
+ ∂jx

∂x1
+ ∂jy

∂y1
= 0, (46)

∂jx

∂t1
+ ∂ρ

(
T + u2

x

)
∂x1

+ ∂ρuxuy

∂y1
= 0, (47)

∂jy

∂t1
+ ∂ρuxuy

∂x1
+ ∂ρ

(
T + u2

y

)
∂y1

= 0, (48)

∂ξ

∂t1
+ ∂ρux[(D + I + 2)T + u2]

∂x1

+ ∂ρuy[(D + I + 2)T + u2]

∂y1
= 2ρλ′Q, (49)

∂ρ
(
T + u2

x

)
∂t1

+ ∂ρ
(
3uxT + u3

x

)
∂x1

+ ∂ρ
(
uyT + u2

xuy

)
∂y1

= −R5f̂
(1)
5 + ρλ′Q

2

D + I
, (50)

∂ρuxuy

∂t1
+ ∂ρ

(
uyT + u2

xuy

)
∂x1

+ ∂ρ
(
uxT + uxu

2
y

)
∂y1

= −R6f̂
(1)
6 , (51)
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∂ρ
(
T + u2

y

)
∂t1

+ ∂ρ
(
uxT + uxu

2
y

)
∂x1

+ ∂ρ
(
3uy + u3

y

)
∂y1

= −R7f̂
(1)
7 + 2ρλ′Q

D + I
, (52)

∂ρux[(D + I + 2)T + u2]

∂t1
+ ∂

∂x1
{ρ[(D + I + 2)T + u2]T

+ ρu2
x[(D + I + 4)T + u2]}

+ ∂ρuxuy[(D + I + 4)T + u2]

∂y1

= −R8f̂
(1)
8 + Â8 + 2ρuxλ

′Q
D + I + 2

D + I
, (53)

∂ρuy[(D + I + 2)T + u2]

∂t1
+ ∂

∂y1
{ρ[(D + I + 2)T + u2]T

+ ρu2
y[(D + I + 4)T + u2]}

+ ∂ρuxuy[(D + I + 4)T + u2]

∂x1

= −R9f̂
(1)
9 + Â9 + 2ρuyλ

′Q
D + I + 2

D + I
, (54)

where jx = ρux , jy = ρuy , and ξ = (D + I )ρT + (j 2
x +

j 2
y )/ρ is twice the total energy.

From Eq. (36), we get

∂ρ

∂t2
= 0, (55)

∂jx

∂t2
+ ∂f̂

(1)
5

∂x1
+ ∂f̂

(1)
6

∂y1
= 0 , (56)

∂jy

∂t2
+ ∂f̂

(1)
6

∂x1
+ ∂f̂

(1)
7

∂y1
= 0 , (57)

∂ξ

∂t2
+ ∂f̂

(1)
8

∂x1
+ ∂f̂

(1)
9

∂y1
= 0 . (58)

Adding Eqs. (46)–(49) and (55)–(58) leads to the following
equations:

∂ρ

∂t
+ ∂jx

∂x
+ ∂jy

∂y
= 0, (59)

∂jx

∂t
+ ∂ρ

(
T + u2

x

)
∂x

+ ∂ρuxuy

∂y
+ ∂f̂

(1)
5

∂x
+ ∂f̂

(1)
6

∂y
= 0, (60)

∂jy

∂t
+ ∂ρuxuy

∂x
+ ∂ρ

(
T + u2

y

)
∂y

+ ∂f̂
(1)
6

∂x
+ ∂f̂

(1)
7

∂y
= 0, (61)

∂ξ

∂t
+ ∂ρux[(D + I + 2)T + u2]

∂x

+ ∂ρuy[(D + I + 2)T + u2]

∂y

+ ∂f̂
(1)
8

∂x
+ ∂f̂

(1)
9

∂y
= 2ρλ′Q. (62)

From Eqs. (50)–(54) and (59)–(62), we finally obtain the
Navier-Stokes equations:

∂ρ

∂t
+ ∂jx

∂x
+ ∂jy

∂y
= 0, (63)

∂jx

∂t
+ ∂

(
p + ρu2

x

)
∂x

+ ∂ρuxuy

∂y

= ∂

∂x

[
ρT

R5

(
2
∂ux

∂x
− 2

D + I

∂ux

∂x
− 2

D + I

∂uy

∂y

)]

+ ∂

∂y

[
ρT

R6

(
∂ux

∂y
+ ∂uy

∂x

)]
, (64)

∂jy

∂t
+ ∂ρuxuy

∂x
+ ∂

(
p + ρu2

y

)
∂y

= ∂

∂x

[
ρT

R6

(
∂ux

∂y
+ ∂uy

∂x

)]

+ ∂

∂y

[
ρT

R7

(
2
∂uy

∂y
− 2

D + I

∂ux

∂x
− 2

D + I

∂uy

∂y

)]
,

(65)

∂ξ

∂t
+ ∂(ξ + 2p)ux

∂x
+ ∂(ξ + 2p)uy

∂y

= 2
∂

∂x

[
ρT

R8

(
cp

∂T

∂x
− 2ux

D + I

∂ux

∂x
− 2ux

D + I

∂uy

∂y

+ 2ux

∂ux

∂x
+ uy

∂ux

∂y
+ uy

∂uy

∂x

)
− 1

2

Â8

R8

]

+ 2
∂

∂y

[
ρT

R9

(
cp

∂T

∂y
− 2uy

D + I

∂ux

∂x
− 2uy

D + I

∂uy

∂y

+ 2uy

∂uy

∂y
+ ux

∂uy

∂x
+ ux

∂ux

∂y

)
− 1

2

Â9

R9

]
+ 2ρλ′Q.

(66)

Here, cp = (D + I + 2)/2 is the specific heat at constant
pressure. The specific heat at constant volume can be defined
as cv = (D + I )/2. Substituting Eqs. (3) and (4) into the above
equation (66) gives

∂ξ

∂t
+ ∂(ξ + 2p)ux

∂x
+ ∂(ξ + 2p)uy

∂y

= 2
∂

∂x

[
cp

ρT

R8

∂T

∂x
+ ρT

R5

(
− 2ux

D + I

∂ux

∂x
− 2ux

D + I

∂uy

∂y

+ 2ux

∂ux

∂x
+ uy

∂ux

∂y
+ uy

∂uy

∂x

)]

+ 2
∂

∂y

[
cp

ρT

R9

∂T

∂y
+ ρT

R7

(
− 2uy

D + I

∂ux

∂x
− 2uy

D + I

∂uy

∂y

+ 2uy

∂uy

∂y
+ ux

∂uy

∂x
+ ux

∂ux

∂y

)]
+ 2ρλ′Q, (67)

It is clear to find that, by substituting the specific form
of Â8 and Â9 into Eq. (66), the viscous coefficient in the
energy equation (67) is consistent with that in the momentum
equation (65). Up to this step, we can find that the proposed
MRT-LBKM recover the consistent Navier-Stokes equations
in the hydrodynamic limit.
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FIG. 2. (Color online) The profiles of the steady detonation: (a) ρ, (b) T , (c) p, (d) ux , (e) λ.

More discussions are as follows. The coefficient R̂ rep-
resents the inverse of the relaxation time from f̂ to its
equilibrium f̂eq. f̂1 = f̂

eq

1 , f̂2 = f̂
eq

2 , f̂3 = f̂
eq

3 , f̂4 = f̂
eq

4 .
Consequently, the values of R1, R2, R3, R4 have no influence
on the LB evolution. Furthermore, the relaxation parameters
Ri are not completely independent for the system with
isotropy constraints [74]. Specifically, R5, R6, R7 are related
to viscosity, and the viscosity coefficient is μ = ρT/Rμ when
R5 = R6 = R7 = Rμ; R8, R9 are related to heat conductivity,
and the heat conductivity coefficient is κ = cpρT /Rκ when
R8 = R9 = Rκ . Consequently, both the specific-heat ratio

γ = cp

cv

= D + I + 2

D + I
, (68)

and the Prandtl number,

Pr = cpμ

κ
= Rκ

Rμ

, (69)

are flexible in this model. When R5 = R6 = R7 = Rμ, R8 =
R9 = Rκ , the above Navier-Stokes equations reduce to

∂ρ

∂t
+ ∂jα

∂rα

= 0, (70)

∂jα

∂t
+ ∂p

∂rα

+ ∂ρuαuβ

∂rβ

= −∂Pαβ

∂rβ

, (71)

∂ξ

∂t
+ ∂(ξ + 2p)uα

∂rα

= 2ρλ′Q + 2
∂

∂rβ

(
κ

∂T

∂rβ

− Pαβuα

)
,

(72)

where

μB = μ

(
2

3
− 2

D + I

)
, (73)

Pαβ = −μ

(
∂uα

∂rβ

+ ∂uβ

∂rα

− 2

3

∂uχ

∂rχ

δαβ

)
− μB

∂uχ

∂rχ

δαβ. (74)

Specifically, Pxx = f̂
(1)
5 , Pxy = Pyx = f̂

(1)
6 , Pyy = f̂

(1)
7 .

IV. NUMERICAL TESTS OF THE MODEL

To validate and verify the proposed LBKM, here we show
simulation results of some well-known benchmark numerical
examples which include one for the steady detonation, three
for the Riemann problems, one for the shock reflection, and
one for the Couette flow. The parameter for chemical reaction
heat Q is not zero only for the first numerical test. For the cases
with the Couette flow, results with different specific-heat ratios
and Prandtl numbers are shown.

A. Steady detonation

As the first numerical test, a one-dimensional steady
detonation is simulated here to validate our model. The initial
physical quantities are

(ρ,T ,ux,uy,λ)L = (1.38837,1.57856,0.577350,0,1),
(75)

(ρ,T ,ux,uy,λ)R = (1,1,0,0,0),

where the suffixes L and R index two parts, 0 � x � 0.2 and
0.2 < r � 1, respectively. Here we choose va = 2.7, vb = 2.2,
vc = 1.2, ηa = 5, ηb = 3, ηc = 1.1, I = 3, �t = 5 × 10−6,
�x = �y = 2 × 10−4, Q = 1. The collision parameters in
MRT are R5 = R6 = R7 = 104 and 105 for the others. Figure 2
shows the profile of the steady detonation at time t = 0.39.
Figures 2(a)–2(e) give physical quantities ρ, T , p, ux , λ

versus x, respectively. The simulation results of LBKM,
analytic solutions of Chapman-Jouguet (CJ) theory [18,19,23],
and Zeldovich-Neumann-Doering (ZND) theory [20–23] are
shown in each panel. The solid lines with squares, the dashed
lines, and the solid lines are for LBKM simulation results,
CJ results, and ZND results, respectively. The simulation
results give physical quantities behind the detonation wave
(ρ,T ,ux,uθ ,λ) = (1.38869,1.57816,0.577384,0,1). Compar-
ing them with CJ results gives the relative differences 0.023%,
0.025%, 0.006%, 0%, and 0%, respectively. It is clear in
Figs. 2(a)–2(e) that the LBKM simulation results agree well
with the ZND results in the area behind von Neumann
peak. But, there exist significant differences in front of the
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FIG. 3. (Color online) The profiles of p in the evolution of the
steady detonation at times t = 0.29, 0.34, 0.39, respectively.

von Neumann peaks. This is because the ZND theory used
here ignores completely the effects of viscosity and heat
conduction, and the von Neumann peak is treated simply as
a strong discontinuity which is not true. While in the LBKM
results the effects of viscosity, heat conduction, and other kinds
of relevant transportation are included. This difference will
decrease with the decreasing of viscosity and heat conductivity.
This point will be further discussed in Sec. VI.

Figure 3 shows the pressure versus x at times t = 0.29,
0.34, 0.39, from left to right, respectively. Our simulation
gives detonation velocity vD = 2.06, and the analytic solution
is vD = 2.06395. The relative difference between them is
0.191% which is satisfying.

B. Riemann problems

In this section, our two-dimensional LBKM is used to solve
the one-dimensional Riemann problems where there is no
chemical reaction. Now, we give simulation results for three
typical Riemann problems, i.e., the Sod’s shock tube, the Lax’s
shock tube, and the Sjogreen’s problem.

1. Sod’s shock tube

For the problem of Sod’s shock tube, the initial condition
is described by

(ρ,T ,ux,uy)L = (1,1,0,0),
(76)

(ρ,T ,ux,uy)R = (0.125,0.8,0,0),

where left side L ∈ [0,0.5) and the right side R ∈ [0.5,1].
Figure 4 shows the computed density, temperature, pressure,
velocity profiles at the time t = 0.2. The lines are for analytical
solutions and solid lines with squares are for the LB simulation
results. The size of grid is �x = �y = 10−3, time step �t =
10−5, I = 3, and (va , vb, vc, ηa , ηb, ηc) = (2.5, 2.2, 1.2, 6.5,
3, 0). The collision parameters in MRT are R5 = R6 = R7 =
1.2 × 104, and other values of Ri are 105. It is easy to find in
Fig. 4 that the two sets of results have a satisfying agreement.

2. Lax’s shock tube

For this problem, the initial condition is described by

(ρ,T ,ux,uy)L = (0.445,7.928,0.698,0),
(77)

(ρ,T ,ux,uy)R = (0.5,1.142,0,0),

where L ∈ [−1,0) and R ∈ [0,1]. Figure 5 shows the physical
quantities (density, temperature, pressure, velocity) versus x

at the time t = 0.15. The lines are for exact solutions and
solid lines with squares correspond to our simulation results.
The parameters are set to be �x = �y = 10−3, �t = 10−5,
I = 1, (va , vb, vc, ηa , ηb, ηc) = (4.7, 3.3, 1, 6, 2.5, 0.9). The
collision parameters in MRT are R5 = R6 = R7 = 2 × 104,
R8 = R9 = 8 × 104, and other values of Ri are 105. We also
find a good agreement between the exact solutions and our
simulation results.

3. Sjogreen’s problem

The initial condition for the Sjogreen’s problem is

(ρ,T ,ux,uy)L = (1.0,0.5,−1.2,0),
(78)

(ρ,T ,ux,uy)R = (1.0,0.5,1.2,0),

where L ∈ [−0.5,0) and R ∈ [0,0.5]. Figure 6 shows the
physical quantities versus x at the time t = 0.03. The specific
correspondences are referred to the legends. The parameters
used here are �x = �y = 2 × 10−3, �t = 2 × 10−5, I = 4,
(va , vb, vc, ηa , ηb, ηc) = (0.4, 1.0, 1.8, 0.3, 1.9, 1.5). The
collision parameters in MRT are R8 = R9 = 2 × 104, and
others 5 × 104. We also find a good agreement between the
two sets of results.

C. Shock reflection

Shock reflection problem, which has been the subject of
considerable research effort over the last seven decades, is
one of the most important problems in both the science
and engineering fields. Of particular interest is, in general,

)d()c()b()a(

FIG. 4. (Color online) Comparison of numerical and theoretical results for the Sod shock tube at t = 0.2. Solid lines are for exact solutions
and solid lines with squares are for simulation results.
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FIG. 5. (Color online) Comparison of numerical and theoretical results for the Lax shock tube at t = 0.15. Solid lines are for exact solutions
and solid lines with squares are for simulation results.

the transition from so-called regular to irregular reflection.
Consider a plane shock (for example, one generated by a
wedge in steady inviscid flow) being reflected off a wall,
as schematically shown in Fig. 7(a). The type of reflection
depends on (M1, γ , θ ) parameter space, where M1, γ , and θ are
the incident shock wave Mach number, gas specific-heat ratio,
and flow deflection angle, respectively. In regular reflection,
the incident shock wave (I ) and the reflected shock wave (R)
meet at the surface and are typical for a large wall angle φ.
In the case of regular reflection, the conservations of mass,
momentum, and energy relate the state downstream of the
shock (subscript 2) to the state upstream (subscript 1) as
follows:

ρ2

ρ1
= (γ + 1)M2

1 sin2 φ

2 + (γ − 1)M2
1 sin2 φ

, (79)

p2

p1
= 2γM2

1 sin2 φ − (γ − 1)

γ + 1
, (80)

M2 sin2(φ − θ ) = γ + 1 + (γ − 1)
(
M2

1 sin2 φ − 1
)

γ + 1 + 2γ
(
M2

1 sin2 φ − 1
) , (81)

tan θ = tan φ
(
M2

1 cos2 φ − cot2 φ
)

1 + 1
2M2

1 (γ + cos 2φ)
. (82)

For fixed γ and M1, the shock angle φ behaves as a function
of the deflection angle θ .

Here, we show a numerical test as follows. An incoming
shock wave with Mach number M1 = 2.3094 has an angle of
φ = 30◦ to the wall. The computational domain is a rectangle
with length 0.3 and height 0.1. This domain is divided into
a 300 × 100 rectangular grid with �x = �y = 10−3. The
boundary conditions are composed of a reflecting surface

along the bottom boundary, supersonic outflow along the right
boundary, and Dirichlet conditions on the left and top boundary
conditions, given by

(ρ,T ,ux,uy)0,y,t = (1,0.5,2,0),
(83)

(ρ,T ,ux,uy)x,0.1,t = (1.25,0.56,1.9,−0.173205).

The parameters are chosen as �t = 5 × 10−6, I = 2 (γ =
1.5), (va , vb, vc, ηa , ηb, ηc) = (1.0, 2.7, 2.9, 1.0, 2.9,
0.96). The collision parameters in MRT are R5 = R6 = R7 =
1.8 × 105, R8 = R9 = 2.0 × 105, and other values of Ri are
105. Figure 7(b) shows contours of density at t = 0.5. The clear
shock reflection on the wall agrees well with the exact solution.
[For example, from the boundary conditions, especially the
bottom boundary condition shown by the second equation
in Eq. (83), we obtain tan θ = 0.173205/1.9. If substitute
the values of φ, M1, γ into Eq. (82), we get exactly the
same value for tan θ , 9.1161 × 10−2, if we calculate in single
precision.]

D. Couette flow

In order to demonstrate that the model is also suitable
for incompressible flows, we conduct a series of numerical
simulations of Couette flow. The upper wall, with the distance
H = 0.2 apart from the lower wall, moves with a fixed speed
u0. The lower wall is at rest. Periodic boundary conditions are
applied to the left and right boundaries, and the top and bottom
adopt the nonequilibrium extrapolation method.

In the first simulation of Couette flow, the initial state of the
fluid is ρ = 1, T = 1, ux = uy = 0. The viscous shear stress
transmits momentum into the fluid and changes the horizontal
speed profile [73]. Figure 8 shows the horizontal speed
distribution at various instants t = 1, 5, 30. The simulation

)d()c()b()a(

FIG. 6. (Color online) Comparison of numerical and theoretical results for the Sjogreen’s problem at t = 0.03. Solid lines are for exact
solutions and solid lines with squares are for simulation results.
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FIG. 7. Schematic (a) and density contour (b) of steady regular
shock reflection on a wall. In (b), from black to white, the density
increases.

results coincide well with the following analysis:

u = y

H
u0 + 2

π
u0

∞∑
n=1

[
(−1)n

n
exp

(
−n2π2 μt

ρH 2

)

×sin

(
nπy

H

)]
. (84)

The parameters are �x = 10−3, �t = 10−5, I = 2, (va , vb, vc,
ηa , ηb, ηc) = (0.8, 1.2, 1.3, 1.0, 2.7, 0.8). The grid number is
Nx × Ny = 1 × 200. The collision parameters are R5 = R6 =
R7 = 2 × 103, R8 = R9 = 1.0 × 104, and the others 5 × 104.

Figure 9 shows the temperature profiles in another four
simulations. In order to get a steady fluid state as soon as
possible, we give the initial temperature field as follows:

T = T1 + (T2 − T1)
x

H
+ μ

2κ
u2

0
x

H

(
1 − x

H

)
, (85)

where T1 (=1.0) and T2 (=1.01) are temperatures of the
lower and upper walls, respectively. The initial velocity field
is given as u = u0y/H . And the time is t = 0.01. Figures 9(a)
and 9(b) correspond to γ = 1.4 and 1.5, respectively. The case
Pr = 0.2 in Fig. 9(a) corresponds to �x = 10−3, �t = 10−5,
I = 3, va = 0.8, vb = 1.2, vc = 1.3, ηa = 1.1, ηb = 3.1, ηc =
0.7, R5 = R6 = R7 = 104, R8 = R9 = 2 × 103, R21 = R22 =
R23 = R24 = 103, and 5 × 104 for other collision parameters.
For the case Pr = 5.0 in Fig. 9(a), the parameters are

FIG. 8. (Color online) Horizontal speed distribution of Couette
flow at various instants: t = 1, 5, and 30.

)b()a(

FIG. 9. (Color online) Temperature profiles of Couette flow. (a)
γ = 1.4. (b) γ = 1.5.

ηc = 0.7, R5 = R6 = R7 = 2 × 103, R8 = R9 = 104, R21 =
R22 = R23 = R24 = 5 × 104, and the others are the same as
those for Pr = 0.2 in Fig. 9(a). Except I = 2 and ηb = 2.1,
all the other parameters for the cases Pr = 0.2 and Pr = 5.0
in Fig. 9(b) are the same as those for the cases Pr = 0.2 and
Pr = 5.0 in Fig. 9(a), respectively. It is clear that our simulation
results are in agreement with the analytical ones, and the
effects of the specific-heat ratio and the Prandtl number are
successfully captured.

The analytical solutions used in the shock tube and shock
reflection problems are based on the Euler equations. The
numerical tests show that, by using large collision parameters
(small viscosity and heat conductivity, etc.), the LBKM can
present results having a satisfying agreement with those based
on the Euler equations. The analytical solutions used in
the Couette flow problems are based on the Navier-Stokes
equations. The numerical tests show that the LBKM can
present results having a satisfying agreement with those of
Navier-Stokes equations.

V. PHYSICAL GAINS AND COMPUTING COSTS

We first discuss the computational costs for the MRT and
SRT versions of LBKM based on the same discrete velocity
model. In 2013, we proposed a uniform scheme for formulating
LBKM [76]. In this work, we formulate the discrete velocity
model according to the same idea. In this scheme, we first
check which moment relations of f eq are needed to recover
the hydrodynamic equations. Those moment relations can be
written in the uniform form

Mfeq = f̂eq , (86)

where M is N × N matrix, N is an integer to be fixed in
the next step. We rewrite the above moment relations in
the explicit Cartesian coordinates and check the equation
number which is the value of N . In this way we can find
the minimum number N of needed discrete velocities. This
scheme works for both the MRT-LBKM and SRT-LBKM
formulations. In this formulation scheme, we can roughly
estimate the computational costs of the MRT and SRT versions
as in the following.

The SRT and MRT versions of LB kinetic equations read
as

∂fi

∂t
+ viα

∂fi

∂rα

= − 1

τ

(
fi − M−1

il f̂
eq

k

) + Ci (87)
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TABLE I. Computing times for simulating a steady detonation
process using various versions of the LBKM.

Model Computing time (unit: s)

MRT D2V24 2293.93
SRT D2V24 2221.58
SRT D2V33 2461.58

and

∂fi

∂t
+ viα

∂fi

∂rα

= −M−1
il

[
R̂lk

(
f̂k − f̂

eq

k

) + Âl

] + Ci , (88)

respectively. Compared with the SRT version, the extra
computation cost of MRT includes two parts: the first part
is for computing f̂k = Mkifi , the second is for Âl which has
only two nonzero terms. As mentioned in Sec. II, an important
skill here is that the inverse of the matrix M should be solved
analytically before coding. We use the software MATLAB2011

to do this. Thus, the elements of M−1 have been replaced by
specific values before the main loop of the simulation, instead
of being numerically solved in each iteration step.

To have a rough estimation on the computing time, we
performed simulations of the same physical processes by using
various LB models. The computational facility is a personal
computer with Intel(R) Core(TM) 2 CPU Q9400 @2.66 GHz
and RAM 4.00 GB. Table I shows the computing times
for three LBKM simulations of the same steady detonation
behavior. The first simulation in Table I is actually the first
numerical test in Fig. 2. It is performed using the current
MRT-LBKM with 24 discrete velocities in Eq. (88). The
second is performed using the SRT-LBKM [Eq. (87)] with the
same D2V24, where the relaxation time is chosen as τ = 10−5,
and the other parameters are chosen as the same as in the
first simulation. The third is performed using the SRT-LBKM
described by the following equation:

∂fi

∂t
+ viα

∂fi

∂rα

= − 1

τ

(
fi − f

eq

i

) + Ci , (89)

with the D2V33 by Watari [73] where 33 discrete velocities
are used. Since the D2V33 works only for the case where
the specific-heat ratio is fixed at γ = 2, the parameter I = 0
is used in the third simulation, which does not influence the
computing time. It is easy to find that the computing time for
the simulation using the current MRT is only 3% more than
that using the SRT with the same DVM, and is 7% less than
that using the SRT with DVM with 33 discrete velocities.

It is interesting to have some comments on the MRT-LBKM
versus the Navier-Stokes model.

(1) The two-dimensional Navier-Stokes model is com-
posed of 4 nonlinear partial differential equations. The current
two-dimensional LBKM contains 24 (formally) linear equa-
tions.

(2) The linearity of the LB kinetic equations makes easy
the algorithm and coding. But the larger number of equations
increase the computational cost. If we are only interested in the
density ρ, the momentum ρu and the energy E, from which
the flow velocity u, temperature T can be obtained and then
the pressure p can also be obtained from the equation of state,

the Navier-Stokes model may be more efficient if without
considering parallel computing.

(3) It is understandable that a lower-cost model is generally
preferable. A higher-cost model shows its necessity to be
developed only in the following two cases: (a) it can bring
more information from which one can gain a more complete
or deeper insight into the problem under consideration, or (b)
it can bring more accurate results for the physical quantities
under consideration.
Physically, the proposed LBKM is roughly equivalent with
a Navier-Stokes model supplemented by a coarse-grained
model of the TNE behaviors in the continuum limit. The two-
dimensional Navier-Stokes model describes the behaviors of
the 4 quantities ρ, ρux , ρuy , and ξ , which are conserved in the
collision process. The 20 physical quantities f̂k − f̂

eq

k (with
k = 5, 6, . . ., 24 ) constitute a rough description on the TNE
behaviors. The conserved and nonconserved quantities are
complementary in describing more completely the behaviors
of complex flows. So, the LBKM proposed in the work belongs
to the above case (a).
As for case (b), by using the idea shown in this paper, it is
straightforward to construct a LBKM which can bring more
accurate values of ρ, ρux , ρuy , and ξ than the Navier-Stokes
model in the case or region where the local Knudsen number ε

is high, for example, around strong shock and detonation waves
or when the flow behavior under consideration is much faster
than the case considered in this work. To that aim, we need
only use a different DVM constructed according to a longer
list of moment relations of f eq . To save the computational
cost, we can prepare several, at least two, DVMs in the code.
The DVM can be chosen adaptively according to the local
Knudsen number ε. For example, when the local Knudsen
number ε is higher than the case where the Navier-Stokes
model works, the code will adaptively use a different DVM
with more discrete velocities. When the local Knudsen number
ε is smaller than some critical value, the code will adaptively
use a DVM with fewer discrete velocities. A coarse-grained
modeling or approximation fi = f

eq

i can be used at the first
iteration step after switching to a different DVM. The careful
discussion on LBKM with flexible DVMs is out of the scope
of the paper.

(4) One can always obtain the evolution equations of the
nonconserved quantities via the Chapman-Enskog analysis to
the Boltzmann equation, which is independent of the LBKM.
That is to say, without LBKM, one can also solve the cou-
pled 24 evolution equations of conserved and nonconserved
physical quantities using the traditional CFD scheme. But,
solving the coupled 24 nonlinear partial differential equations
is not an easy task. The 24 LB kinetic equations are (formally)
linear and have the same form. The computations in LBKM are
easy to be parallelized. In brief, when one aims to investigate
both the HNE and TNE behaviors, the LBKM is a convenient
model.

VI. NONEQUILIBRIUM INVESTIGATION
OF DETONATION

The LB kinetic model inherits naturally the function of
Boltzmann equation, describing nonequilibrium effects in the
system [33,44,68,76–79]. The departure of the system from
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local thermodynamic nonequilibrium can be roughly measured
by the difference between the high order kinetic moments of
fi and f

eq

i which are just (f̂k − f̂
eq

k ) in the current MRT-LB
kinetic equation (1). We define

�k = f̂k − f̂
eq

k . (90)

It is easy to find that �k = 0 for k = 1, 2, 3, 4 due to the
conservation of mass, momentum, and energy. Each nonzero
�k quantitatively describes the deviation status of the system
from its local thermodynamic equilibrium from its own side.
We can observe the thermodynamic nonequilibrium state in
the N -dimensional space opened by �k with k = 1, 2, . . ., N .
We further define a distance

d =
√√√√ N∑

1

�2
k, (91)

which is a rough and averaged estimation of the deviation
amplitude from the thermodynamic equilibrium, where �k

is assumed to be dimensionless. Thus, d = 0 when the
system is in the thermodynamic equilibrium and d > 0 in the
thermodynamic nonequilibrium state.

In this part, we give some results of �k in the evolution
of detonation. Corresponding to the simple definition of �k ,
we introduce some clear symbols as �vxvx

= �5, �vxvy
=

�6, �vyvy
= �7, �η2 = �4 − �5 − �7, �(v2+η2)vx

= �8,
�(v2+η2)vy

= �9, �vxvxvx
= �10, �vxvxvy

= �11, �vxvyvy
=

�12, �vyvyvy
= �13.

A short discussion is as follows. The nonequilibrium
behaviors of various modes may contribute to the system
evolution according to different amplification factors Rk , while
all the amplification factors becomes the same in the SRT-LB
model. Mathematically, the part Rk�k in the right side of
Eq. (29) increases with increasing Rk for fixed �k .

In this section, we first investigate the unsteady detonation,
then compare the cases where the detonation changes from
unsteady to steady. All these cases show complex interplay
between various HNE behaviors, between various TNE be-
haviors, and between the HNE and TNE behaviors.

A. Unsteady detonation: Simulations
with different space and time steps

Now, we investigate some nonequilibrium behaviors
in detonation phenomena. The initial physical quantities
(ρ,T ,ux,uy,λ) are given the same values as those in Eq. (75).
Here we choose va = 2.7, vb = 2.2, vc = 1.2, ηa = 1.5,
ηb = 0.5, ηc = 5.0, I = 3, Q = 1. The collision parameters
in MRT are Ri = 100. In numerical simulations, the space
and time steps should be small enough so that the spurious
transportation behaviors are negligible compared with the
physical ones. To assure that the numerical errors are small
enough, we simulate the same detonation behavior using
three sets of spatial and temporal steps: (i) �x = �y = 10−3,
�t = 10−5; (ii) �x = �y = 10−3, �t = 10−6; (iii) �x =
�y = 10−4, �t = 10−6.

Figure 10 shows the simulation results of physical quantities
(ρ, T , p, ux , λ, �vxvx

, �vxvy
, �vyvy

, �η2 , �vxvxvx
, �vxvxvy

,
�vxvyvy

, �vyvyvy
, �(v2+η2)vx

, �(v2+η2)vy
) versus x at time t =

0.35 in the three cases. A vertical dashed guideline is plotted

in each panel to guide the eye for the horizontal position
x = 0.8345 corresponding to the peak of pressure. It should
be pointed out that up to this time the detonation has not
obtained its steady state. The pressure at the von Neumann
peak will increase further. We choose such a time because it
is interesting to study the complex interplay between various
nonequilibrium behaviors in the unsteady detonation process:

(1) At the same time, t = 0.35, the detonation shown in
Fig. 3 has already been steady, but the current one has not.
The physical reason is that the viscosity of the system here is
much larger than that shown in Fig. 3. It takes more time for
the steady detonation wave to form.

(2) All the simulation results in Figs. 10(a)–10(o) are
physically reasonable. The simulation results of each quantity
in the three cases have a satisfying coincidence. It shows that
the grid size 0.001 and the time step 10−5 are small enough
for the current problem. Given Ri small enough, the physical
viscosity is much larger than numerical viscosity here.

(3) Figures 10(a)–10(e) show that the maximum values
of density, temperature, pressure, velocity are not located at
the same x coordinate, and the pressure peak is located in
the reaction zone where 0 < λ < 1. It shows that, before the
reaction finishes, the temperature first arrives at its peak value,
then the pressure, density, and flow velocity arrive at their peak
values. Here, we refer to the von Neumann peak as the point
where the pressure has its largest value. When the reaction
finishes, all the density, temperature, pressure, and the flow
velocity have passed their peak values.

(4) As shown in Figs. 10(f), 10(h), and 10(i), the sim-
ulation results of �vxvx

, �vyvy
, and �η2 satisfy the relation

�vxvx
+ �vyvy

+ �η2 = 0. Here, what �vxvx
, �vyvy

, and �η2

describe are the departures of the internal energies in the
x, y, and extra degrees of freedom from their average. The
relaxation coefficients R5 and R7 are related to evolution
speeds of the internal energies in x and y degrees of freedom,
respectively. This result is physically reasonable. The results in
Figs. 10(f), 10(h), and 10(i) show clearly that, when the system
is not in its thermodynamic equilibrium state, the internal
energies in different degrees of freedom may not equal each
other, that the exchange of the internal energies in different
degrees of freedom, due to the molecule collision, makes them
evolve towards their average.

(5) Both �vxvx
and �η2 show a crest and a trough

in the reaction zone, while �vyvy
shows a crest and two

troughs. The result of �vxvx
first shows a crest and then a

trough when the detonation wave travels forward, while �η2

show an opposite behavior. The crest of �vyvy
is in-between its

two troughs. Physically, comparing with the internal energy in
the y or extra degree of freedom, the internal energy in the x

degree of freedom first increases in the preshocked area. The
maximum absolute value of �vxvx

is the largest among �vxvx
,

�vyvy
, and �η2 in the whole range shown in the figure.

(6) Figures 10(g), 10(k), 10(m), and 10(o) show that the
results of �vxvy

, �vxvxvy
, �vyvyvy

, �(v2+η2)vy
are equal to zero.

Here, �vxvy
associates with the shear effect, �vxvxvy

, �vyvyvy
,

�(v2+η2)vy
are related to “the internal energy flow caused by

microscopic fluctuation” in the y direction. The results are
consistent with the fact that the simulated system is one
dimensional or uniformly symmetric in the y direction. There
is neither shear effect nor energy flux in the y direction.
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FIG. 10. (Color online) Physical quantities versus x at time t = 0.35 in three cases: (a) ρ, (b) T , (c) p, (d) ux , (e) λ, (f) �vxvx
, (g) �vxvy

,
(h) �vyvy

, (i) �η2 , (j) �vxvxvx
, (k) �vxvxvy

, (l) �vxvyvy
, (m) �vyvyvy

, (n) �(v2+η2)vx
, (o) �(v2+η2)vy

.

(7) It can be found in Figs. 10(j), 10(l), and 10(n)
that �vxvxvx

, �vxvyvy
, �(v2+η2)vx

deviate significantly from
zero. �vxvxvx

, �vxvyvy
, �(v2+η2)vx

are associated with “the
internal energy flow caused by microscopic fluctuation”
in the x direction. As the chemical energy is released

continuously in the reaction zone, the compression and
rarefaction make effects on the system successively, Those
actions make the velocity distribution function asymmet-
rical about the point (vx = ux , vy = uy) which is the
symcenter of the Maxwellian distribution [see Eq. (21)].
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(a () b () c)

(d () e () f)

FIG. 11. (Color online) The physical quantities p and �vxvx
versus x at time t = 0.35. The first row is for the pressure and the second is

for �vxvx
. From left to right, the three columns are for Ri = 102, Ri = 103, and Ri = 104, respectively.

Consequently, �vxvxvx
, �vxvyvy

deviate from zero in the
reaction zone.

B. Detonations from unsteady to steady: Simulations
with different collision parameters

Now, we study detonation phenomena with different colli-
sion parameter sets: (i) Ri = 102, (ii) Ri = 103, (iii) Ri = 104.
The first case here is just the case (i) in the above subsection.
In the second case where Ri = 103, the parameters (va , vb,
vc, ηa , ηb, ηc) = (2.7, 2.6, 1.9, 5.0, 0.0, 1.7), �x = 2 × 10−4,
�t = 2 × 10−6, the other parameters are the same as the first
case. In the third case where Ri = 104, the spatial and temporal
steps �x = 4 × 10−5, �t = 4 × 10−6, the other parameters
are the same as the second case.

Figure 11 shows the simulation results of p and �vxvx

versus x at time t = 0.35 in the three cases with Ri = 102,
Ri = 103, and Ri = 104, respectively. Here we define (Xm,
Pm) as the point where the largest pressure is located. The
points in Figs. 11(a)–11(c) are (0.83450, 2.39850), (0.86410,
3.01965), and (0.87906, 3.33212), respectively. A vertical
dashed guideline is plotted across this point in each panel.
Aside from this guideline, another two lines are given to guide
the eye for the width of the detonation wave. At the right side of
the rightmost line is the unreacted explosive in thermodynamic
equilibrium with zero reaction rate. At the left side of the
leftmost line, where all the materials are reaction products,
the system is in a constant state. From Figs. 11(a) to 11(c),
the detonation wave at this time changes from unsteady to
steady. It is interesting to study the TNE behaviors in these
cases. The guidelines in Figs. 11(d)–11(f) coincide with those
in Figs. 11(a)–11(c), respectively:

(1) It is clear to find in Figs. 11(a)–11(f) that the detonation
wave, especially the preshocked area, becomes narrower with
increasing Ri . Physically, the viscosity which is inversely
proportional to Rμ widens the detonation wave, especially the

preshocked area. Correspondingly, the area of nonequilibrium
system is widened as well.

(2) Figures 11(a)–11(c) show that both Xm and Pm increase
from left to right. That is to say, with the increase of Ri , it
takes less time for the detonation to become steady, and the
von Neumann peaks become higher and sharper. Physically,
the viscosity expands and smooths the wavefront of pressure.
Consequently, it decreases the local TNE effects.

(3) In Figs. 11(d)–11(f), the shaded area enclosed by the
curve �vxvx

(x) and the line �vxvx
= 0 decreases from left to

right. This shaded area presents a rough description on the
global TNE effect around the detonation wave in the system.
From this sense, the viscosity increases the global TNE effect.

(4) The minimum of �vxvx
is −0.06759, −0.07018,

−0.01275 in Figs. 11(d)–11(f), respectively. The correspond-
ing maximum is 0.34753, 0.40275, 0.40857, respectively. The
minimum of �vxvx

for R = 1000 is less than the other two, and
the maximum for R = 10 000 is the largest among the three
cases. There is competition between the viscosity (heat con-
ductivity) effect and the gradient effects of physical quantities
(ρ, u, T , p, etc.). With the increase of collision parameters, the
viscosity and heat conductivity decrease, while the gradients
of physical quantities increase. The former tend to decrease
and the latter tend to increase the TNE effects. The physical
reason is that the viscosity possesses both the thermodynamic
and hydrodynamic functions. Thermodynamically, it tends to
make the system approach the thermodynamic equilibrium
more slowly. But hydrodynamically, it works as a kind of
resistance force to the shocking process, makes the pressure
curve smoother, and consequently tends to make the system
deviate less from its thermodynamic equilibrium. The heat
conductivity plays a similar role.

(5) The first horizontal position for �vxvx
= 0 behind the

von Neumann peak moves towards the horizontal position for
the von Neumann peak as Ri increases. It can be found a clear
distance from the position for �vxvx

= 0 to the position for the
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von Neumann peak in Fig. 11(a), while the two points almost
coincide in Fig. 11(c). That is to say, the position, where the
internal energy in the x degree of freedom equals to the average
of all degrees of freedom, gets away from the position for the
von Neumann peak with increasing viscosity.

VII. CONCLUSION AND DISCUSSIONS

A MRT-LBKM for combustion phenomena is presented.
The chemical energy released in the progress of combustion
is dynamically coupled into the physical system by adding a
chemical term to the LB kinetic equation. The chemical term
describes the change rate of distribution function f due to
the local chemical reaction. Physically, the model is roughly
equivalent with a Navier-Stokes model supplemented by a
coarse-grained model of the thermodynamic nonequilibrium
behaviors in the continuum limit. In this model the discrete
equilibrium distribution function f

eq

i needs to satisfy 24
independent kinetic moment relations. We present a discrete
velocity model with 24 velocities which are divided into 3
groups. In each group, a flexible parameter (va , vb, or vc) is
used to control the size of discrete velocities and a second
parameter (ηa , ηb, or ηc) is used to describe the contribution
of the extra degrees of freedom. The current model works for
both subsonic and supersonic flows with or without chemical
reaction. The rate equation for the chemical reaction can be
adjusted according to specific situations. In the MRT-LBKM,
the nonequilibrium behaviors of various modes may contribute
to the system evolution according to different amplification
factors.

As an initial application, various nonequilibrium behaviors
around the detonation wave in one-dimensional detonation
process are preliminarily probed. The following thermody-
namic nonequilibrium behaviors, (i) exchange of internal
kinetic energy between different degrees of freedom for
molecule displacements, (ii) exchange of internal kinetic
energy between the displacements and the extra degrees of
freedom of the molecules, are observed. It is found that
the system viscosity (or heat conductivity) decreases the
local thermodynamic nonequilibrium, but increases the global
thermodynamic nonequilibrium around the detonation wave,
that even locally, the system viscosity (or heat conductivity)
results in two kinds of competing trends, to increase and

to decrease the thermodynamic nonequilibrium effects. The
physical reason is that the viscosity (or heat conductivity)
takes part in both the thermodynamic and hydrodynamic
responses to corresponding driving forces. When we consider
the thermodynamic nonequilibrium which can be described
by various kinetic moments of f − f eq , the Boltzmann
equation (29) can be regarded as a kind of constitutive
equation relating to the response f̂ − f̂eq , to the driving
force −∂ f̂/∂t − ∂(Êα f̂)/∂rα + Â + Ĉ. Thus, the inverse of
the collision parameter R̂−1 plays a role of the parameter
describing material kinematic property. Thermodynamically,
it tends to amplify the thermodynamic nonequilibrium effects.
But hydrodynamically, the viscous force tends to decrease the
pressure gradient, the heat conduction tends to decrease the
temperature gradient, and consequently they tend to decrease
thermodynamic nonequilibrium.

If the local temperature increment due to chemical reaction
is dynamically taken into account in the calculation of local
equilibrium distribution function f

eq

i [78], the number of
needed discrete velocities can be decreased to 16 in the
two-dimensional case. In that case, only 12 nonconserved
quantities are included in the two-dimensional MRT-LBKM.
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