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Transient growth in Taylor-Couette flow of a Bingham fluid
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In this paper we investigate linear transient growth of perturbation energy in Taylor-Couette flow of a Bingham
fluid. The effects of yield stress on transient growth and the structure of the optimal perturbation are mainly
considered for both the wide-gap case and the narrow-gap case. For this purpose we complement the linear stability
of this flow subjected to axisymmetric disturbances, presented by Landry et al. [M. P. Landry, I. A. Frigaard, and
D. M. Martinez, J. Fluid Mech. 560, 321 (2006)], with the transient growth characteristics of both axisymmetric
and nonaxisymmetric perturbations. We obtain the variations of the relative amplitude of optimal perturbation
with yield stress, analyze the roles played by the Coriolis force and the additional stress in the evolution of
meridional perturbations for the axisymmetric modes, and give the explanations for the possible change of the
optimal azimuthal mode (featured by the maximum optimal energy growth Gopt) with yield stress. These results
might help us in the understanding of the effect of fluid rheology on transient growth mechanism in vortex flows.
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I. INTRODUCTION

A comprehensive understanding of turbulent phenomena in
Taylor-Couette flow has received considerable recent attention
[1–6] since the sudden transition to spiral turbulence in the lin-
early stable region was reported by Coles [7] and Van Atta [8]
in the 1960s and later on by Andereck and co-workers [9,10]
in the 1980s. This subcritical transition cannot be explained
by classical eigenvalue analysis, whereas it may be associated
with substantial transient growth that even very small perturba-
tions may suffer due to the non-normality of the linearized op-
erator [11]. Hristova et al. [12,13] and Meseguer [14,15] have
investigated transient growth in Taylor-Couette flow for coun-
terrotation scenarios and demonstrated that the lift-up mecha-
nism is responsible for the short-term growth of initial axisym-
metric perturbations and the formation of azimuthal streaks.

Investigation of the non-Newtonian Bingham case from this
point of view is lacking. Landry et al. [16,17] performed a lin-
ear stability analysis of Taylor-Couette flow of a Bingham fluid
subjected to axisymmetric disturbances. The most interesting
feature of the results is the nonmonotonicity of the critical inner
cylinder Reynolds number for wide-gap corotating cylinders
as the yield stress is increased, much like that observed in
the context of spiral Couette flow [18]. It is the only situation
that we know of where a yield stress fluid flow is less stable
than the corresponding Newtonian fluid flow, in contrast to the
conclusion by Graebel [19]. With this in mind, it is naturally
desirable to study the effects of yield stress on the transient
growth characteristics in the corotating cylinder regime as well
as the counterrotating cylinder regime, with the aim to gain
further insight into the stability of Taylor-Couette flow of a
Bingham fluid. In this paper we present some general theo-
retical results to depict the influence of the Bingham number
B on the transient growth and on the optimal perturbation,
i.e., the initial conditions that provide the maximal energy
growth, which is proved to be affected by the Bingham number
evidently in the case of plane Bingham-Poiseuille flow [20].

*Corresponding author: chief@mail.ustc.edu.cn

II. PROBLEM FORMULATION

We consider the flow of an incompressible Bingham fluid
with a yield stress τy , plastic viscosity μp, and density ρ

between two concentric rotating cylinders whose angular
velocities are �1 and �2, respectively. Following the analytical
formulation by Chossat and Iooss [21] and using d = R∗

2 −
R∗

1 , �1R
∗
1 , and μp�1R

∗
1 /d as characteristic scales for space,

velocity, and the deviatoric stress, the constitutive equations
can be written as

τij = μγ̇ij =
(

1 + B

γ̇

)
γ̇ij for τ > B,

γ̇ = 0 for τ � B,

where γ̇ and τ are the second invariants of the rate of strain
and deviatoric stress tensors and μ is the effective viscosity.
The Bingham number B above represents a ratio of yield stress
to viscous stress, defined as

B = τyd

μpR∗
1�1

.

Defining the outer boundary of the yielded region as

Ro = min

{
η

1 − η

√
|τi |
B

,
1

1 − η

}
,

the basic velocity profile U = (U,V,W ) in directions (r,θ,z)
is found to be [17,22]

U = 0,

V (r) = Re2(1 − η)

Re1
r + τiη

2r

2(1 − η)2

(
1

R2
o

− 1

r2

)
(1)

+Br ln

(
Ro

r

)
sgn(τi), R1 � r � Ro,

W = 0,

where η = R∗
1/R

∗
2 is the radius ratio (inner cylinder radius to

outer cylinder radius), R1 = η/(1 − η) is the dimensionless
inner radius, and τi is the inner wall shear stress. The pa-
rameters Re1 = ρR∗

1�1d/μp and Re2 = ρR∗
2�2d/μp are the
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FIG. 1. Marginal stability curves in the (B,Re1) plane for η =
0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 0.99 with Re2 = 1000.

inner and outer cylinder Reynolds numbers, respectively. Two
radius ratios 0.5 and 0.99 are mainly considered in this study,
corresponding to the work by Hristova et al. [12] Also, these
two values usually represent the wide-gap case and the narrow-
gap case in the Taylor-Couette problem [23] and there exists a
smooth transition of the behavior of the Bingham fluid between
the cases presented here according to our computations. As
shown in Fig. 1, the nonmonotonicity of the critical Reynolds
number Re1c for linear axisymmetric disturbances at fixed
Re2 (Re2 = 1000), i.e., the destabilizing effect of increasing
B, disappears gradually with increasing η. Likewise, gradual
variation (with η) of the transient growth behavior is revealed
by nonmodal analysis, which also shows that the situation with
a smaller radius ratio (η = 0.4) is nearly the same as for the
wide-gap case (the relevant results are not given here).

For our analysis, the mean flow is supposed to be perturbed
by a small disturbance of velocity (u,v,w)ei(mθ+kz) and
pressure pei(mθ+kz), where m and k are the azimuthal and
axial wave numbers, respectively. The evolution equations in
terms of the complex amplitudes u = (u,v,w) are written

∂u

∂t
= −Dp − Re1�(imu − 2v) +

(
DD∗ − k2 − m2

r2

)
u

− 2imv

r2
+ Bφr, (2)

∂v

∂t
= − imp

r
− Re1(uD∗V + imv�)

+
(

DD∗ − k2 − m2

r2

)
v + 2imu

r2
+ Bφθ , (3)

∂w

∂t
= −ikp − Re1imw� +

(
D∗D − k2 − m2

r2

)
w

+Bφz, (4)

with γ̇ = γ̇ (U), where

φr = 1

r
D

(
2rDu

γ̇

)
+ 1

γ̇

(
ikDw − k2u − 2(imv + u)

r2

)
,

(5)

φθ = 1
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(
2(imu − m2v)

r2
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− k2v

)
, (6)

φz = 1

r
D

(
r(iku + Dw)

γ̇

)
− 1

γ̇

(
m2w

r2
+ kmv

r
+ 2k2w

)
,

(7)

where � = V/r is the angular speed, D = d(·)/dr , and
D∗ = d(·)/dr + (·)/r . Spatial discretization is achieved here
through a standard Chebyshev spectral collocation method
[24]. Note that for the case that the basic flow has a partial
plug in the annulus r ∈ [Ro,1/(1 − η)], besides the boundary
condition u(R1)= u(Ro) = 0, additional conditions also arise
from continuity of stress at the perturbed yield surface [16,17].

To measure the growth of an arbitrary initial disturbance,
we use the energy norm

E(u) = ‖u‖2
E = 1

2

∫ Ro

R1

(|u|2 + |v|2 + |w|2)rdr. (8)

The maximal energy growth G(t) for u evolving according
to (2)-(4) is defined by maximizing the ratio between the
energy norm of the perturbation at time t and its initial norm

G(t) = sup
u(0) �=0

‖u(t)‖2
E

‖u(0)‖2
E

, (9)

which is calculated using the method described by Schmid
and Henningson [25]. The optimal energy growth in time is
defined as Gopt = G(topt) = supt�0G(t), where topt is the cor-
responding optimal time. The optimal perturbation, denoted
by u(0), is the normalized initial condition, which achieves the
maximum (sup) for t = topt.

Our target is to study the effect of yield stress on transient
growth in Taylor-Couette flow. Therefore, a wide range of the
Bingham number is investigated, varying from 0 to 10. For
corotating cylinders, the outer cylinder Reynolds number is
fixed as Re2 = 1000, for which the increase in the rate of strain
of the basic flow amplifies the transfer of energy from the basic
flow to the perturbation, leading to the destabilizing effect of
increasing B [17]. In contrast, for counterrotating cylinders,
the outer cylinder Reynolds number is set to Re2 = −1000.

III. RESULTS AND DISCUSSIONS

We now consider the growths obtained by solving the
transient growth problem; we first focus on axisymmetric
(m = 0) optimal modes for corotating cylinders. Figure 2 plots
the maximum Gmax(B,Re1) = supkGopt(k,B,Re1) for all k as
a function of B and Re1. Inside the shaded region, the flow is
linearly unstable with respect to axisymmetric perturbations.
The boundary of this region gives the critical inner cylinder
Reynolds number Re1c(B) as a function of Bingham number
B. For a wide-gap case (η = 0.5), at large enough Re1, Gmax

increases rapidly with B and terminates by meeting the linear
instability boundary, while Gmax decreases with increasing
B over the shaded region. This nonmonotonicity of Gmax

is obviously related to that of the critical Reynolds number.
At relatively small Re1, it is found that Gmax is reduced
monotonically as B is increased. For a narrow-gap case (η =
0.99), Gmax at fixed Re1 decreases quite slowly with increasing
B, despite the magnitude of Re1, as can be seen from Fig. 2(b).

The effect of the yield stress on the relative amplitude of
the azimuthal and radial directions of the optimal perturbation
(the modulus) |v|/|v|max, |u|/|v|max is shown in Fig. 3 for the
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FIG. 2. Constant maximum of optimal growth Gmax in the (B,Re1) plane for (a) η = 0.5 and (b) η = 0.99. The dashed lines correspond to
Gmax(B,Re1) = 1.

wide-gap case with two different values of Re1. The choice
of k, which is proven not to affect the qualitative results in
the paper, corresponds to the maximum Gmax at B = 9.5. For
larger Re1, the single peak of the perturbed azimuthal velocity
is shifted toward the inner cylinder with increasing B, whether
transient growth magnitude is increasing or decreasing; at
lower Re1, the larger peak is also shifted toward the inner
cylinder by strong yield stress and the lower one is dissipated
progressively. The shifting of the peak values is also evident
for the amplitude of the perturbed radial velocity, as shown
in Figs. 3(b) and 3(d). It is noteworthy that the increase of
yield stress with larger Re1 would result in a nonmonotonic

change in the magnitude of the radial perturbation. For the
narrow-gap case, both the azimuthal and radial components of
the optimal perturbation are of single-peak shape (see Fig. 4)
as in the Newtonian flow [14]. As shown in Fig. 4(a), the radial
position of the maximum value of the perturbed azimuthal
velocity is shifted toward the outer cylinder, depending upon
B. Further, the amplitudes of the perturbed velocities in the
meridian plane are larger than that of the azimuthal velocity
within the selected range of Bingham numbers [Fig. 4(b)],
whereas the opposite is true at large Re1 in the wide-gap case.
This implies that the optimal perturbations occurring for the
two cases may have different ways of energy evolution.
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FIG. 3. Amplitudes of the (a) and (c) azimuthal and (b) and (d) radial directions of the optimal perturbation with η = 0.5 at (a) and (b)
Re1 = 1510 and k = 10.34 and (c) and (d) Re1 = 70 and k = 5.04.
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FIG. 4. Amplitudes of the (a) azimuthal and (b) radial direction of the optimal perturbation with η = 0.99, Re1 = 340, and k = 2.82.

The meridional velocity fields and contours of azimuthal
velocity of the optimal input u(0) are illustrated in Fig. 5
in the absence of yield stress. For the wide-gap case, the
meridional velocity fields consist of three arrays of vortices,
among which the first and third arrays (running left to right)
occupy only a very small radial range and rotate in the
direction opposite to that of the second one. In contrast, for
the narrow-gap case, only one array of vortices is observed
with the azimuthal component significantly weaker. Further,
the azimuthal components of the optimal inputs, shown in Figs.
5(b) and 5(d), are in phase opposition with the vortices.

To understand the evolutionary behavior of the optimal
perturbation, we show the time variation of the energies
in the meridional components Erz = 1

2

∫ Ro

R1
(|u|2 + |w|2)rdr

and in the azimuthal component Eθ = 1
2

∫ Ro

R1
|v|2rdr . For the

wide-gap case, in the case of zero yield stress, the optimal
perturbation u(0) is concentrated primarily in the azimuthal
component (Eθ � Erz), as shown in Fig. 6(a). With time,
Eθ decreases rapidly and Erz increases. That is, the energy
of the azimuthal direction of the flow is transferred to the
meridional components by the anti-lift-up mechanism found
by Antkowiak and Brancher [26,27]. This phenomenon is
usually linked to the generation of the vortex rings, an
intrinsic feature of vortices, and is not typically reported for
Taylor-Couette flow. A similar trend is found in the energy
growth curves with B = 0.25, in the range of Bingham
number where Gmax increases with increasing B. Nevertheless,
while strong yield stress fluid is considered (B = 9.1), the
situation is quite different. Initially, the flow field is still
dominated by the azimuthal velocity (Eθ � Erz). As time
increases, Erz decreases rapidly, going with increasing Eθ .
Subsequently, both of them decay as predicted by the linear
stability analysis. These results would imply that for the
wide-gap case, when yield stress is strong enough, the lift-up
mechanism is responsible for transient growth instead of the
anti-lift-up scenario. Figure 6(b) plots the Erz and Eθ curves
corresponding to three values of B for the narrow-gap case.
Obviously, yield stress, strong or weak, does not change the
fact that the short-time energy growth in asymptotically stable
flow regimes is due to the lift-up effect. In addition, it is clear
that both Erz and Eθ are greatly reduced by strong yield stress,
which brings positive dissipation to the kinetic energy growth
of the perturbations [17].

Before examining the physical growth mechanism in this
axisymmetric Bingham fluid flow, let us rewrite the Bingham
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FIG. 5. (a) and (c) Meridional velocity fields and (b) and (d)
contours of azimuthal velocity of the optimal inputs at (a) and (b)
η = 0.5, Re1 = 1510, and k = 10.34 and (c) and (d) η = 0.99, Re1 =
340, and k = 2.82.
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FIG. 6. Time evolution of the energies in the meridional components Erz and in the azimuthal component Eθ of the optimal perturbation
for (a) η = 0.5, Re1 = 1510, and k = 10.34 and (b) η = 0.99, Re1 = 340, and k = 2.82.

terms in the equations of the radial and axial directions
governing the evolution of perturbations in the meridional
plane as

φr = 1

γ̇
(DD∗ − k2)u − Dγ̇

γ̇ 2
γ̇rr (u), (10)

φz = 1

γ̇
(D∗D − k2)w − Dγ̇

γ̇ 2
γ̇rz(u). (11)

Note from (10) and (11) that the stress perturbations originat-
ing from the nonconstant part of viscosity can be divided into
two parts in the meridional plane. The first one corresponds to
viscous dissipation with equivalent viscosity B

γ̇ (U) , independent
of the growth mechanism. The second part represents the addi-
tional stress field −B

Dγ̇

γ̇ 2 [γ̇rr (u),γ̇rz(u)] induced by the radial
inhomogeneity of the effective viscosity. Taking the divergence
of the governing equations (2)-(4) results in the following
Poisson equation for the pressure field p:

(D∗D − k2)p = Re1
1

r

∂

∂r
(2r�v) + (D∗D − k2)φ, (12)

wherein φ is the scalar potential of the potential part of
the additional stress field. It should now be evident that the
pressure force [−∂p/∂r,−ikp] is balanced by the potential
part of the sum of local Coriolis force 2 Re1�ver [27] and
additional stress. As a result, the effective force acting on the
production of meridional perturbations is its rotational part,
which determines the behavior of energy growth.

For the wide-gap case with small B, Figs. 7(a) and 7(b)
show the Coriolis force and its rotational part, which consists of
only one array of vortices with larger magnitude of meridional
components and the same direction of rotation as the main
one in the velocity field of the optimal perturbation for B = 0
[Fig. 5(a)]; Figs. 7(c) and 7(d) plot the additional stress field
and its rotational part, in which three arrays of vortices are
observed with meridional components significantly weaker.
Moreover, both the first and third arrays of vortices (running
left to right) rotate in the direction opposite to that in the
rotational part of the Coriolis force. In a similar fashion as in
Fig. 7, Fig. 8 shows the Coriolis force and its rotational part for
large enough B (B = 9.1), together with the additional stress
field and its rotational part, which is featured by a single array
of vortices [Fig. 8(d)], as is the rotational part of the Coriolis
force. Further, the sign of azimuthal vorticity for the rotational
part of the additional stress is opposite to that for the rotational

part of the Coriolis force and its meridional components are
large such that the production of azimuthal vorticity by the
Coriolis force can be nearly canceled. In order to demonstrate
the effects of the rotational parts of both the Coriolis force
and the additional stress on the energy evolution of meridional
perturbation, a quantitative measure of the flow is needed to
monitor its change in energy caused by the rotational part of
the Coriolis force or the additional stress solely. An appropriate
diagnostic quantity is the energy spectrum in the meridional
plane (|u|2 + |w|2)r of the superimposed optimal perturbation
u(0) + Frot · 
t , where Frot denotes the rotational part of the
Coriolis force or the additional stress and the values of 
t , for
the wide-gap case and the narrow-gap case are set to 10−4 and
10−2, sufficiently small compared to the time scales during
which maximum transient growth is achieved for most sets of
the influencing parameters in the scope of this paper. Figure 9
plots the energy spectrum function with B = 0.25 and 9.1, both
for the same values of k and Re1 as in Fig. 6(a). We observe
that for smaller B, the rotational part of the Coriolis force
is indeed responsible for further production of the azimuthal
vorticity and the resulting increase of perturbation energy in
the meridional components. In addition, the additional stress
and the Coriolis force play counteractive roles in the evolution
of meridional perturbations, although it is observed that the
presence of additional stress has an insignificant effect on
energy evolution and could not eliminate the generation of
azimuthal vorticity rolls due to the local Coriolis force because
of the weak magnitude of its rotational part and hence the
anti-lift-up mechanism still exists. In contrast, for larger B, the
changes in the energy spectrum induced by the additional stress
and the Coriolis force are seen to be comparative in magnitude
and of opposite sign over most of the radial interval, indicative
of a near cancellation of meridional perturbations produced by
the rotational part of the Coriolis force. Thus, the perturbation
energy in the meridional plane Erz can no longer increase with
time and the lift-up view becomes a reasonable explanation of
the transient growth phenomenon [see Fig. 6(a)].

As for the narrow-gap case, Fig. 10 plots the Coriolis
force and its rotational part for B = 0.25, as well as the
additional stress field and its rotational part. There is only
one array of vortices with larger magnitude of meridional
perturbations for the rotational part of the Coriolis force and a
pair of counterrotating vortices with much smaller magnitude
of meridional perturbations for the rotational part of the
additional stress. For B = 9.1 the situation is qualitatively
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FIG. 7. (a) Radial-axial vector plot of the Coriolis force and its
Helmholtz decomposition into (b) the rotational part, (c) the vector
plot of the additional stress field, and (d) its rotational part, for η =
0.5, Re1 = 1510, B = 0.25, and k = 10.34.

similar, except that the magnitude of the rotational part of
the additional stress is relatively large, as shown in Fig. 11.
To illustrate the energy evolution of meridional perturbations
with η = 0.99, Fig. 12 plots the corresponding energy spectra
for the cases B = 0.25 and 9.1. It can be seen that the addition
of the rotational part of the Coriolis force leads to energy decay
in the meridional components of the optimal perturbation,
opposite to that observed in the wide-gap case. Further, this
damping effect of the Coriolis force is enlarged with the
increase of yield stress, while the energy spectrum curves of
the superimposed optimal perturbation by the rotational part of
the additional stress coincide nearly with those of the original
optimal perturbation even in the case of large yield stress,
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FIG. 8. (a) Radial-axial vector plot of the Coriolis force and its
Helmholtz decomposition into (b) the rotational part, (c) the vector
plot of the additional stress field, and (d) its rotational part, for η =
0.5, Re1 = 1510, B = 9.1, and k = 10.34.

implying that it has little influence on the energy spectrum
distribution. Thus, the decay rate of perturbation energy in the
meridional plane becomes increasingly large with increasing
B, as found earlier in Fig. 6(b).

For the axisymmetric case of counterrotating cylinders, it
is also necessary to see how yield stress alters the existing
lift-up mechanism [12,14]. Figure 13 plots the variation in
the relative amplitude of the azimuthal and radial directions
of the optimal perturbation with B for both wide-gap and
narrow-gap counterrotating cylinders. The k values are chosen
at which the maximum Gmax is attained for B = 0. For the
wide-gap case, the larger peak of the perturbed azimuthal
velocity is shifted toward the inner cylinder by strong yield
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superimposed optimal perturbation by the rotational part of the additional stress field.

stress ultimately and the lower one is damped gradually.
In contrast, for the narrow-gap case, the lower peak value
of the azimuthal component decreases with increasing B as
the larger peak shifts to higher r . In addition, the shifting
of the peak values is likewise observable for the amplitude of
the perturbed radial velocity, as shown in Figs. 13(b) and 13(d).
It should be noted that the trends of inward (the wide-gap case)
and outward (the narrow-gap case) shifts of the amplitude of
optimal perturbation are consistent with those observed in the
corotating scenario discussed before.

Figure 14 plots the energy evolutions Erz and Eθ with
B = 0, 1, and 9 for both the wide-gap case and the narrow-gap
case. It appears obvious that the yield stress may not change the
physical mechanism underlying such energy growth (i.e., the
lift-up effect) in both cases, similar to that seen in the narrow-
gap case of corotating Taylor-Couette flow [Fig. 6(b)]. Further,
it is also clear that both Erz and Eθ are greatly suppressed by
the yield stress dissipation [17]. Figure 15 plots the energy
spectrum functions only for B = 9, as the rotational parts of
both the Coriolis force and the additional stress seem to have
almost no effect on energy evolution for relatively weak yield
stress. There is some similarity between the types of influence
of the rotational parts on the energy spectrum distribution in
the case of counterrotating cylinders and in the narrow-gap
case of corotating cylinders, where the lift-up mechanism has
been found previously. That is, for both the wide-gap case and
the narrow-gap case, the rotational part of the Coriolis force
causes the decrease of perturbation energy in the meridional
plane despite its lower magnitude compared to that derived
in the narrow-gap case of corotating cylinders and the change
of perturbation energy induced by the rotational part of the
additional stress is invisible even for large B.

Having examined optimal mode growth mechanisms in the
axisymmetric case, we now turn to the oblique modes with
emphasis on the case of counterrotation, where non-normal
transient growth is more significant due to stronger shear
effects compared to that for corotating cylinders. The values
of parameters, including Re1, Re2, B, and k, are the same as
for m = 0. The G(t) curves are given for both the wide-gap
case and the narrow-gap case in Fig. 16, which provides
the optimal growth with different azimuthal wave numbers
ranging from m = 0 to 10. Note that the axisymmetric mode

does not exhibit a substantial growth, in comparison with other
spiral nonaxisymmetric modes. For the wide-gap case with
B = 0, the extreme Gopt of G(t) increases with increasing
m until m = 3 is reached, where Gopt is maximized, while
Gopt decreases with increasing m obviously for larger m.
This observation is similar to the results found by Meseguer
[14], which demonstrates that nonaxisymmetric nonmodal
perturbations can be dominant for the Newtonian fluid with
η = 0.881. Further, the optimal azimuthal mode, which is
featured by the maximum Gopt, may change with increasing
yield stress. As can be seen in Fig. 16(b), the optimal azimuthal
mode becomes the eigenmode m = 4 with B = 1. Figure 17
plots the axial vorticity perturbation ωz of the optimal input
u(0) and its output u(topt) at the corresponding optimal time
for B = 0 and 1. This perturbation is at t = 0 composed of
a set of spiraling vorticity sheets close to the inner cylinder
wall that evolve so as to produce a strong helical wave in
both cases. As time flows, the initial spirals are advected and
unfolded via the three-dimensional mechanism of vortex tilting
and stretching [28], which accounts for a local reorganization
of the perturbation vorticity and the growth of transient m = 3
or 4 perturbations. The situations of narrow gap (η = 0.99)
are also analyzed for the purpose of comparison. The results
imply that Gopt increases monotonically with the increase of m

despite the magnitude of yield stress, as shown in Figs. 16(c)
and 16(d), although the flow may become linearly unstable
with increasing m at small B.

To understand how yield stress can affect the results of
growth characteristics of oblique modes, Fig. 18 plots the
variation of the amplitude of optimal perturbation with B

for the eigenmode m = 3, which is representative at the
selected set of values of the parameters for the wide-gap
case. The peak of the amplitude of optimal perturbation is
shifted toward the inner cylinder with increasing yield stress
for the wide-gap case (η = 0.5) and the trend is opposite for the
narrow-gap case (η = 0.99), consistent with the axisymmetric
scenario.

Next, let us consider the effect of yield stress on the transient
growth mechanism for oblique modes. Before proceeding to
the related results, it is necessary to derive the linear energy
equality first. On multiplying (2)–(4) by r times the complex
conjugate ū = (ū,v̄,w̄) and then integrating from R1 to Ro, we
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derive

dE/dt = Re1JI − JV − BJY , (13)

where E is the energy norm defined by (8) and JI , JV , and JY

denote inertial, viscous, and yield stress contributions to the ki-
netic energy growth of the perturbations. These are defined by

JI = −1

4

∫ Ro

R1

(
DV − V

r

)
(ūv + v̄u)r dr, (14)

JV = 1

2

∫ Ro

R1

(
|Du|2 + k2|u|2 + m2|u|2

r2
+ |u|2 + |v|2

r2

+ 2im(ūv − v̄u)

r2

)
r dr, (15)

r

z

(a)
R1 Ro

4
0

π/
k

r

z

(b)
R1 Ro

4
0

π /
k

r

z

(c)
R1 Ro

4
0

π/
k

r

z

(d)
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4
0

π /
k

FIG. 10. (a) Radial-axial vector plot of the Coriolis force and its
Helmholtz decomposition into (b) the rotational part, (c) the vector
plot of the additional stress field, and (d) its rotational part, for η =
0.99, Re1 = 340, B = 0.25, and k = 2.82.

r

z

(a)
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4
0

π/
k

r

z

(b)
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4
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k

r

z

(c)
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(d)
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FIG. 11. (a) Radial-axial vector plot of the Coriolis force and its
Helmholtz decomposition into (b) the rotational part, (c) the vector
plot of the additional stress field, and (d) its rotational part, for η =
0.99, Re1 = 340, B = 9.1, and k = 2.82.

JY = 1

2

∫ Ro

R1

1

γ̇

[
2

(
|Du|2 + |u|2

r2

)
+ k2(|v|2 + 2|w|2)

+ |ku − iDw|2 + 2im(ūv − v̄u)

r2
+ m2(2|v|2 + |w|2)

r2

+ mk(v̄w + w̄v)

r

]
r dr. (16)

Note that the sign of γ̇rθ = DV − V
r

is the same as that of
both τrθ and �2

�1
− 1 and in the case of counterrotation it must

be negative. That is, γ̇ = |γ̇rθ | = − (DV − V
r

). Substituting
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FIG. 12. Radial distribution of the energy spectrum function for the narrow-gap case for η = 0.99, Re1 = 340, k = 2.82, and (a) B = 0.25
and (b) B = 9.1.
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FIG. 13. Amplitudes of the (a) and (c) azimuthal and (b) and (d) radial directions of the optimal perturbation for counterrotating cylinders
at (a) and (b) η = 0.5, Re1 = 320, and k = 8.34 and (c) and (d) η = 0.99, Re1 = 800, and k = 3.68.
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for counterrotating cylinders for (a) η = 0.5, Re1 = 320, and k = 8.34 and (b) η = 0.99, Re1 = 800, and k = 3.68.
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FIG. 15. Radial distribution of the energy spectrum function for counterrotating cylinders for B = 9 and (a) η = 0.5, Re1 = 320, and
k = 8.34 and (b) η = 0.99, Re1 = 800, and k = 3.68.

this expression into (14), we have

JI = 1

4

∫ Ro

R1

γ̇ (ūv + v̄u)rdr = 1

2

∫ Ro

R1

γ̇ (uRvR + uIvI )rdr,

(17)

where the subscripts R and I represent the real and imaginary
parts of the complex amplitude, respectively. The time
evolutions of Re1JI , JV , and BJY are depicted in Fig. 19 to
study the effects of them on the evolutionary energy growth
for oblique modes with η = 0.5 and four B values (B = 0,
1, 5, and 9). With increasing B, there is a decrease in the
magnitudes of Re1JI and JV as well as an increase in that of
BJY [Figs. 19(a)–19(c)]. This trend seems to hold for modes
m = 3 and 4. Further, in the absence of yield stress, the energy
growth is only determined by the viscous dissipative term JV

and the inertial term Re1JI . Although the growth rate dE/dt

for m = 4 mode is larger than that for the m = 3 case during an
initial time period, as expected due to larger Re1JI , the arrest

of growth occurs faster for the former because of the quicker
decay of Re1JI [Fig. 19(d)]. Consequently, the optimal
perturbation for the mode m = 3 is found to achieve a slightly
larger amplification level than that for the mode m = 4, as can
be seen in Fig. 16(a). At larger B (B = 1), the decay rate of
Re1JI and the time of growth arrest for the mode m = 4 are
nearly the same as for m = 3 and initially the former has larger
positive Re1JI magnitude. Hence, the mode m = 4 is featured
by a larger optimal energy growth Gopt than the mode m = 3, as
shown in Fig. 16(b), despite the fact that the increase of BJY for
the former is more significant and induces greater cancellation
of energy growth rate generated by the inertial term. With
stronger yield stress (B = 5, 9), which makes an unyielded
plug arise on the outer wall, the behavior of energy growth
(such as Re1JI and dE/dt curves) for the mode m = 3 is quite
close to that for the mode m = 4. The variations of Re1JI , JV ,
BJY , and dE/dt with time for the narrow-gap case are also
plotted in Fig. 20, focusing on the axisymmetric mode m = 0
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FIG. 16. The G(t) curves with different azimuthal wave numbers for the (a) and (c) B = 0 and (b) and (d) B = 1 cases at (a) and (b)
η = 0.5, Re1 = 320, and k = 8.34 and (c) and (d) η = 0.99, Re1 = 800, k = 3.68.
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(a) (b)

(c) (d)

FIG. 17. Axial vorticity ωz contours of (a) and (c) the optimal
perturbation u(0) and (b) and (d) its output u(topt) at the corresponding
optimal time at η = 0.5, Re1 = 320, and k = 8.34 and (a) and (b)
B = 0 and (c) and (d) B = 1. Shaded regions and dashed lines
denote negative vorticity. Contour levels are (a) [±5.62, ±28.1, 5.62],
(b) [±4.64, ±23.2, 4.64], (c) [±6.26, ±31.3, 6.26], and (d) [±4.28,
±21.4,4.28].

and the mode m = 1. A comparison of the results of the two
eigenmodes shows that the trends of energy growth for both
are quantitatively similar, as can be seen in Figs. 20(a)–20(c).
Further, the arrest of growth for the mode m = 1 always occurs
at later times compared to the axisymmetric mode [Fig. 20(d)],

no matter how strong the yield stress is considered, although
the former mode has a slightly smaller Re1JI magnitude in
the initial period. As a result, the integrated positive energy
growth for the mode m = 1 is increased compared to the
axisymmetric mode, as shown in Figs. 16(c) and 16(d).

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the transient growth char-
acteristics of the Taylor-Couette flow of a Bingham fluid for
two values of η, i.e., the wide-gap case with η = 0.5 and the
narrow-gap case with η = 0.99. By solving the initial value
problem, we have shown that the effects of yield stress on
the energy transient growth and flow structure of the optimal
perturbations are quite different for the two cases. Considering
axisymmetric optimal modes for corotating cylinders, the peak
of the amplitude of optimal perturbation is found to be shifted
toward the inner cylinder with increasing yield stress B for
the wide-gap case. Further, the anti-lift-up mechanism along
with large Re1 cannot be observed when strong yield stress is
imposed, as the production of meridional perturbations due to
local Coriolis force is largely suppressed by the increase of the
additional stress field formed from an inhomogeneous distribu-
tion of the effective viscosity. The situation for the narrow-gap
case is quite different: The peak value of the amplitude of the
optimal perturbation is shifted toward the outer cylinder with
increasing B. Moreover, the rotational part of the Coriolis force
induces energy decay in the meridional components of the
optimal perturbation, opposite to that observed in the wide-gap
case. This damping effect of the Coriolis force is enlarged with
the increase of B and the rotational part of the additional stress
has little influence on the energy growth behavior, leading to
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FIG. 18. Amplitudes of the (a) and (c) azimuthal and (b) and (d) radial directions of the optimal perturbation for the eigenmode m = 3 at
(a) and (b) η = 0.5, Re1 = 320, and k = 8.34 and (c) and (d) η = 0.99, Re1 = 800, and k = 3.68.
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FIG. 19. Time evolution of the inertial term Re1JI , the viscous dissipative term JV , the yield stress dissipative term BJY , and the energy
growth rate dE/dt for the modes m = 3 and 4 with η = 0.5, Re1 = 320, and k = 8.34, and B = 0, 1, 5, and 9. The time of the arrest of energy
growth for the modes (i) m = 3 and (ii) m = 4 with B = 0 are indicated.

the increase of the decay rate of perturbation energy in the
meridional plane with increasing B.

We have also carried out the transient growth analysis
for the axisymmetric case with counterrotating cylinders.

As expected, the trends of inward (the wide-gap case) and
outward (the narrow-gap case) shifts of the amplitude of
optimal perturbation are consistent with those observed in the
corotating scenario. Further, the influence of the rotational
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FIG. 20. Time evolution of the inertial term Re1JI , the viscous dissipative term JV , the yield stress dissipative term BJY , and the energy
growth rate dE/dt for the modes m = 0 and 1 with η = 0.99, Re1 = 800, k = 3.68, and B = 0, 1, 5 and 9.
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parts on the energy evolution in the case of counterrotating
cylinders is very similar to that in the narrow-gap case of
corotating cylinders, as can be seen from the corresponding
plot of energy spectrum (Fig. 15).

Compared to the axisymmetric mode, spiral nonaxisym-
metric modes exhibit more substantial transient growth.
Further, the optimal azimuthal mode, which is featured by
the maximum Gopt, changes with increasing yield stress for
the wide-gap case. In contrast, for the narrow-gap case, Gopt

increases monotonically with the increase of azimuthal wave
number m despite the magnitude of the yield stress. Also, the
inertial, viscous, and yield stress contributions to the kinetic

energy growth are plotted to depict their variations with B and
m, providing the explanations for the possible change of the
optimal azimuthal mode with yield stress.
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