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Here proper orthogonal decomposition (POD) modal decomposition are performed for flow past a circular
cylinder at supercritical Reynolds numbers by projecting this onto instability modes. The important task of
modeling a cylinder wake by Stuart-Landau (SL) and the Stuart-Landau-Eckhaus (SLE) equation for instability
modes is discussed, with the latter shown to be more consistent with multimodal pictures of POD and instability
modes. The difficult task of finding the coefficients of the SLE equation is reported by taking a least squares
approach for the reduced order model (ROM). The important aspect of the ROM is the choice of initial condition
for the developed SLE equations, as these are stiff ordinary differential equations which are very sensitive to
the choice of initial conditions. An accurate representation of enstrophy-based POD also reveals the presence of
modes which occur in isolation (in comparison to modes that come in pairs) and the traditional approach of treating
instability modes by SL or SLE equations does not work directly, which also reveals higher frequency variations.
Quantifying effects of this mode by time-averaged Navier-Stokes equation (NSE) fail to show the variation of
the phase of these isolated time-varying modes and this is captured here using direct numerical simulation (DNS)
data by a multitime scale approach. A reconstructed 3-mode ROM solution and the disturbance vorticity from
DNS match globally in the flow. The agreement between 3-mode SLE reconstruction and DNS also proves
the consistency of the proposed method and helps explain the physical nature of the ensuing Hopf bifurcation
following an instability.
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I. INTRODUCTION

The Bénard-Kármán vortex street commonly observed
in flow past a circular cylinder is a classic example of
external flows suffering linear temporal instability. This vortex
shedding is triggered by the primary instability followed by
moderation of growth by nonlinear actions. In simulating
unstable flows from the first principle, it is desirable to
first obtain an equilibrium flow, as is the case of a zero
pressure gradient boundary layer forming over a flat plate,
whose receptivity and instability is traditionally studied.
However, obtaining a steady equilibrium flow by solving
NSE is not always guaranteed to be successful. For example,
steady equilibrium flow past a wedge experiencing an adverse
pressure gradient is difficult to obtain by DNS, especially with
high accuracy numerical methods which are not affected by
numerical diffusion. Flow past a circular cylinder also falls
into this category. From an impulsive start of the flow given by
inviscid flow solution, early stages of the flow evolution display
a reflection symmetry about the horizontal plane, with a pair
of separation bubbles forming on the lee side of the cylinder.
For subcritical Re′s this pair of wake bubbles evolves to a
steady state. In actual flows, ambient disturbances destabilize
this equilibrium state for Re above a critical value (Recr).

In the literature, various authors have reported wide range
of values at which vortex shedding initiates. For example, we
quote from [1], where the authors have noted that “Batchelor
[2] conjectured Recr to be between 30 and 40; Landau and
Lifschitz [3] quoted it as 34.... The sensitive dependence of
Hopf bifurcation or instability on facility-dependent distur-
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bances becomes even more evident, when one considers the
experimental results of Homann [4], who showed Recr ≈ 65.
These interesting results are also featured in Plate 2 of
Batchelor [2] and in Schlichting [5]” (page 18). Such high
value of Recr has been explained in detail in [1], where it is
furthermore noted that in “figure 3 of Provansal et al. [6] and
figure 6 of Sreenivasan et al. [7], different values of Recr are
reported for cylinders with different length and diameter ....
[T]he view expressed in these references is that they are due
to different aspect ratios of the models, as the same tunnel was
used for individual experimental cases.... However, this claim
seemingly contradicts the observation in Williamson [8] that
the flow remains essentially two-dimensional for Re � 180.”

Thus, it is noted here that Recr is facility and background
disturbance dependent. A combination of these two factors
determines the receptivity of the flow field. In DNS, truncation
and round-off errors act as seeds of disturbances. All these
sources of errors in computations destabilize the growing
bubble via asymmetric growth and shedding of vortices. In
the present study, flow past a circular cylinder is investigated
for sufficiently high Re′s for which the flow is supercritical,
for which DNS does not provide an equilibrium solution.
However, there are other efforts that reported results based
on Newton-Raphson methods or selective frequency damping
methods [9,10], which can provide equilibrium solutions of
flow past a circular cylinder.

As disturbances grow, nonlinearity becomes important,
moderating the growth obtained by linearized analysis, and
this leads the flow to another saturated periodic state or
a limit cycle. However, the spectrum indicates this as a
multiperiodic flow depending upon the location of the point
under observation. Even though the flow is characterized by
single dominant frequency characterizing shed wake vortices.
The multiperiodicity arises due to presence of multiple POD
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and instability modes caused by the nonlinearity of the
governing Navier-Stokes equation. This is also evident from
the POD analysis of DNS results in [1] for this flow and for
various other internal and external flows in [11,12].

The onset of primary instability is indicated when a
bifurcation parameter (Re), exceeds a critical value and
results in breaking the reflection symmetry and vortex is shed
quasiperiodically, as shown here with the presence of limit
cycles in the phase space, having finite width in Fig. 11.
The multiple-periodic and quasiperiodic nature of the flow
dynamics is related to the presence of multiple modes governed
by the Navier-Stokes equation. The multiple modes have been
obtained by POD analysis in [1,12] and here.

A contemporary system reduction strategy for fluid flows is
the Koopman mode analysis [13], based on the spectral analy-
sis of the finite-dimensional representation of the Koopman op-
erator using the Krylov subspace method, a variant of the com-
monly used Arnoldi iteration. This linear mapping is equiv-
alent to the dynamic mode decomposition (DMD) technique
developed [14–16] for applications. Koopman analysis results
in modes that are orthogonal in time (single frequency modes),
while POD gives spatially orthogonal, multi-time-periodic
modes (as explained before), which capture most of the enstro-
phy of the flow. The results of Koopman mode analysis and its
variants in [17] show that this strategy, although successful in
the initial linear growth stage and probably in the limit cycle
stage, is not so successful in describing the transient distur-
bance growth in which the frequency of large scale oscillations
is no longer approximately constant. POD modes, being free
from any restriction on the frequency composition, are effec-
tive in capturing transient dynamics, as shown in [1] and here.

Here we successfully explore further the conversion of
the problem of solving the Navier-Stokes equation (taking
hundreds of CPU hours of large clusters) into solving only
a limited number of complex ordinary differential equations
(that will take less than minutes). Thus, we are studying
the supercritical flow past a cylinder by solving equivalent
ordinary differential equations, a goal in ROM for bluff body
flows. Also, one can highlight the physical role played by
the anomalous modes by relating POD and instability modes.
Apart from explaining the role of this type of modes in taking
the dynamical system to a new equilibrium state, characterized
by vortex shedding, the ROM can assist in controlling such
flows; e.g., suppression of vortex shedding behind cylinder
[18] would be extremely beneficial to understand for scientific
and technological reasons.

This paper is formatted in the following manner. In the next
section, the POD modes and their classifications into regular
and anomalous modes are described along with the relationship
between POD and instability modes. The relevance of various
governing equations for instability modes given by Stuart-
Landau (SL) and Stuart-Landau-Eckhaus (SLE) are also
introduced here. In Sec. III, governing equations and numerical
methods are described very briefly and this is followed by
a description of enstrophy-based POD method using DNS
data in Sec. IV. SLE equations are described in detail in
Sec. V. Also, the relationship between instability modes
and SLE equation is discussed here. Actual formulation of
SLE equations and their modeling is described in Sec. VI,
explaining the role of the least squares approach adopted

in the present investigation. Reconstruction of instability
modes using the SLE equations is described in Sec. VII,
including the importance and role of anomalous modes. In
Sec. VII A, another aspect of the present work in modeling
anomalous mode of the first kind (T1-mode) is explained and
its similarity and differences from the shift mode [19] are
shown. Reconstruction of T1 mode is the subject of discussion
in Sec. VII B. The collation of the entire modeling effort in
finally reconstructing the disturbance vorticity field is shown
in Sec. VIII. The paper closes with a summary and conclusion.

II. PRELIMINARIES OF POD AND INSTABILITY MODES:
GOVERNING EQUATIONS FOR INSTABILITY MODES

In the absence of an equilibrium flow, the flow past a circular
cylinder is computed until the time-asymptotic limit is reached
and instantaneous disturbance field is calculated by subtracting
the mean from the instantaneous DNS field. We represent the
disturbance vorticity field in POD formalism as

ω′( �X,t) = �∞
m=1 am(t) φm( �X). (1)

This decomposition is by a Galerkin approach, where
φm( �X)′s are the POD eigenfunctions. The POD amplitude
function am(t)′s explicitly depend upon time, while these are
related implicitly to space variables via the POD eigenfunc-
tions. Early contributions to POD [20–22] were for describing
stochastic dynamical systems. However, the related concepts
from singular value decomposition were noted even earlier
in Pearson [23]. In [20], POD was developed in order to
project any stochastic dynamical system onto an optimal
reduced-order deterministic basis. POD-based studies for fluid
flows were initiated by Lumley and coauthors to investigate
coherent structures in turbulent flows, as recorded in [24] and
later in [7,25].

Early investigators noted that φ1 and φ2 are phase shifted
by quarter of a cycle (i.e., by 90◦) and these were considered
to compose the real and imaginary parts of the dominant
instability mode, A1(t) for flow past cylinder. However, in [11],
it was shown that flows past a cylinder and inside a lid-driven
cavity display similarity to POD modes and the first two POD
modes always form a conjugate pair showing a phase shift of
90◦. Any such pair of modes, phase shifted by a quarter cycle,
have been termed as regular or R modes here following [1,11].
However, in [19], it is shown that, following φ1 and φ2, there
appears to be a single mode in terms of energy content, which
has no pair and alters the mean flow; the authors called it the
shift mode. As the authors in [19] obtained he shift mode from
RANS, its phase variation was not reported. Based on the time
variations of the POD amplitude functions in [1,11,12], POD
modes have been classified into regular and anomalous modes.
The shift mode of [19] was noted as the anomalous mode of the
first kind, or the T1 mode. Another class of modes occurring
in pairs, but having qualitatively different time variations (in
the form of a wave packet), has been termed as the anomalous
mode of the second kind, or T2 mode, in [1,11].

Using primitive variable formulation, attempts have been
made in [19,24–28] and many other references, where gov-
erning ODEs for the POD amplitude functions, am(t)′s, have
been set up by focusing on translation energy, and in many
of these studies even the contribution of pressure is omitted
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while deriving the equations for am(t)′s. In [1], instead
the time variation of am(t) was obtained from DNS data
directly solving the Navier-Stokes equation in stream function-
vorticity formulation. This assisted in classifying the POD
modes based on time variation of POD amplitude functions.

The disturbance vorticity indicated by the left hand side
of Eq. (1) can also be expressed in terms of another Galerkin
procedure by expressing it in terms of instability modes and the
corresponding eigenfunction is given, for example, in [29] by

ω′( �X,t) = �∞
j=1[Aj (t)fj ( �X) + A∗

j (t)f ∗
j ( �X)]. (2)

Here Aj (t) is the amplitude of the j th instability mode
and A∗

j is the corresponding complex conjugate. The same
notation holds for the eigenfunctions given by fj and f ∗

j for
the instability modes. The classification of POD modes was
helped when these were related to instability modes of fluid
flow. The instability modes are related to the regular POD
modes by the relationship in a manner [1,12] for the amplitude
and eigenfunctions for the former,

Aj (t) = √
εj [a2j−1(t) + ia2j (t)], (3)

fj ( �X) = 1√
εj

[φ2j−1( �X) − iφ2j ( �X)], (4)

where εj = (λ2j−1 + λ2j )/�N
k=1(λk) and this normalization

factor is introduced to make the dimension of Aj (t) the
same as that of vorticity, as εj is a measure of enstrophy (as
explained in [12]). This relation between POD and instability
mode does not hold for anomalous modes and is introduced
here in explaining the ROM developed. As compared to the
work in [1,12], this relation between POD and the instability
mode is further improved. We note that the POD modes and
their amplitude functions are obtained here from a singular
value decomposition of DNS data obtained with a significantly
more refined grid than was used in [1] to focus also on the
connection between the numerical errors and the resultant
vortex shedding behind a cylinder by very high accuracy
schemes for supercritical Re.

Once the relations between POD and instability modes are
established, it is natural to look for the governing equation(s)
for the instability mode(s). One of the applications of the
instability mode was originally presented by Landau [30], put
in the context of a weakly nonlinear theory by Stuart [31] in
the following equation by considering only one mode given by

dA

dt
= σA − l

2
A|A|2, (5)

where σ = σr + iσi is the linear instability mode l = lr + ili ,
is the Landau coefficient and A = |A|eiθ . The parameter σ

can be obtained from a global linearized theory based on NSE
also, but the Landau coefficient “l” related to the nonlinear
self-interaction for a cubic nonlinearity cannot be expressed
from linearized NSE. This equation (5) is henceforth referred
to as the SL equation here. The nonlinearity moderates or
accelerates the instability growth depending on the sign of lr
and σr . For flow over bluff bodies, lr is positive (� 0) and
moderates linear theory growth, while for channel flow, lr , is
considered negative and therefore regarded to exhibit growth
or instabilities via subcritical route, as explained in [29]. It is

to be noted that in developing the SL equation, a parallel flow
framework was used for plane Poiseuille flow [31], which is
certainly not the case for flow past a circular cylinder. Thus,
Eq. (5) should be viewed more as a model mimicking the flow
field observed, only along selective locations in the flow field.
Another drawback of SL equation is the retention of a single in-
stability mode only. POD analyses reported in the literature [1]
show that there are a large number of modes, which contribute
to the total energy or enstrophy. Hence, the corresponding
instability modes also would be more than one in number.

Here, POD modes (φm
′s) are real, while the instability

modes (fm
′s) are complex, as noted in Eqs. (1) and (2) for

the regular or R modes. This is also true for the POD and
instability amplitudes, with am(t) as a real and Am(t) as a
complex quantity for the R modes. The presence of multiple
dominant instability modes has been established in [1,11,32]
for internal and external flows, which suffer multiple Hopf
bifurcations (described later with respect to Fig. 3).

One of the key aspects of accurate ROM is its dependence
on the primary data set from which it is reconstructed. Thus,
there is a need to obtain a high accuracy solution of the
governing equation. In describing the 2D dynamics of a flow
field, it is noted that the stream function-vorticity formulation
produces an accurate solution [33], as it satisfies the mass
conservation exactly. This is discussed in the following section.

III. GOVERNING EQUATIONS
AND NUMERICAL METHODS

The DNS of 2D flows is carried out here by solving the
NSE in the stream function-vorticity formulation given by

∇2ψ = −ω, (6)

∂ω

∂t
+ ( �V · ∇)ω = 1

Re
∇2ω, (7)

where ω is the only nonzero out-of-plane component of
vorticity. The velocity is related to the stream function as
�V = ∇ × ��, where �� = [0 0 ψ] and Re is based on diameter
of the cylinder (D) and free stream speed (U∞), which are
used as the length and the velocity scales to nondimensionalize
quantities. This formulation is preferred for 2D flows due to
inherent solenoidality of the velocity field for incompressible
flows to ensure mass conservation. In addition, it allows one
to circumvent the pressure-velocity coupling problem, as the
pressure term is absent in Eq. (7).

Equations (6) and (7) are represented in the orthogonal
curvilinear coordinates (ξ,η) and the governing equations are
given by

∂

∂ξ

(
h2

h1

∂ψ

∂ξ

)
+ ∂

∂η

(
h1

h2

∂ψ

∂η

)
= −h1h2ω, (8)

h1h2
∂ω

∂t
+ h2u

∂ω

∂ξ
+ h1v

∂ω

∂η

= 1

Re

{
∂

∂ξ

(
h2

h1

∂ω

∂ξ

)
+ ∂

∂η

(
h1

h2

∂ω

∂η

)}
, (9)

where h1 and h2 are the scale factors of the transformation
given by h2

1 = x2
ξ + y2

ξ and h2
2 = x2

η + y2
η .
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The no-slip boundary condition is applied on the cylinder
wall via (

∂ψ

∂η

)
body

= 0,

ψ = constant.

These conditions are used to solve Eq. (8) and to obtain the
wall vorticity ωb, which in turn provides the wall boundary
condition for Eq. (9). At the outer boundary of the domain, a
uniform flow boundary condition (Dirichlet) is provided at the
inflow and a convective condition (Sommerfeld) is provided
on the radial velocity at the outflow.

The convection terms of Eq. (9) are discretized using the
high accuracy dispersion relation preserving (DRP) compact
scheme, the OUCS3 method described in [33], which provides
near-spectral accuracy for nonperiodic problems. A central
differencing scheme is used to discretize the Laplacian
operator of Eqs. (8) and (9) and an optimized four-stage,
third-order Runge-Kutta (OCRK3) method designed in [34]
is employed for time marching. Equation (8) is solved using
the Bi-CGSTAB method of Van der Vorst [35].

The results presented here are for Re ranging from 60 to
150, for which the flow can be treated as two dimensional, as
explained in [8]. Here the simulations have been performed
in a finer grid with (1001 × 401) points in the azimuthal and
radial directions, respectively. Note that the grid resolution
employed in the present study is significantly finer in the
azimuthal direction than that of the previous studies in [1,11],
in which a (153 × 401) grid was used to compute the flow.
Thus, in the azimuthal direction the number of equiangular
points taken for the finer grid increases from 153 to 1001,
while the resolution in the wall-normal direction is kept the
same for the two grids (which is 10−3D for these low Reynolds
number flows).

Having obtained the time-accurate solution of the Navier-
Stokes equation for the flow field, in the following the
continuing effort on ROM using POD analysis is pursued.
The present POD analysis depends on using enstrophy as the
L2 norm of the flow field, as compared to kinetic energy by
other researchers, e.g., as in [19,24–28].

IV. PROPER ORTHOGONAL DECOMPOSITION

In inhomogeneous flows (which are neither homogeneous
nor periodic), rotational rather than translational energy of the
flow field takes precedence, as flow vorticity represents the
dynamics better than the corresponding velocity field. This is
discussed in detail in [32,36], where, in the latter, enstrophy
transport equations are developed for 2D and 3D flows to show
the process of creating smaller scales. This is the motivation
behind employing an enstrophy-based POD, practiced earlier
in [1,11,12,32,37,38], as compared to the energy-based POD,
to identify coherent structures for flow instabilities and control
studies. The dominant modes obtained through enstrophy-
based POD is represented notationally based on enstrophy
contents of the modes; i.e., lower numbered modes have higher
enstrophy. These modes capture the dynamics of the flow more
effectively for inhomogeneous flows due to the importance of

rotationality of flows to explain enstrophy cascade without
any assumption on the dimensionality of the flow [36]. The
universality of POD modes based on enstrophy for flow past a
cylinder and the flow inside a lid-driven cavity has been shown
[11], making the case of using enstrophy as more relevant
for vortex-dominated flows. In [12], enstrophy-based POD
analysis of transitional flow past a flat plate was also reported
successfully even in the primary instability stage, where there
were no distinct vortices in the flow. In this instability of flow
past a flat plate, a preponderance of T2 modes has been noted.

There is another difference of the methodology adopted
here for POD analysis with some of the previous efforts
[19,39,40], where the dynamical model for am(t)′s are obtained
through a Galerkin projection on the RANS equation and its
unsteady version (URANS). These involve modeling fluctua-
tions through Reynolds stresslike terms, whereas no modeling
is resorted here and is based on time-accurate solution of the
unsteady NSE. The DNS is performed by using a compact
scheme for convective acceleration terms and an optimized
Runge-Kutta time integration scheme has been used for the
local acceleration term, with other details as given in [33].
Other recent works [41,42] explore system reduction strategies
to reduce and develop models for the dynamic degrees of
freedom in Galerkin systems of incompressible fluid flows
based on finite-time thermodynamics closure. Thus, instead of
developing ODEs for am(t)′s, these are directly obtained here
from DNS data using the method of snapshots presented by
Sirovich [25]. This involves computation of am(t)′s as an inner
product of ω′ with φm( �X), suitably normalized [1,11,12].

POD as developed in [22–22,24] for a random field,
wi( �X,t), involves projecting it onto a deterministic set of
vectors, φi( �X), so that 〈|(wi,φi)|2〉 is maximized, where the
outer angular bracket represents a time-averaging operation
and the inner bracket represents an inner product. In recent
times POD has been used to study spatiotemporal dynamics of
deterministic flows for flow instability [12]. Computation of
φi( �X) can be posed as an optimization problem in variational
calculus, which reduces to

∫∫
Rij ( �X, �X′) φj ( �X′) d2 �X′ = λ φi( �X). (10)

The kernel of this equation is the two-point correlation
function, Rij = 〈wi( �X)wj ( �X′)〉, of the random field. Classical
Hilbert-Schmidt theory applies to flows with finite energy, and
therefore denumerably infinite orthogonal POD modes can be
computed. Since the flow instabilities derive their energy from
a finite source, the disturbances always remain finite and do
not create a problem of applicability of the Hilbert-Schmidt
theory. This is the basis of studying flow instabilities using
POD [12].

Even for moderate grid resolutions, the eigenvalue problem
of Eq. (10) becomes intractable. The method of snapshots
was thus introduced by Sirovich [25] to overcome difficulties
associated with large data sets in multiple dimensions. In this
approach, the eigenfunction φm( �X) is expressed as a linear
combination of the instantaneous flow fields at distinct time
instants, ti

′s,

φm( �X) = �N
i=1 qmi ω′( �X,ti), (11)
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FIG. 1. (Color online) First 16 amplitude functions of Re = 100 including the missing ones, as described in [1].

where N is the number of snapshots used. This ansatz, together
with the expression for Rij , reduces Eq. (10) to an algebraic
eigenvalue problem,

[C]{q} = λ{q}, (12)

where

Cij = 1

N

∫∫
ω′( �X,ti) ω′( �X,tj ) d2 �X, (13)

with i,j = 1,2 . . . ,N , are defined over all the snapshots of
the flow. The amplitude function am(t) is obtained from the

orthogonality property of POD eigenfunction from

am(t) =
∫∫

ω′( �X,t) φm( �X) d2 �X∫∫
φ2

m( �X)d2 �X .

In the present work, POD analysis has been performed
for all Reynolds numbers using 2000 snapshots from t = 0
to 400. The amplitude function am(t) and the corresponding
eigenfunction φm( �X) obtained for Re = 100 are shown in
Figs. 1 and 2, respectively. In Fig. 1, the first two modes
form a pair that satisfies Eq. (5) and is the regular or R mode
[1,11]. The modes are numbered in decreasing order of their
enstrophy contents and the missing numbers (4, 10, 14, and 16)
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FIG. 2. First 16 eigenfunctions of Re = 100 including the missing modes, as described in [1].

represent the missing pair of the predecessor, which occurs in
isolation. For example, the third POD mode has no pair, and to
indicate this absence we keep the mode-4 as the missing one.
In [19], only the first isolated POD mode was identified and
termed as the shift mode. According to the notation here and
in [1], this is a T1 or anomalous mode of the first kind. While
in [19], there was only one shift mode, in Fig. 1 one notices
the multiplicity of the T1 mode.

In Fig. 1, it is noted that this third mode is slaved at
twice the Strouhal frequency, while the first two POD modes
are at the Strouhal frequency. The time variation of the
third mode is physically relevant, as this mode arises from

the Reynolds stresslike term originating from the product
of two fluctuating quantities, as shown in [1,19]. If the
individual perturbation quantities are at Strouhal frequency,
the product of two such fluctuating terms will necessarily be
at twice the Strouhal frequency. Such products also have a
time-independent component (as shown in [1]), which affects
the mean flow. The results reported here show the presence
of other isolated POD modes, whose amplitude functions will
not satisfy the SL Equation (5) and all of these have been
collectively termed as anomalous modes. This is the reason that
a4 ≡ 0 and φ4 ≡ 0 in this nomenclature scheme. The following
two modes again constitute a regular mode pair, with the phase
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variation at twice the Strouhal frequency. As the governing
NSE is nonlinear, it is natural that higher superharmonics and
subharmonics will show their presence. It is readily noted
that modes 7 and 8 constitute the third regular mode and its
phase variation is at thrice the Strouhal frequency. Thus, POD
analysis clearly indicates the role of nonlinearity in deciding
upon the dynamics of the system in the form of multimodal
behavior, limit cycles, and multiple bifurcations, as explained
with respect to Figs. 1, 4, and 5. Linearized global instability
analysis would not be able to infer the effects of such modes
arising from nonlinearity. The ninth mode is again a T1 mode
with phase variation given by twice the Strouhal frequency,
similar to the third mode (T1 mode). Introduction of the shift
[19] or T1 mode [1] is equivalent to splitting the unsteady
Navier-Stokes equation into a time-averaged mean field, which
is affected by the time-dependent perturbation field via a
wave-induced stress that couples the two, as explained in [1].

The time variation of modes (11, 12), although paired, is
different from the R modes. Such modes have been identified
in [1] as the anomalous modes of the second kind, or T2

mode. The modes (11, 12) show an initial growth phase
followed by decay, which finally settles down to a constant
amplitude oscillation at the Strouhal frequency, as shown in
Fig. 1. It has been shown in [11,12] that this scheme of
classifying amplitude functions of POD modes is universal
for both internal and external flows, in terms of qualitative
variation with time and satisfying SL equation for R modes and
nonsatisfaction by anomalous modes. It is noted that internal
flows display prominence of T2 modes, as compared to external
flows. Modes 13 and 15 in Fig. 1 are anomalous modes with
asymptotic phase variation at Strouhal frequency and thus the
classification scheme is not based on frequencies of amplitude
functions.

Note that modes (5,6) although classified as regular, exhibit
departures from regular mode characteristics, which do not
behave similarly in the time range t = 0 to 80, with mode
6 showing oscillations about a nonzero mean to begin with
and this mean eventually settles to zero at a later time. Despite
such small differences, external flows during instability always
displays a collection of three classes of modes (R, T1, and T2).
The presence of such modes for different types of flows was
shown in [12].

The POD eigenfunctions φm( �X)′s shown in Fig. 2 also
attest to the classifications provided already with the help of
the amplitude functions in Fig. 1. The first regular mode is
characterized by vortical structures with complimentary sign
at identical locations in the near wake and the spacing between
the structures are large. The first T1 mode eigenfunction
appears alone and has a mirror antisymmetry about the wake
centerline. The same is noted for mode 9. Modes 13 and 15 do
not show any discernible patterns. The second and third regular
mode pairs show different symmetry and antisymmetry in the
near wake.

Having introduced the relation between POD and instability
modes in Sec. II, in the following we describe how the
instability modes for both the regular and the anomalous POD
modes are treated by replacing the SL equation (valid for single
mode only) with a generalized governing equation, which has
been named as SLE equation. SLE equation naturally allows
treatment of multiple modes and their nonlinear interactions.

V. INSTABILITY MODES AND THE
STUART-LANDAU-ECKHAUS EQUATIONS

The interactions of instability modes have been earlier
studied using the SLE equation in [1,11] for multimodal
description of flow past a cylinder. This approach was
considered as an improvement over the SL equation approach,
which considers only one mode with amplitude A, and its
self-interaction, as given in Eq. (5). From Eq. (5), one obtains
equations governing the amplitude and the phase as given by

d|A|2
dt

= 2σr |A|2 − lr |A|4, (14)

dθ

dt
= σi − li

2
|A|2. (15)

For flow below the critical Reynolds number (Recr), σr is
negative and if lr � 0, any small perturbation introduced in
the flow is eventually damped. However, when Re crosses
Recr, σr is positive and the flow experiences linear temporal
instability, which according to Eq. (5) would be given by a
linearized analysis. Due to the presence of cubic nonlinearity,
amplitude growth as indicated by linear theory does not
continue unabated; with increasing amplitude the nonlinear
term gains significance (when lr |A|2 > σr ) and moderates
the growth rate, leading to a time-periodic equilibrium state
as noted in Eq. (14). This qualitative transition from a
steady state to a time-periodic state is the Hopf bifurcation.
Equation (14) is directly integrable as [29]

|A|2 = A2
0(

A0
Ae

)2 + [
1 − (

A0
Ae

)2]
e−2σr t

, (16)

where A0 is the value of A at t = 0. Here Ae(= √
2σr/ lr )

represents the asymptotic value of the solution as t → ∞.
The approach of A to Ae, which is independent of A0,
prompted researchers to conjecture Hopf bifurcation given by
SL equation as universal and reinforced the belief that any
computational method would produce same Recr, independent
of method or initial level of perturbations. For supercritical
cases, σr can be linearized as σr ∼ (Re − Recr) and thus the
variation of Ae with Re is expected to be parabolic.

The fact that the equilibrium amplitude is not given by SL
equation, is shown in Fig. 3(a), where equilibrium amplitude of
streamwise fluctuating velocity (rms) variation plotted against
Re are shown from the experiments of [43] and computations
in [1]. It is evident that the time variation is not parabolic
in Fig. 3(a), as would be expected from Eq. (16). Displayed
disturbance quantities are for the rms value of streamwise
velocity component [ud (rms)], as reported in the experiment.
Present calculations are for Eq. (8), indicating the equilibrium
amplitude Ae of ud , as defined in Fig. 3(b) for the vorticity.
In Fig. 3(b), time variation of disturbance vorticity at a
point along the centerline (x = 0.504) in the near wake is
shown, which depicts the saturation of the disturbance vorticity
with passage of time. This is indicated by the approximate
equilibrium amplitude in the figure as Ae(ω′). In Fig. 3(c),
computed values of equilibrium disturbance vorticity at the
same point in the centerline (x = 0.504) on the near wake
display a variation of |Ae| with Re. This is seen to consist of
five intersecting parabolas, indicating a distinct sequence of
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FIG. 3. (Color online) (a) Equilibrium amplitude of streamwise
fluctuating velocity (rms) variation plotted against Re compared with
computed data reported in [1]. (b) Time variation of disturbance
vorticity at point along the centerline (x = 0.504) in the near wake.
(c) The fluctuating vorticity equilibrium amplitude plotted as function
of Re for a point at x = 0.504 in the near wake along the centerline.

bifurcations with Reynolds numbers. Such an observation was
also noted in [1] for a less refined grid for the same flow with
the help of fluctuating lift acting on the cylinder. The authors’
conjecture was supported by computed data and experimental
results of Homann [4], that more than one dominant mode is
active during vortex shedding. While each mode is affected
by various sources of ambient disturbances, it is possible
to suppress the primary instability, as in the experiments of
Homann [4] conducted in an oil tunnel with highly viscous
fluid to attenuate disturbances and in the vortex suppression
experiment reported in [43,44]. In [1], the first computed
instability was noted for Re = 53.2907, the second one at
the higher Reynolds number, Re = 62.5326, and a third one
at Re = 78.2071.

We note the observed multiple instabilities initiated due
to the presence of omnipresent disturbances, which in com-
putations are due to numerical errors. An accurate physical
DRP method will delay the onset of instabilities. Similarly,
the experimental results reported in [4] with highly viscous
medium damped background disturbances to bypass the first
instability, and the visualization results shown in Batchelor
[2] and Schlichting [5] are taken from Homann [4]. There is
also the indirect evidence of suppressed instabilities for flow
past a cylinder in [43,44] where the flow control was achieved
by placing a smaller control cylinder in the near wake. These
experimental results have been verified computationally also
in [18]. The observed instability sequences in computations
depend on accuracy of the numerical method used. The
inaccuracies in computations are dependent upon truncation
and round-off errors. While round-off error is determined by
the bit precision used, the truncation error is determined jointly
by the numerical method and the grid spacings.

In [1] and here a highly accurate compact scheme has been
used to discretize the convective acceleration terms. For this
reason in [1], only 153 points were used in the azimuthal
direction and despite that the first Hopf bifurcation onset was
delayed to the indicated value. In the present computations, a
finer grid has been used in the azimuthal direction with 1001
points, while 401 points have been used in the wall-normal
direction. Thus, the presented results would indicate how these
flow instabilities are affected by the chosen grid, to help one
focus on the roles played by truncation and round-off errors.

Using the 1001 × 401 grid here, the corresponding five
critical Reynolds numbers have been obtained. Using the
vorticity data on the wake centerline for Re = 55, 58, and
60, the first critical Reynolds number has been obtained as
Recr1 = 47.16. Similarly, using the data for Re = 70, 72, and
76, the second critical Reynolds number has been obtained as
Recr2 = 53.72; using the data of Re = 80, 83, and 90, the third
critical Reynolds number has been obtained as Recr3 = 58.31.
Finally, fourth and fifth bifurcation Reynolds numbers are
obtained as Recr4 = 64.949 and Recr5 = 77.64, respectively,
using the data of Re = 92, 95, and 100 and Re = 100, 104,
and 110, respectively. Thus, the use of a refined grid in the
azimuthal direction by a factor of more than six times, while
keeping grid spacing the same in the wall-normal direction,
actually reduces the critical Reynolds numbers with respect
to coarse grid simulation. In [1], the use of a (153 × 401)
grid predicted the first critical Reynolds number as 53.2907,
while the present finer grid computations using (1001 × 401)
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points provides a critical Reynolds number around Re = 53,
and with the finer grid, an additional instability is noted earlier
for Recr1 = 47.16.

Multiple instabilities also indicate the existence of more
than one bifurcation, as stated in [1]. This aspect of multiple
Hopf bifurcations was established subsequently for internal
and external flows in [11]. The observations on multimodal
instabilities and multiple Hopf bifurcations clearly bring out
the limitation of SL equation that presumes a single bifurcation
and a single instability mode. To address multiple Hopf
bifurcations, one needs to account for more than one instability
mode in the flow and these resulted in the use of SLE equations.
General formulation of the SLE equations in [1,11] is based
on the eigenfunction expansion method proposed by Eckhaus
[45]. In this approach, the instability equation is given by

dAj

dt
= αjAj + �M

k=1 Nj (Ak,Aj ). (17)

The last term on the right hand side accounts for the
nonlinear interactions among all the M modes, inclusive of
self-interaction. As suggested by Eckhaus [45] for general
cases and Landau [30] for a single mode case, the nonlinear
term is taken as βjkAj |Ak|2. Thus, the M-mode SLE equations
can be written as follows:

dAj

dt
= αjAj + �M

k=1 βjkAj |Ak|2. (18)

Similar to the SL equation, the amplitude and phase
equations can be obtained from Eq. (18) and written in the
following form:

d|Aj |
dt

= (αj )Re|Aj | + �M
k=1 (βjk)Re|Aj ||Ak|2 (19)

and

dθj

dt
= (αj )Im + �M

k=1 (βjk)Im|Ak|2. (20)

Following the definition of the instability modes, the POD
modes are numbered and paired as shown, in the third column
of Table I, to construct the instability amplitude functions,
indicated in the first column of the table for the case of
Re = 100.

From Eqs. (3) and (4), instability eigenfunctions [fj ( �X)]
and amplitude functions [Aj (t)] are obtained from the POD
data calculated from DNS of the flow. We have plotted the
imaginary and real parts of the instability modes, with time
as the parameter in phasor plots shown in Figs. 4 and 5,

TABLE I. Classification of SLE modes of Re = 100.

SLE modes POD mode type POD modes

A1 Regular (R1)

{
a1

a2

A2 Anomalous mode of type 1 (T1)

{
a3

−
A3 Regular (R2)

{
a5

a6

A4 Regular (R3)

{
a7

a8

for the flows at Re = 100 and Re = 150, respectively. The
instability modes 1, 3, and 4 have been constructed from R

modes; instability modes 2 and 5 are formed with T1 modes,
while instability mode 6 is formed using T2 modes. As a
consequence, instability modes A2 and A5 in these figures
appear as straight lines along the line Im(A2) = 0, as these
are constructed with T1 modes. Note that the limit cycles of
the regular instability modes are not circles, but annuli of finite
thickness in Figs. 4 and 5. This thickness is a measure of the
range of variation of the saturation amplitude.

From DNS data, one constructs am(t) and φm( �X) using
Eq. (11). From these POD amplitudes and eigenfunctions, one
obtains amplitudes and eigenfunctions, Aj (t) and fj ( �X), of
the instability modes using Eqs. (3) and (4). For example, the
amplitude of the instability mode is given by

Aj (t) =
∫∫

fj ( �X) ω′( �X,t) d2 �X∫∫
fj ( �X)fj ( �X) d2 �X .

In Figs. 6 and 7, modulus of the instability modes are shown
for Re = 100 and 150, respectively. For the first instability
mode, the phase variation is at Strouhal frequency for both
cases, while the amplitude has a nonzero value. This is despite
the fact that the constituent POD modes, a1(t) and a2(t), have
a zero mean in Fig. 1. After the initial transients, the first
instability mode settles down to almost a steady value for both
the Reynolds numbers. The second instability mode is made
up of a3(t) and displays phase variation at twice the Strouhal
number, as can be ascertained from FFT of data shown in Fig.
1. Unlike the first instability mode, this second instability mode
does not settle down to a steady value. Any time-averaged view
of this by RANS-like approach (as in [19.40,41]) will show
only the mean shift, but will not show the phase variation. To
capture this phase variation of A2(t), the present DNS-based
approach can capture this clearly. In Figs. 6 and 7, the time
variation of |A3| and |A4| for the next two regular modes
are also shown, which display mode switching with change
in Reynolds number. In the POD framework, the numerical
precedence of a mode indicates its higher enstrophy content,
with respect to subsequent ones. In Fig. 6 for Re = 100,
mode A3 represents higher fluctuation about the mean after
the periodic equilibrium is reached, while the mode A4 shows
significantly lower fluctuations, whereas in Fig. 7, this partic-
ular role of the A3 and A4 modes in indicating fluctuations
after second equilibrium is exchanged; i.e., the fluctuations of
the A3 mode is significantly reduced as compared to the A4

mode. Furthermore, for Re = 100 in Fig. 6, |A3| shows phase
variation at twice the Strouhal frequency and |A4| shows phase
variation at three times the Strouhal frequency. In Fig. 7 for
Re = 150, the phase variations of |A3| and |A4| are thrice and
twice the Strouhal frequency, respectively.

However, the most important feature of Figs. 6 and 7 is the
behavior of A2 (the first T1 mode), which shows significant
phase variation at later times, while the phasor plot in Figs.
4 and 5 do not show any phase variation due to the nature of
construction of A2(t) by conventional method given in Eqs. (3)
and (4). This is addressed and rectified by an augmented model
in the next section. The instability modes |A5| and |A6| have
residual effects at large times and their phase variations are
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FIG. 4. Phasor plots of instability modes of Re = 100.

at twice the Strouhal frequency and at the Strouhal frequency,
respectively.

Having established the relevance of multiple instability
modes, it is necessary to go beyond the SL equation, which tries

to explain the dynamics by a single mode. As noted already,
this is the justification for providing formulation and modeling
of these multiple modes. In [1], this was initiated by invoking
the SLE equation. In the following, the same has been further

FIG. 5. Phasor plots of instability modes of Re = 150.
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FIG. 6. Amplitude variation of the instability modes of Re = 100.

improved by obtaining a better formulation through the least
squares formalism for the SLE equations.

VI. FORMULATION AND MODELING
OF THE SLE EQUATION

The instability modes have characteristic phase and am-
plitude variations that can be readily obtained from DNS
and modeled values, as in Eqs. (19) and (20). This involves
obtaining the coefficients of the SLE equations governing the
temporal instability growth obtained from the DNS results.
In [1], these were obtained by using the temporal rates at

those many time instants, as there are unknowns. However,
coefficients thus obtained show large variability depending
upon the chosen time sector.

A. SLE equations for |A j | and θ j

The nonuniqueness of the values of (α)Re, (αIm), (βjk)Re,
and (βjk)Im, depending on the value of time sector chosen, can
be avoided by evaluating these coefficients as a least squares
problem of an overdetermined system of linear equations
by considering the full time interval, including the initial
transients. The sequence of Hopf bifurcation takes the state

FIG. 7. Amplitude variation of the instability modes of Re = 150.
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from the quiescent equilibrium condition to a periodic state
(the second equilibrium state), for the flow past a circular
cylinder. Thus, the second equilibrium should be characterized
by a constant amplitude oscillation at the Strouhal number, as
explained by Eq. (16). This does not happen necessarily, as
one notes from Figs. 4 and 5 that both the amplitude and
phase variations are not characterized by fixed amplitude and
frequency at the second equilibrium state. This is seen from
the finite thickness of the limit cycles in the phasor plots. A
constant amplitude would have indicated zero thickness of
the limit cycles. Relatively, the thickness of the attractor for
the A4 and A3 modes are significantly wider as compared
to that for the A1 mode. During the transient stages, the
variations are even more pronounced and a lower-order model
would invariably be error prone, if one wants a deterministic
evaluation of SLE model constants, as was attempted in [1].
Hence, we obtain the model constants in a least squares
framework by minimizing the model error. For the M-mode
SLE equation for |Aj |, we have (M + 1) unknowns as (αj )Re

and (βjk)Re, where k varies from 1 to M . The same procedure
can be applied to the phase equation for θj . There are N � M

linear equations available, each corresponding to a time instant,
where N is the number of snapshots used for POD. These
equations for |Aj | and θj are given at t = ti by

d|Aj (ti)|
dt

= (αj )Re|Aj (ti)| + �M
k=1 (βjk)Re|Aj (ti)||Ak(ti)|2,

(21)

dθj (ti)

dt
= (αj )Im + �M

k=1 (βjk)Im|Ak(ti)|2, (22)

where i = 1 to N correspond to each snapshot. Least squares
approach gives us a solution that minimizes the norm of error
in the set of N equations in (21) and (22). In a generic form,
these set of equations can be written as

Qj = δjP1,j + �M
k=1γjkPk+1,j . (23)

For the amplitude variation,

Qj = d|Aj |
dt

and P1,j = |Aj |,

Pk+1,j = |Aj ||Ak|2,
δj = (αj )Re and γjk = (βjk)Re.

Similarly for the phase variation, the following substitutions
apply:

Qj = dθj

dt
and P1,j = 1,

Pk+1,j = |Ak|2,
δj = (αj )Im and γjk = (βjk)Im.

The squared error associated with the above equation can
be expressed as

Ej = �N
m=1[Qj (tm) − {δjP1,j (tm) + �M

k=1γjkPk+1,j (tm)}]2.

(24)

The method of least squares is used to fix the value of
unknowns, δj and γjk , by minimizing the above error norm.

TABLE II. Coefficients of Eq. (21) for Re = 100.

j αj βj1 βj2 βj3

1 8.941 × 10−2 −8.412 × 101 1.641 × 102 −1.504 × 102

2 −2.429 × 10−3 −1.967 × 102 −9.148 × 101 2.005 × 103

3 5.883 × 10−4 −3.604 × 102 −1.231 × 102 3.122 × 103

From the M + 1 equations, minimizing the error norm with
respect to the unknowns is obtained as follows:

∂Ej

∂δj

= 0 and
∂Ej

∂γjk

= 0.

By substituting for Ej in these equations, we get

∂Ej

∂δj

= �N
m=1[Qj (tm) − {δjP1,j (tm)

+�M
k=1γjkPk+1,j (tm)}]P1,j (tm) = 0, (25)

∂Ej

∂γjl

= �N
m=1[Qj (tm) − {δjP1,j (tm)

+�M
k=1γjkPl+1,j (tm)}]Pk+1,j (tm) = 0. (26)

The above set of (M + 1) linear equations can be written
in the form

[R̄]{x} = {s},
where [R̄] is a (M + 1) × (M + 1) matrix and {x} denotes the
(M + 1) unknown coefficients. The solution to this gives us
the requisite coefficients of the SLE equations, δj and γjk . In
the following section, the case of Re = 100 is treated to obtain
the corresponding SLE coefficients.

VII. RECONSTRUCTION OF INSTABILITY
MODES USING SLE EQUATIONS

Here results of reconstruction, using the formulation de-
scribed above, are provided. Using the least squares method,
the coefficients of amplitude and phase equations [Eqs. (21)
and (22)] for the 3-mode, (A1,A2,A3)-SLE equations are
shown in Tables II and III.

Before we embark upon solving Eqs. (21) and (22), it is
appropriate to note the need for initial conditions, which helps
one to focus on developing a ROM that will replace the task
of solving NSE with different boundary and initial conditions.
Equations (21) and (22), apart from being nonlinear, are
also stiff, as the original NSE for supercritical Re is stiff.
One of the attributes of any stiff differential equation is its
sensitive dependence on initial conditions. Thus, there is
a genuine need to look for optimum initial conditions for

TABLE III. Coefficients of Eq. (22) for Re = 100.

j αj βj1 βj2 βj3

1 1.490 × 10−1 8.849 × 102 2.660 × 103 8.706 × 102

2 0.00 0.00 0.00 0.00
3 −3.182 × 10−1 −2.227 × 103 1.126 × 103 3.277 × 103
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FIG. 8. Time integrated error contours for 0 < t � 396 are plotted in the (A20, A30) plane for different values of A10 for Re = 100.

Eqs. (21) and (22) for every Reynolds number. To locate the
optimum initial conditions for the Re = 100 case, Eqs. (21)
and (22) with coefficients given in Tables II and III, are
solved for different combinations of initial conditions as
given by A10, A20, A30 for a 3-mode SLE reconstruction. The
reconstruction is carried out using an implicit RK2 method
[46] with a time step of 0.001. The essential idea here is to
locate the optimum values for the initial conditions, for which
the time integrated error norm in Eq. (24) is minimum. The
reason for choosing the 3-mode SLE reconstruction is that the
2-mode SLE equation reconstruction failed for all cases with
different initial conditions. Thus, the 3-mode SLE model is the
minimal set for ROM for this flow. Thus, in the following, we
obtain optimum conditions to compute the departure between
the DNS and the simulated data by solving Eqs. (21) and (22)
and using those in Eq. (2) to minimize the error in Eq. (24),
summed over the full time range. Thus, the model is “trained”
with known DNS data for different Reynolds numbers.

We note that replacement of an initial-boundary value
problem (NSE) with a set of initial value problem would
somehow require the missing information coming from the
boundary conditions. This is manifested as requiring an
optimal set of initial conditions for the solution of Eqs. (21)
and (22) with the coefficients given in Tables II and III. Any
initial condition will not be adequate to address this issue.

The following strategy has been adopted to locate the global
minimum for the combination of A10, A20, A30 in order to
arrive at a ROM with least error between the computed ODEs
and the corresponding DNS data. In doing so, one fixes a
value of A10, with A20 and A30 values chosen in a grid, in the
(A20, A30) plane. Time integrated errors obtained from t = 0
to 396 are plotted in the (A20, A30) plane, as shown in Fig. 8
for error contour plots for different fixed values of A10. The

minimum error location corresponding to different values of
A10 in the (A20, A30) plane are noted as local minimum. In
Fig. 9, extracted local minima of error are plotted as a function
of A10, which helps identify the global minimum. The global
minimum error of the 3-mode SLE reconstruction is given by
the following initial conditions of the instability modes for
Re = 100 as

A1(0) = 3.0 × 10−5,

A2(0) = 1.05 × 10−2, and A3(0) = 1.6 × 10−5.

With the above optimum initial conditions, Eqs. (21) and
(22) are solved with the coefficients given in Tables II and

FIG. 9. Extracted minimum integrated error plotted as a function
of A10 for Re = 100.
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FIG. 10. Optimal reconstruction for the three-mode case for Re = 100.

III. The results of the reconstruction given in Fig. 10 show
that the reconstructed amplitude variation of the regular
instability modes (with A1 and A3) matches well with the
DNS results. However, the reconstruction of the T1 mode (A2)
is unsatisfactory for the reasons noted before. The procedure
followed is simply not capable of capturing its oscillatory
behavior after saturation. It must be emphasized that POD of
DNS data do not lack this information. This has to do with the
instability mode modeling via the SLE equation approach for
the T1 mode, which is incapable of capturing the oscillatory
nature of the instability mode. Thus, in ROM there is a need to
properly incorporate the oscillatory nature of T1 modes after
saturation, which is attempted next.

As with the amplitude equations, the phase equations also
require specification of initial conditions for time integration.
However, unlike amplitude equations, the phase variation
is only laterally shifted by the initial conditions, since the
phase is governed by Eq. (22). The initial condition changes
the intercept of the phase variation on the t = 0 line, while
preserving local slope values.

In light of this observation, the following methodology
is adopted to find the initial conditions for phase. The time
integration, with all phases initialized to zero, is carried
out and subsequently results are compared with the phase
variation from DNS to obtain the difference between the
two [= θDNS(t) − θreconstructed(t)]. The time average of this
difference is set as the initial phase. The initial phase values
thus obtained for Re = 100 are

θ1(0) = −7.637 rad,

θ2(0) = 0 rad, and θ3(0) = 7.766 rad.

A. Modeling the anomalous mode of the first kind (T1 mode)

In constructing an instability mode corresponding to a
T1 mode, it is expressed with the single POD mode, as its
pair is missing. Following the traditional approach [26,27]
this will result in an instability amplitude function formed
by a real POD amplitude function and in the same way the
corresponding eigenfunction is real. However, from Fig. 1, it
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FIG. 11. The slowly varying and rapidly varying components of
the T1 mode (POD mode-3 for Re = 150) (top two panels) and the
phasor plot (bottom panel) of the corresponding instability mode.

is clear that the first T1 mode (POD mode 3 for Re = 100)
exhibits oscillatory behavior at saturation, signifying phase

variation. Thus, the traditional approach of constructing
instability mode from POD modes will not be able to
account for time-varying oscillations of T1 modes. Thus,
there is a need to have an alternative representation of the
instability modes corresponding to T1 modes. This is one of
the motivations of the present work over that was presented
in [1].

As noted earlier, T1 modes obtained from the POD analysis
show time-periodic behavior during and after saturation,
from which it can be construed that it involves variation
at two disparate time scales, a slowly varying component
which accounts for the mean field correction (as in the
shift mode of [19]) and a rapidly varying time-periodic
component.

The present task is to devise a representation for the T1

mode which would account for the phase variation at small
time scales. A possible solution is splitting the T1 mode into
a slowly and a rapidly varying component by introducing
two different time scales. The slow variation is extracted by
smoothing the data by removing the fluctuating components
to obtain T1s(t). This is performed by low pass filtering the
data at postprocessing stage. This is shown in the top frame
of Fig. 11 for Re = 150. The rapidly varying component T1r

can then be found by subtracting the slow variation from the
original T1 mode by

aT 1(t) = T1s(t) + T1r (t). (27)

FIG. 12. Instability modes constructed for Re = 150 following the new representation of the T1 mode.
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FIG. 13. Amplitude equation coefficients for A1.
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FIG. 14. Amplitude equation coefficients for A2m.
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FIG. 15. Amplitude equation coefficients for A2d .
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FIG. 16. Amplitude equation coefficients for A3.
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TABLE IV. Initial conditions for amplitude equations.

Re |A10| |A2m0| |A2d0| |A30|
100 8.1 × 10−5 3.26 × 10−3 8.0 × 10−7 1.9 × 10−3

130 3.46 × 10−5 5.0 × 10−3 1.69 × 10−6 2.31 × 10−3

150 2.5 × 10−5 2.5 × 10−3 2.1 × 10−6 1.0 × 10−8

For the case of Re = 150, T1r is shown as a function of time
in the middle frame of Fig. 11. A fast Fourier transform (FFT)
of the rapidly varying component allows us to identify the
dominant frequency (ωd ) of oscillation. Also, the amplitude
envelope Tra(t) of the rapid variation of T1r (t) is found by
first extracting the maxima and minima of every cycle and
subsequently using a cubic Hermite interpolation to get the
amplitude variation at intermediate time instants. Using the
dominant frequency and the amplitude envelope information,
the rapidly varying component is expressed as

T1r (t) = Tra(t) cos(ωdt).

Using this representation, the instability mode A2(t) can now
be defined as

A2(t) = T1s(t) + Tra(t)

2
eiωd t . (28)

The phasor plot of A2(t) in the bottom frame of Fig. 11
shows the approach towards the limit cycle by the arrowhead
starting from Im(A2) = 0. The thickness of the limit cycle
is nonzero, but amplitude variation of Tra(t) is negligible.
In formulating the SLE equations for this representation we

split A2(t) into A2m(t), which accounts for the variation in
mean and A2d (t) for the superimposed disturbance, as given
by

A2m(t) = T1s(t), (29a)

A2d (t) = Tra(t)

2
eiωd t . (29b)

The instability mode amplitude variations (A1 to A3) obtained
using this approach are shown in Fig. 12 for Re = 150.

B. T1-mode reconstruction

The new representation of the T1 mode described above
was implemented and used to reconstruct the SLE equations.
The results given below are for Re = 100, while these are also
available for Re = 130 and 150.

For the 3-mode (A1,A2m,A2d ,A3)-SLE equations in the
new formalism, the SLE equations have the following form
for the amplitude:

d|A1|
dt

= α1|A1| + β11|A1||A1|2 + β12m|A1||A2m|2

+β12d |A1||A2d |2 + β13|A1||A3|2, (30)

d|A2m|
dt

= α2m|A2m| + β2m1|A2m||A1|2 + β2m2m|A2m||A2m|2

+β2m2d |A2m||A2d |2 + β2m3|A2m||A3|2, (31)

α β

β β

β

1×107

2×107

3×107

4×107

5×107

FIG. 17. Phase equation coefficients for θ1.
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β

β

5×107

FIG. 18. Phase equation coefficients for θ2d .
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FIG. 19. Phase equation coefficients for θ3.
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d|A2d |
dt

= α2d |A2d | + β2d1|A2d ||A1|2 + β2d2m|A2d ||A2m|2

+β2d2d |A2d ||A2d |2 + β2d3|A2d ||A3|2, (32)

d|A3|
dt

= α3|A3| + β31|A3||A1|2 + β32m|A3||A2m|2

+β32d |A3||A2d |2 + β33|A3||A3|2. (33)

Note that the subscripts 2m and 2d relate to the interactions
of the anomalous mode, as modeled here with other modes,
including self-interaction. The coefficients of the amplitude
equations obtained using the least squares approach for
different Re′s are plotted in Figs. 13 to 16, with the coefficients
identified.

The optimal initial conditions for the amplitudes are
found through a time-integrated error analysis in the
(A10,A2m0,A2d0,A30) hyperspace, similar to the approach
stated above in Sec. VI, with the local minima in the
(A2m0,A2d0,A30) space found for different values of A10, from
which we determine the global minimum. The final global
optimal initial conditions obtained by this process are given in
Table IV.

The phase for 3-mode (A1,A2m,A2d ,A3)-SLE equations are
obtained from the solution of

dθ1

dt
=α1 + β11|A1|2 +β12m|A2m|2 + β12d |A2d |2 +β13|A3|2,

(34)

TABLE V. Initial conditions for phase equations (in rad).

Re θ10 θ2m0 θ2d0 θ30

100 − 9.409 0 − 9.685 12.410
130 1.257 0 8.45 0.944
150 1.606 0 11.210 − 6.147

dθ2m

dt
= 0, (35)

dθ2d

dt
= α2d + β2d1|A1|2 + β2d2m|A2m|2

+β2d2d |A2d |2 + β2d3|A3|2, (36)

dθ3

dt
= α3 +β31|A1|2 + β32m|A2m|2 + β32d |A2d |2 + β33|A3|2.

(37)

The coefficients of the phase equations obtained using the
same least squares approach as before are plotted in Figs. 17
to 19 for different Re′s.

As earlier, the initial conditions for phase are found
graphically by averaging the difference in the reconstructed
and the actual phase, with all phases initialized as zero. The
optimal initial conditions thus obtained are given in Table V.

In Figs. 20 to 22, reconstructed amplitude and phase of
instability modes are shown for Re = 100. In Fig. 20, one
notices excellent match for the asymptotic values. A slight
mismatch is noted during the transient phase, especially for
A2m. This is readily evident in Fig. 21, where the A2 mode

FIG. 20. Reconstructed instability mode amplitude variation with time for Re = 100.
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FIG. 21. Reconstructed A2 mode amplitude variation with time
for Re = 100.

is reconstructed following Eq. (28), which shows the match
to be excellent beyond t ≈ 170. The reconstructed phase in
Fig. 22 for A1, A2d , and A3 from SLE equations matches
excellently with the data from POD performed with DNS data.
In the following, we discuss cases for Re = 130 and Re = 150
without showing any figures for these cases.

For both the cases, instability modes’ amplitude as obtained
from the solution of SLE equation and that reconstructed from
the POD data match even better with an increase in Reynolds
number. One of the successes of the present effort is to
reconstruct A2, which belongs to T1 modes. The phase matches
rather well for all the Reynolds numbers. For Reynolds number
equal to 150, the qualitative nature improved further, as
compared to the case of Re = 130.

VIII. RECONSTRUCTION OF DISTURBANCE
VORTICITY FROM THE SLE SOLUTIONS

Having obtained the amplitude and phase variation from
the SLE equations, it is possible to get back the POD modes
by tracing the steps required to construct SLE modes (from
the POD modes) backward as given for R modes by

a2j−1(t) = |Aj (t)| cos θj ,

a2j (t) = |Aj (t)| sin θj .

Care is needed to reconstruct the anomalous mode of the
first kind (T1) from the computed A2m, A2d , and θ2d . We
note that in computing the modulus of the slowly varying
component (T1s) mode, we lose the information of its sign.
Therefore, in reconstructing the T1 mode from |A2m|, this
information on sign is provided explicitly by comparing with
the original T1 mode in POD representation.

For the T1 mode,

a2j−1(t) = Ajm(t) + 2|Ajd (t)| cosθjd .

t

ω
’(
t)

0 50 100 150 200 250-4

-2

0

2

4 DNS
POD reconstructed (1st 30 modes)

Re=100

t

ω
’(
t)

0 50 100 150 200 250-4

-2

0

2

4 SLE reconstructed
POD reconstructed(1st 6 modes)

Re=100

t

ω
’(
t)

0 50 100 150 200 250-4

-2

0

2

4
SLE reconstructed
DNS

x=0.5044, y=0.00Re=100

FIG. 23. (Color online) Disturbance vorticity obtained from
DNS reconstructed using the results from the SLE equations for
Re = 100 at (0.5044, 0.0).

Subsequently, these POD modes can be utilized to recon-
struct the disturbance vorticity at any point in the flow field.
The reconstructed disturbance vorticity at two points, one
along the centerline of the wake (0.5044, 0) and another at 45◦
with respect to the centerline at (1.016, 1.016), are presented
in Figs. 23 and 24.

In Fig. 23, the reconstructed disturbance vorticity data from
the solution of SLE equations for the 3-mode case is shown for
Re = 100 at a point in the near wake (x = 0.5044, y = 0.0).
The figure shows comparison between DNS data with this
3-mode SLE reconstruction. It is very apparent that for t � 90
the match between the two is almost perfect. The match
appears natural except for the choice of initial condition, which
can cause a mismatch. Higher than 3-mode SLE equation
reconstruction would be tedious to track the optimal initial
conditions. Even for the 3-mode model developed here, an
optimal search required locating the global minimum in a

θ θθ

FIG. 22. Reconstructed phase variation with time of the instability modes for Re = 100.
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FIG. 24. (Color online) Disturbance vorticity obtained from
DNS reconstructed using the results from the SLE equations for
Re = 100 at (1.016, 1.016).

four-dimensional space. This problem will be present for
higher than 3-mode SLE models; however, it is eminently
solvable.

While the match between ROM based on SLE equations
and DNS data show remarkable accuracy in Fig. 23, the
same is investigated for another point which is located in
the near wake, but is off-center. This comparison is shown
in Fig. 24 using the same 3-mode SLE reconstruction strategy.
It is readily evident that the 3-mode ROM matches with DNS
data very well asymptotically, as shown in these figures. From
the eigenfunctions shown in Fig. 2, one notices that the modal
contributions on off-center points are asymmetric with respect
to the centerline. This will lead to higher mismatch with the
POD data, due to higher sensitivity of phase match from the
solution of Eqs. (34) to (37) for any off-center point.

IX. SUMMARY AND CONCLUSION

In the present research, the following have been achieved.
(1) POD modal decomposition and projecting these onto

instability modes have been performed for flow past a circular

cylinder at multiple supercritical Reynolds numbers, with
results shown in Figs. 1, 2, and 4–7. While enstrophy-based
POD analysis has been shown earlier for vortex-dominated
flows in [1,11], and here the generality of this approach needs
to be established for other flows. Some preliminary results for
flow past a flat plate undergoing transition to turbulence has
been reported in [12].

(2) Modeling cylinder wake by the SL and SLE equations is
an important exercise. The superiority of the SLE equation over
the SL equation has been already noted in [1]. However, finding
the coefficients of the SLE equation is not a straightforward
proposition. In the present work the deterministic route [1] has
been replaced by a least squares approach for the generality it
affords. The success of reconstructing the disturbance vorticity
by the present approach is a proof of robustness of the proposed
ROM.

(3) Another important aspect of ROM is the choice of initial
condition for the developed SLE equations, as these equations
are stiff ordinary differential equations. The sensitivity of a stiff
differential equation on initial conditions has been explored
here rationally and the choice of initial condition is explained
with the help of Figs. 8 and 9.

(4) An accurate representation of enstrophy-based POD of
flows also reveals the presence of modes which occur in iso-
lation [1,11] and is shown here also. The traditional approach
of treating instability modes by SL or SLE equations does not
work directly due to the isolated nature of the corresponding
POD modes with higher frequencies. Quantifying the effects
of this via the time-averaged Navier-Stokes equation fails to
capture these high frequency variations. Here this aspect has
been captured using DNS data in modeling this anomalous
mode of first kind (T1 mode) by a multi-time-scale approach
with results shown in Figs. 11 and 12. This exercise reveals
the actual physics of instability for flow past a cylinder.

(5) Reconstructed 3-mode ROM solutions (shown in
Figs. 20–22) and disturbance vorticity from DNS (in Figs. 23
and 24) match globally in the flow field. Thus, we have
successfully converted the problem of solving the Navier-
Stokes equation into solving three complex ordinary differ-
ential equations. This will lead to very accurate solutions at
supercritical Reynolds number flows by investigating a few
minutes, instead of hundreds of CPU hours of larger clusters
using high performance computing. Once achieved, this will
be a path-breaking achievement in ROM of bluff body flows.

(6) The present exercise highlights the physical role played
by the anomalous modes for this flow, by relating POD and
instability modes. Apart from explaining the role of this
anomalous mode (T1 mode) in taking the dynamical system to
a new equilibrium state characterized by vortex shedding, the
presented ROM will help control such flows by suppressing
vortex shedding [18], an exercise useful for both scientific and
technological reasons.
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