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In this paper, random-site percolation thresholds for a simple cubic (SC) lattice with site neighborhoods
containing next-next-next-nearest neighbors (4NN) are evaluated with Monte Carlo simulations. A
recently proposed algorithm with low sampling for percolation thresholds estimation (Bastas et al.,
arXiv:1411.5834) is implemented for the studies of the top-bottom wrapping probability. The obtained percolation
thresholds are pC(4NN) = 0.311 60(12), pC(4NN + NN) = 0.150 40(12), pC(4NN + 2NN) = 0.159 50(12),
pC(4NN + 3NN) = 0.204 90(12), pC(4NN + 2NN + NN) = 0.114 40(12), pC(4NN + 3NN + NN) =
0.119 20(12), pC(4NN + 3NN + 2NN) = 0.113 30(12), and pC(4NN + 3NN + 2NN + NN) = 0.100 00(12),
where 3NN, 2NN, and NN stand for next-next-nearest neighbors, next-nearest neighbors, and nearest neighbors,
respectively. As an SC lattice with 4NN neighbors may be mapped onto two independent interpenetrated SC
lattices but with a lattice constant that is twice as large, the percolation threshold pC(4NN) is exactly equal to
pC(NN). The simplified method of Bastas et al. allows for uncertainty of the percolation threshold value pC to
be reached, similar to that obtained with the classical method but ten times faster.
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I. INTRODUCTION

Finding percolation thresholds pC and observing cluster
properties near a percolation threshold [1–4] are one of the
most extensively studied problems in statistical physics. The
beauty of percolation [5] lays both in its simplicity and
its possible practical applications. The latter ranges from
theoretical studies of the geometrical model of the phase
transition [6] via condensed-matter physics [7], rheology
[8], and forest fires [9], to immunology [10] and quantum
mechanics [11].

In the random-site percolation model, the nodes of a lattice,
graph, or network are randomly occupied with a probability
p. The critical probability pC separates two phases: for p >

pC , the system percolates, i.e., one may find a single cluster
of occupied sites that extends to the borders of the system;
while for p < pC , only smaller clusters exist. Usually, the
finite-size scaling theory [12–15] is employed for percolation
threshold pC estimation. This requires checking properties of
some quantity X(p,L) in the vicinity of the phase transition
as it depends on the linear system size L,

X(p; L) = L−xF
(
(p − pC)L1/ν

)
, (1)

where F(·) is a scaling function, x is a scaling exponent, and
ν is a critical exponent associated with the correlation length
[1]. Equation (1) yields an efficient way for pC determination
as LxX(pC ; L) = F(0) does not depend on the linear system
size L. This means that curves LxX(p; L) plotted for various
values of L should have one common point exactly at p = pC .
Unfortunately, the results of computer simulations rather rarely
reproduce a single common point of curves X(p; L) unless the
number Nrun of prepared lattices is very high.

Recently, Bastas et al. proposed an efficient method for
estimating scaling exponents x and percolation thresholds pC

in percolation processes with low sampling [16,17]. According
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to Refs. [16,17], instead of searching for the point where curves
X(p; L) intercept each other, one may wish to minimize the
pairwise difference,

�(p; x) ≡
∑

i �=j

[
H (p; Li) − H (p; Lj )

]2
, (2)

with respect to both parameters x and p, where

H (p; L) ≡ Y (p; L) (3a)

as suggested in Ref. [16] or

H (p; L) ≡ Y (p; L) + 1/Y (p; L) (3b)

as proposed in Ref. [17], and in both cases

Y (p; L) ≡ LxX(p; L). (4)

The minimum of �(p; x) is reached for p = pC and x =
β/ν, where β is a critical exponent associated with the order
parameter (for instance, the probability of an arbitrary site
belonging to the infinite cluster [1]).

In this paper, we propose a simplified version of Bastas
et al.’s algorithm, where only a single-parameter function λ(p)
must be minimized in order to provide percolation threshold
estimation. With such an approach, we estimate simple cubic
(SC) random-site percolation thresholds for eight complex
neighborhoods containing next-next-next-nearest neighbors.
Our results enhance those of the earlier studies regarding
percolation thresholds for complex neighborhoods on square
[18] or SC [19] lattices.

II. APPROACH

Our proposition is to apply Bastas et al.’s technique for
a quantity such as X(p; L), which does not require scaling
along the X axis by a factor Lx in order to achieve statistical
invariance of the shape X(p; L) for various values of L.
An example of such a quantity is the (top-bottom) wrapping
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probability [20]:

W (p; L) = N (p; L)/Nrun, (5)

where N (p; L) is a number of percolating lattices, with pL3

occupied sites among Nrun lattices constructed for fixed values
p and L. In the thermodynamic limit, we have W (p <

pC ; L → ∞) = 0 and W (p > pC,L → ∞) = 1, and thus the
scaling exponent x of W is equal to zero [1]. Consequently,
instead of the form given by Eq. (1), the wrapping probability
obeys a simplified scaling relation [1,21],

W (p; L) = G
(
(p − pC)L1/ν

)
. (6)

Equation (6) again makes it possible to determine pC as
W (pC ; L) = G(0) does not depend on the system size L.

Now, the equivalent of Eq. (2) may be written as

λ(p) ≡
∑

i �=j

[
H (p; Li) − H (p; Lj )

]2
, (7)

where

H (p; L) ≡ W (p; L) + 1/W (p; L). (8)

Following the technique of Bastas et al., one should minimize
the function λ(p); the found minimum may then be used for
the pC estimation.

Several numerical techniques allow for clusters of con-
nected site identification [21–24]. Here we apply the Hoshen-
Kopelman algorithm [22], which allows for sites to be labeled
in a such way that occupied sites in the same cluster have
assigned the same labels and different clusters have different
labels associated with them.

Here we investigate an SC lattice with site neighbors
ranging from the nearest neighbors (NN), via the next-nearest
neighbors (2NN) and the next-next-next-nearest neighbors
(3NN), to the next-next-next-next-nearest neighbors (4NN).
A scheme showing only single sites of each of the neigh-
borhood types mentioned above is presented in Fig. 1.
The full neighborhoods contain z = 6, 12, 8, and 6 sites
for NN, 2NN, 3NN, and 4NN neighborhoods, respectively.

NN

2NN

3NN

4NN

FIG. 1. (Color online) Single sites from various neighborhoods
of an SC lattice. The full neighborhoods contain z = 6, 12, 8, and 6
sites for NN, 2NN, 3NN, and 4NN neighborhoods, respectively.

Also all available combinations of these neighborhoods are
considered, i.e., (4NN+NN), (4NN+2NN), (4NN+3NN),
(4NN+2NN+NN), (4NN+3NN+NN), (4NN+3NN+2NN),
and (4NN+3NN+2NN+NN) containing z = 12, 18, 14, 24,
20, 26, and 32 sites, respectively.

III. RESULTS AND DISCUSSION

For each pair (p,L) of parameters Nrun = 104, lattices with
randomly occupied pL3 sites were simulated for L = 40, 80,
120, and 160. The wrapping probabilities W (p; L) for various
neighborhood combinations are presented in Fig. 2.

As was mentioned in the Introduction, the results of
computer simulations rather rarely reproduce a single common
point of curves W (p; L) unless the number Nrun of prepared
lattices is very high. This means that finding the common
point of W (p; L) curves for various linear system sizes L

may be quite problematic. To better illustrate this situation,
we plot W (p; L) dependencies near pC with a site occupa-
tion probability step �p = 10−4 (see Fig. 3). And indeed,
except for the 4NN+2NN+NN neighborhood, the curves
W (p; L) for various pairs of L intersect at different points.
Moreover, for the smallest values of L, the dependencies
W (p; L) do not even increase monotonically with p. At the
same time, the dependencies λ(p; L) prepared with the same
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FIG. 2. (Color online) Wrapping probability W (p; L) vs occupation probability p. The results are averaged over Nrun = 104 runs. The
symbols (+, ×, +× ,�) indicate the system linear sizes (L = 40, 80, 120, 160), respectively.
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FIG. 3. (Color online) Wrapping probability W (p; L) and the pairwise sum λ(p) vs occupation probability p. The results are averaged
over Nrun = 104 runs. The symbols (+, × , +×,�) indicate the system linear sizes (L = 40, 80, 120, 160), respectively. The minima of λ(p)
correspond to the percolation thresholds pC .

accuracy �p = 10−4 exhibit a single and sharp minimum (it
is worth mentioning that values of λ are presented with the
use of a logarithmic scale). The minimum of λ(p) corresponds
to the percolation threshold pC . The estimated thresholds are
presented in Table I.

The plots W (p; L) presented in Fig. 3 make it possible to
determine the length of the interval where the true value of

TABLE I. The critical values of pC for various neighborhoods
based on minimization of λ(p) function.

Neighborhood z pC

4NN 6 0.31160(12) = pC(NN)
4NN+NN 12 0.15040(12)
4NN+2NN 18 0.15950(12)
4NN+3NN 14 0.20490(12)
4NN+2NN+NN 24 0.11440(12)
4NN+3NN+NN 20 0.11920(12)
4NN+3NN+2NN 26 0.11330(12)
4NN+3NN+2NN+NN 32 0.10000(12)

the percolation threshold is located. This length is equal to
δW (pC) = 0.0004. Assuming that a real percolation threshold
value is uniformly distributed in this interval, one may
evaluate the percolation threshold uncertainty as uW (pC) =
δW (pC)/

√
3 ≈ 0.000 23. The approach based on the λ(p; L)

dependence provides an evaluation of δλ(pC) that is twice
as small, and consequently uλ(pC) ≈ 0.000 12. On the other
hand, the method of pC estimation based solely on W (p; L)
dependences, applied for similar neighborhood geometries,
leads to twice as small lengths δ(pC) and consequently
similar uncertainties u(pC) but for ten times larger sampling
(Nrun = 105) [19]. One can conclude that the method used by
Bastas et al. leads to uncertainty of the percolation threshold
value pC similar to that obtained with the classical method
uλ(pC) ≈ uW (pC), but ten times faster.

Note that an SC lattice with 4NN neighbors may be mapped
onto two independent interpenetrated SC lattices but with a
lattice constant that is twice as large. Thus we expect the
percolation threshold pC(4NN) for the next-next-next-next-
nearest neighbors to be equal exactly to pC(NN). Indeed,
the obtained value of pC(4NN) ≈ 0.31160 agrees very well
with values of the percolation threshold estimated for the
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nearest neighbors pC(NN) ≈ 0.311 607 68(15) obtained very
recently in extensive Monte Carlo simulation [25] and its
earlier estimations [26].

Note, however, that reaching such accuracy requires, for
L � 128, sampling over Nrun = 5 × 108 lattices realization
[25], while we recovered the first five digits of pC(NN) with
statistics lower by more than four orders of magnitude.

Knowing the percolation threshold may be practically
useful for many systems with neighborhoods ranging beyond
nearest neighbors [27] or next-nearest neighbors [28]. Thus

practical application of pC values for longer ranges of
interaction among the systems’ items cannot be generally
excluded in all typical applications of the percolation theory,
i.e., physics, chemistry, biology, and social sciences.
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