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We consider a two-dimensional (2D) generalization of a recently proposed model [Gligorić et al., Phys. Rev. E
88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose
local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum
(AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only
single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are
explored: the usual “extended” unstaggered bright solitons, in which all sites are excited in the AC limit, with the
same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts
being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific
to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). Typical
scenarios of instability development are exhibited through direct simulations.
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I. INTRODUCTION

In the past few years, a topic that has drawn an ever-
increasing amount of interest in the realm of physical systems
modeled by nonlinear-Schrödinger (NLS) type equations
concerns the examination of solitary waves and their existence,
stability, and dynamical properties in the presence of spatially
inhomogeneous nonlinearities. A review which covers many
aspects of this topic can be found in Ref. [1]. A ramification
that is gaining attention within this broader theme concerns the
possibility of the existence of bright coherent structures in the
context of defocusing nonlinearities. As is well known [2–4],
systems with a self-defocusing nonlinearity support wave
excitations in the form of dark solitons, vortices, vortex rings,
etc., i.e., structures supported by a nonvanishing background
at infinity. However, a fundamental proposal, put forth a few
years ago [5–8], was that, if the local strength of the self-
defocusing nonlinearity in the D-dimensional space grows
with distance r from the center at any rate faster than rD ,
then bright solitary waves and vortical structures can self-trap
within such settings. Subsequently, this class of models was
extended to include spatially inhomogeneous nonlinear losses
[9], higher-power (e.g., quintic) nonlinearities [10], other wave
forms such as domain walls [11], as well as settings related to
Fermi and Bose gases [12], dipolar Bose-Einstein condensates
(BECs) [13], nonlocal media [14], discrete systems [15],
and complex three-dimensional (3D) topological patterns
[16]. Most recently, the Bose-Hubbard model with the same
type of spatial modulation of the self-repulsive nonlinearity

was introduced, and existence of the corresponding quantum
discrete solitons was demonstrated in [17].

Another area which has drawn major interest over the
past two decades is the study of models based on the
discrete NLS (DNLS) equation [18]. DNLS systems have
been serving not only as fundamental dispersive systems
combining nonlinearity and discreteness, but also as models
suitable for the direct description of dynamics in arrays of
optical waveguides [19,20] and atomic BECs loaded into
optical lattices [21]. There are numerous other applications of
DNLS models, ranging from their use as envelope equations
for understanding the denaturation of the DNA double strand
[22], and the localization of energy in granular crystals [23,24],
to the dynamics of protein loops [25].

Our aim in the present work is to combine these two
important directions by extending the one-dimensional (1D)
model and analysis presented in a recent work [15] to two-
dimensional (2D) lattices. We will also develop a different
approach, examining the problem from the perspective of the
well-established anticontinuum (AC) limit [26], which offers
two important advantages. On the one hand, in the AC limit,
which corresponds to vanishing coupling between the nearest
neighbors, we are able to construct solutions systematically,
by initially exciting a single site, multiple sites (two for
dipole configurations, or four for quadrupole ones), as well as
possibly all sites in what we refer to as an extended solution.
The same approach allows one to produce not only real wave
forms (with relative phases 0 or π between adjacent sites),
but also complex ones, such as discrete vortices. The latter,
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FIG. 1. (Color online) Numerically generated dependencies N (ε) for the families of single-site, in-phase two-site, and out-of-phase two-site
modes are shown in the left, middle, and right panels, respectively.

have not only been theoretically proposed [27,28], but also
experimentally observed in photorefractive crystals consistent
with the theoretical prediction [29,30]. The second important
advantage is that, following the methodology of Refs. [31,32],
we are able to provide a systematic classification of the spectral
stability of the states, while departing from the AC limit. In
this way, we are able to predict which states are robust near
this limit. We also numerically corroborate these predictions
and, finally, we use direct simulations to explore the outcome
of the evolution of unstable states.

The presentation of the paper is structured as follows. In
Sec. II, we introduce the model and present the theoretical
analysis of the existence and stability of different states. In
Sec. III, we explore the model in terms of the numerically
implemented bifurcation theory (as concerns the existence and
spectral stability of the examined states), and report results of
direct simulations of unstable states. In Sec. IV, we summarize
our findings and discuss directions for future research.

II. THE MODEL AND ITS ANALYSIS

Generalizing to 2D the considerations of Ref. [15], we
consider a DNLS model of the following general form:

iu̇m,n =−ε(um,n−1 + um,n+1 + um+1,n + um−1,n − 4um,n)

+ g(m,n)|um,n|2um,n, (1)

where ε accounts for the coupling between adjacent wells,
and g(m,n) represents the local strength of the nonlinearity.
Prototypical examples represent arrays of waveguides in the
nonlinear optical material LiNbO3 [33–35] and atomic BECs
(e.g., of 87Rb or 23Na gases) confined in an optical lattice
in the superfluid regime [36,37]. As argued in Ref. [1], a
local modulation of the Kerr coefficient in optics, or a spatial
modulation of the scattering length in atomic BECs (via the
Feshbach resonance) straightforwardly leads to settings of the
type we consider here.

In the present section, we develop the analysis in the general
form. For the numerical investigation of Sec. III, we resort to
a specific form of the spatial modulation,

g(m,n) = exp[2(|m| + |n|)], (2)

which is a counterpart of the 1D modulation adopted in
Ref. [15]. We will also often compare our findings to those
in the homogeneous lattice with g(m,n) = 1, where solely
staggered solitary modes [18] can be obtained for the presently
considered nonlinearity of the defocusing sign.

Our first aim is to construct stationary states in the form of
um,n = e−iμtvm,n with chemical potential (in the BEC context)
μ > 0, which leads to an equation for vm,n:

μvm,n = −ε�2vm,n + g(m,n)|vm,n|2vm,n, (3)

with �2vm,n ≡ vm,n−1 + vm,n+1 + vm+1,n + vm−1,n − 4vm,n.
The total norm of the mode is defined in the usual form,

N =
∑
m,n

|um,n|2, (4)

and is a conserved quantity of the model. Families of stationary
solutions are characterized below by dependencies N (ε) for
μ ≡ 1 (see Fig. 1). It is also possible to cast these dependencies
into the form of N (μ) for ε ≡ 1: as follows from Eqs. (3) and
(4), obvious rescaling yields

N (ε,μ) = εN (1,μ/ε) = μN (ε/μ,1). (5)

Applying this for ε = 1, we obtain N (1,μ) = μN (1/μ,1).
In this connection, it is relevant to mention that a necessary
stability condition for solitary modes supported by repulsive
nonlinearities is given by the anti-Vakhitov-Kolokolov cri-
terion [38], dN/dμ > 0. In particular, nearly linear depen-
dencies of N on ε observed in Fig. 1, if substituted into
Eq. (5), correspond to dN/dμ ≈ N (ε = 0,μ) > 0. Indeed,
actual results for the stability reported below confirm that the
particular instability mechanism, which might be detected by
the anti-Vakhitov-Kolokolov criterion, is absent in the present
system.

The starting point of the analysis is the AC limit of ε = 0,
corresponding to the case where the sites get decoupled. In
this limit, the only local solutions corresponding, respectively,
to nonexcited or excited sites, are vm,n = 0 or

vm,n =
√

μ/g(m,n)eiθm,n . (6)

Equation (6) yields, in fact, the Thomas-Fermi approximation
(TFA) for the lattice field [8,15], which, in particular, leads to
the conclusion that the solution is normalizable (in other words,
it is a physically relevant one), i.e., its norm (4) converges,
under the condition that g(m,n) must grow, as |m|,|n| → ∞,
at any rate faster than (m2 + n2).

Based on this AC-limit solution, we can choose to excite any
configuration in the AC limit, with an arbitrary phase pattern.
The actual issue is which of these configurations persist at
finite values of intersite coupling ε. To address it, works
[31,32,39] (for 1D, 2D, and 3D cubic lattices, respectively)
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have developed a “persistence condition,” which we now adapt
to the present setting.

Suppose that a string of three sites is excited, with coordi-
nates (m,n − 1), (m,n), and (m,n + 1). Then the persistence
condition, adapted to the present setting, reads

sin(θm,n − θm,n−1)√
g(m,n)g(m,n − 1)

= sin(θm,n+1 − θm,n)√
g(m,n + 1)g(m,n)

. (7)

Pertaining to two-point functions defined for adjacent pairs of
sites, it can be generalized for any set of such pairs of sites.

In 1D, given that this set of two-point functions is the same
for all sites up to ±∞, for solutions that vanish at infinity, the
persistence condition allows only configurations with relative
phases 0 or π . However, this is no longer the case in 2D, as
the condition can be satisfied over closed contours without the
need to extend the considerations to infinity. As a result, in the
latter setting complex configurations, including vortices, are
possible. Nevertheless, the simpler configurations are the ones
with relative phases �θn = 0 or π , which we predominantly
consider below.

Particular configurations that we aim to study are the
following:

(1) A single-site solution with v0,0 = √
μ/g(0,0) and

vanishing amplitude at all other sites.
(2) A “dipolar” state residing on a pair of sites, e.g., (0,0)

and (1,0). These two sites may be excited in or out of phase.
(3) “Quadrupole” configurations supported by four sites.

Although additional structures can also be considered (which is
also true for the dipolar modes), we restrict our considerations
here to the square-shaped set of four sites (0,0), (1,0), (1,1),
(0,1). Qualitative conclusions that we will infer for the stability
will not be different if we choose another quartet of sites,
although details may differ.

(4) We also consider the extended unstaggered solution in
which all sites of the lattice are excited with the same sign, as
vm,n = √

μ/g(m,n) [see Eq. (6)]. Actually, the 1D counterpart
of such a state was the subject of the analysis in Ref. [15], while
solutions which amount to single- or few-site excitations in the
AC limit were not considered in that work.

(5) Finally, while for the above-mentioned square-shaped
quartet of sites, (0,0), (1,0), (1,1), (0,1), with g(m,n) taken
even in both n and m, we were unable to continue vortical
solutions for finite ε, we were able to do so for a cross-shaped
quartet, (1,0), (0,1), (−1,0), (0,−1), which features an empty
site at the center. This (failure to continue the above-mentioned
“vortex square” configuration) is perhaps rather natural to
expect on the basis of the symmetry of our g(m,n) profile
in Eq. (2) which is symmetric under parity, while the above
square is not; instead, the vortex cross is. However, if we try a
spatial modulation of the nonlinear prefactor in the form

g(m,n) = exp[2(|m − 0.5| + |n − 0.5|)], (8)

then clearly the symmetry of the vortex square around (0.5,0.5)
is consonant with that of g(m,n) and as we will illustrate below
the vortex square configuration can also be continued to finite
ε in that setting.

Now, we turn to the consideration of the stability of the
discrete configurations. To this end, we employ the usual

linearization ansatz for perturbations with small amplitude δ:

um,n = e−iμt [vm,n + δeλtpm,n + δeλ	tq	
m,n], (9)

(where 	 denotes complex conjugate) and derive equations at
order O(δ) for (pm,n,qm,n). For simplicity, we mention here
only the ensuing eigenvalue problem in the case when the
unperturbed solution vm,n is real, also using the decomposition
[31] pm,n = am,n + ibm,n and qm,n = am,n − ibm,n,

λ

(
am,n

bm,n

)
=

(
0 L−

−L+ 0

) (
am,n

bm,n

)
. (10)

In these expressions the linear operators are defined as fol-
lows: L−bm,n = −ε�2bm,n − μbm,n + g(m,n)v2

m,nbm,n and
L+am,n = −ε�2am,n − μam,n + 3g(m,n)v2

m,nam,n. Rewriting
the above non-self-adjoint eigenvalue problem as a combined
fourth-order one, we obtain

λ2bm,n = −L+L−bm,n ⇒ λ2L−1
+ bm,n = −L−bm,n. (11)

It is relevant now to point out that near the AC limit of ε → 0,
L+ becomes a multiplicative operator with positive entries,
which is obviously invertible. Forming the inner product of
Eq. (11) with bm,n, we obtain

λ2 = − 〈bm,n,L−bm,n〉
〈bm,n,L−1

+ bm,n〉
, (12)

where 〈,〉 denotes the standard inner product. Given the
multiplicative nature of L+ in the AC limit, the leading-order
approximation near ε = 0 yields L−1

+ → (2μ)−1 for excited
sites with vm,n 
= 0 [and L−1

+ → −(μ)−1 for the nonexcited
ones]. Thus, eigenvalues of the above-mentioned real solutions
are directly associated with the operator L−, up to the above-
mentioned multiplicative factor −2μ (henceforth, without loss
of generality, we will set μ = 1).

It is straightforward to see that for all the nonexcited sites
with vm,n = 0, L− = −1, λ = ±i. These eigenvalues will
form, as ε becomes nonzero, the continuous spectrum which,
in the 2D setting, corresponds to the interval ±i[1 − 8ε,1].
On the other hand, the eigenvalues that may lead to instability
(at least for small ε) are those stemming from the excited
sites for which L− vanishes to the leading order, hence these
eigenvalues are λ = 0 at ε = 0. In principle, these eigenvalue
pairs may become real immediately as ε becomes nonzero.
It is then of critical importance, as regards the stability, to
identify eigenvalues of the matrix M = 〈b,L−b〉 ≡ εM. Upon
obtaining eigenvalues γ of the matrix M, based on the theory
presented in Refs. [31,32,39] (see also [18]) and the above
exposition, the eigenvalues λ of the full problem will be
given, in view of Eq. (12), by λ = ±√−2εγ . We perform
this calculation below for two- and four-site real excitations.
For the single-site excitation, there is only one pair at λ = 0.
Actually, for all configurations one pair always remains at the
origin, due to the phase (gauge) invariance of the model (in
the case of the single-site excitation, it is the sole one, so there
is no bifurcation occurring). For the extended solution, since
all sites are excited, the number of pairs of eigenvalues at
the origin is equal to the number of nodes in the lattice, hence
the corresponding matrix M also has the same number of
rows and columns. Finally, for the only genuinely complex
configuration considered here, the computation of matrix M
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is considerably more complicated, as it should be performed at
a higher order [O(ε2), rather than O(ε), as the relevant excited
sites are two lattice spacings apart and only couple at O(ε2)].
We do not present details of that calculation here.

In the case of two-site excitations, the matrix M can be
computed explicitly [upon calculating the leading order i.e.,
an O(ε) correction to the solution] as

M =
⎛
⎝

√
g(m,n)

g(m,n+1) −1

−1
√

g(m,n+1)
g(m,n)

⎞
⎠ cos(θm,n+1 − θm,n). (13)

Here, we assume that the two excited sites are (m,n)
and (m,n + 1). The eigenvalues are then γ = 0 and γ =
c cos(θm,n+1 − θm,n), where

c ≡
√

g(m,n)

g(m,n + 1)
+

√
g(m,n + 1)

g(m,n)
. (14)

One of them, as indicated above, remains at the origin,
while the other grows along the real axis for out-of-phase

excitations (making these immediately unstable when ε

becomes nonzero) or along the imaginary axis for in-phase
excitations, which does not lead to immediate destabilization.
In both cases, note that the inequality c � 2 leads to a growth
rate for these eigenvalues which is larger than that of the
homogeneous limit of constant g(m,n) = 1. Furthermore,
even for the in-phase mode, which is stable for small ε,
as the respective imaginary eigenvalues grow according to
λ = ±i

√
2cε [recall c is defined by Eq. (14)], they eventually

collide with the edge of the above-mentioned continuous
spectrum, at ±i(1 − 8ε), leading to an oscillatory-instability
threshold, ε = (1/64)(8 + c − √

c2 + 16c). Given the larger
growth rate of the imaginary eigenvalue pair bifurcating from
the origin, this instability occurs at smaller values of ε in
comparison to the homogeneous limit of c = 2.

We now turn to the four-excited-site case, which is
considerably more complicated. Here, the reduced matrix M
is of size 4 × 4. Labeling the relative phase factors as r10 =
cos(θ1,0 − θ0,0), r21 = cos(θ1,1 − θ1,0), r32 = cos(θ0,1 − θ1,1),
and r03 = cos(θ0,0 − θ0,1), we can write the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
g(0,0)
g(1,0) r10 +

√
g(0,0)
g(0,1) r03 −r10 0 −r03

−r10

√
g(1,0)
g(0,0) r10 +

√
g(1,0)
g(1,1) r21 −r21 0

0 −r21

√
g(1,1)
g(1,0) r21 +

√
g(1,1)
g(0,1) r32 −r32

−r03 0 −r32

√
g(0,1)
g(1,1) r32 +

√
g(0,1)
g(0,0) r03

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

This matrix has a single zero eigenvalue. Furthermore, if all
r’s are positive, then the eigenvalues γ are also positive, hence
the eigenvalues of the full problem are imaginary at ε > 0. On
the other hand, if one (or more) of the relative phase factors
r is (are) negative, then the corresponding number of negative
γ ’s emerge, leading to pairs of real eigenvalues, and hence
instability of the configuration. These features are directly
in line with what is known for the homogeneous defocusing
model (see, e.g., Ref. [40]). They are also the reverse of the
focusing nonlinearity case (i.e., the features corresponding to
negative r in one case correspond to those for positive r in the
other). While, in principle, the eigenvalues of this 4 × 4 matrix
can be obtained in an explicit analytical form, the expressions
are too cumbersome to be useful. Therefore, below we turn to
numerical computations, comparing the results with those of
the above analysis, whenever possible.

III. NUMERICAL RESULTS

A. Stationary modes and their stability

In our numerical analysis, we first explore branches of
stationary states and their stability, and then proceed to
simulations of the evolution of perturbed solutions. The first
localized state we consider in the AC limit is the single-site
one. This solution family is characterized by the dependence
of the norm of Eq. (4) on the coupling constant ε, which is
displayed in the left panel of Fig. 1 (the nearly linear shapes of
the dependencies observed in this figure are explained by the
small size of the respective range of ε). Principal eigenvalues

associated with this branch, as well as a typical example of its
profile (for ε = 0.08), are shown in Fig. 2. As indicated in the
previous section, throughout its existence region, this branch
is stable, with a single pair of eigenvalues at the origin. For
this branch, multiple pairs of eigenvalues bifurcate from the
edge of the continuous-spectrum band, λ = ±(1 − 8ε)i: the
first one bifurcates around ε = 0.055, and the branch cannot
be continued past ε = 0.082. It can be clearly seen from its
profile close to this termination point that it collides with a
branch bearing a positive excitation at the central site and a
negative excitation at adjacent ones.

The next two branches we examine correspond to two-site
excitations. The in-phase and out-of-phase ones are shown
by the middle and right panels of Fig. 1, and by Figs. 3
and 4. In the former case, the eigenvalue bifurcating from
the origin is approximately ±2.484

√
εi. It collides with the

band edge, ±(1 − 8ε)i at ε = 0.053 or 0.052, according to the
analytical approximation and numerical results, respectively,
which demonstrates a very good agreement between the two
in the prediction of the threshold for the oscillatory instability
arising for this branch, as well as for the entire ε dependence
of the eigenvalue pair. In Fig. 3 we also show, by means
of the lower (magenta) curve, Im(λ) = ±2

√
ε, the analytical

prediction for the homogeneous system, with g(m,n) = 1. We
note that in the inhomogeneous model the eigenvalue pair
grows more rapidly, thus leading to an instability at a lower
value of the coupling, than for its homogeneous counterpart.
The branch is unstable past the point of ε = 0.052, and
for ε > 0.065 further eigenvalue pairs bifurcate off of the
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FIG. 2. (Color online) The branch corresponding to the single-site excitation. The left panel shows eigenvalues bifurcating from the edge of
the continuous spectrum band (the first around ε = 0.055 and two more at a slightly larger value of ε), rapidly approaching the spectral-plane’s
origin as ε → 0.082, the value at which the present branch terminates. Here and in similar plots displayed below, the dependence of the edge of
the continuous wave band on ε, λ = ±(1 − 8ε)i, is shown by the red dashed line. The right panel shows the profile of the branch at ε = 0.08.

continuous spectrum, their collision with the origin leading
to the termination of the branch at larger values of ε; in the
right panel of the figure, the branch is shown for ε = 0.079.

In the case of the out-of-phase two-site excitation, as seen
in Fig. 4, the linearization around the solution produces a
real eigenvalue pair predicted to be λ = ±2.484

√
ε, which

is reasonably accurate for small ε. For larger values of ε,
higher-order terms apparently take over, pulling the eigenvalue
back to the origin (nevertheless, the instability is present at all
the values of ε that we considered). A typical example of the
profile of the discrete mode is shown in the right panel of Fig.
4 for ε = 0.07. The profile suggests that the solution collides
with the single-site one, and with the above-mentioned cross-
shaped solution with four negatively excited sites around the
central one. Therefore, the present mode represents one of the
four asymmetric branches—the other three arise by rotating
the present one by π/2, π , and 3π/2 (see the right panel of
Fig. 4)—which are generated by a pitchfork bifurcation.

Examining now the four-site excitations in the framework
of the analysis based on Eq. (15), we conclude that asymmetric
configurations always bear a number of instabilities. [By
“asymmetric” here, we mean configurations other than the
in-phase one, in which all phases of the four excited sites
are the same, e.g., (0,0,0,0), and the out-of-phase one, in
which the phases alternate between 0 and π , e.g., (0,π,0,π )

for the four sites of the square. Any other phase combination,
e.g., (0,π,π,0), (0,0,π,0), etc., is considered asymmetric.] For
demonstration purposes, we restrict our considerations here
to the two most symmetric examples, namely, the in-phase
state shown in Fig. 5, and the out-of-phase one in Fig. 6. In
the case of the four-site, in-phase excitation, there are three
eigenvalue pairs bifurcating from the spectral-plane’s origin,
whose behavior is determined by Eq. (15). One of the three
pairs is predicted to have eigenvalues λ = ±3.513

√
εi, and

two others to have λ = ±2.484
√

εi. As a result, by setting
these eigenvalues equal to the edge of the continuous-spectrum
band, (1 − 8ε)i, we can predict the onset of instabilities
at ε = 0.0386 (the first one), and at ε = 0.053 (a pair of
additional ones). Numerically these instabilities are found to
occur, respectively, at ε = 0.036 and at ε = 0.053, in very
good agreement with the theoretical predictions. Generally,
in the present case of the four-site modes, we again observe
good agreement between the analytical predictions for the
eigenvalues and their numerical counterparts. In addition,
we point out that here, too, the eigenvalues move more
rapidly along the imaginary axis than their counterparts in
the homogeneous model (shown by magenta dash-dotted
lines in Fig. 5). The configuration is generically unstable for
ε > 0.036, and a typical example of this mode is shown for
ε = 0.075 in the right panel of the figure.
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FIG. 3. (Color online) In-phase configuration: the left panel shows the imaginary eigenvalue growing from the origin, as per numerical
results (blue solid line), according to the analytical prediction (green dash-dotted line), and in the homogeneous model (the lower dash-dotted
line, also obtained in an analytical form). Eigenvalues bifurcating from the edge of the continuous-spectrum band are also shown by blue solid
lines. The right panel displays an example of this wave form for ε = 0.079.

043201-5



P. G. KEVREKIDIS et al. PHYSICAL REVIEW E 91, 043201 (2015)

0 0.02 0.04 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6
R

e(
λ   )

ε

n

m−5 0 5

−5

0

5
−0.2

0

0.2

0.4

0.6

0.8

FIG. 4. (Color online) Similar to the previous graph but for the out-of-phase configuration. In this case, however, the eigenvalue pair
bifurcating from the origin moves to the real line and hence the real part of the relevant eigenvalue is shown (blue solid line: numerical linear
stability result; green dash-dotted line: theory). The right panel shows the corresponding wave form for ε = 0.07.

In the case of the four-site, out-of-phase (between adjacent
sites) excitation, the analysis produces three real eigenvalue
pairs, bifurcating from the origin as ε increases. The dominant
one is predicted to be λ = ±3.513

√
ε, while two more

correspond to λ = ±2.484
√

ε. Here again, as is typical
for configurations with real eigenvalue pairs, the agreement
between the analytical prediction and numerical results is good
for small coupling strengths, but progressively deteriorates as
the coupling grows. The state is found to be unstable for all
values of the coupling. A typical example of the state for
ε = 0.055 is shown in the right panel of Fig. 6.

We now turn to the examination of a genuinely complex
state, namely, of the discrete “vortex cross” (see Fig. 7). While
we were able to identify and continue this type of state in the
symmetric pattern illustrated in the figure, it is worth noting
that when we attempted to construct a similar configuration
based on the square of the four-site excitations shown in
Figs. 5 and 6, we were unable to continue it to finite couplings;
however, see also the discussion below.

In the case of the vortex crosses of Fig. 7, there are
three eigenvalue pairs that bifurcate from the origin along
the imaginary axis, attesting to the stability of the structure
for small ε. Importantly, these eigenvalues scale as ∝ε, rather
than

√
ε, and can only be captured at the second order of

perturbation theory, which is not considered here. As these
eigenvalue pairs move along the imaginary axis, further pairs

bifurcate from the edge of the continuous-spectrum band
at λ = ±(1 − 8ε)i, starting at approximately ε = 0.05. As
ε increases, these pairs approach each other and eventually
collide around ε = 0.068 (shown in the right panels of
Fig. 7), rendering the branch of solutions unstable past this
critical point. This happens because collisions of the former
eigenvalue pair, bifurcating from 0, with the latter one, which
bifurcates from the band edge, give rise to complex quartets
and oscillatory instabilities.

As indicated in Sec. II (and also above) a vortex square
profile over the sites (0,0), (1,0), (1,1), and (0,1) is not possible
to continue to finite ε in the case of the parity symmetric
nonlinear prefactor profile of Eq. (2). However, when we
considered the modified profile of Eq. (8) which is symmetric
around (0.5,0.5), as is the above “vortex square,” we were
indeed able to continue the vortex square configuration to a
finite coupling ε, as well as to monitor its stability. In fact, such
a solution turns out to be stable up to ε ≈ 0.08 and is thus fairly
robust. Moreover, similar to the vortex cross, it appears to have
two (eventually splitting) pairs of nearly linear (in their depen-
dence on ε) eigenvalues and one which grows with a higher
power of ε, along the positive imaginary axis. It is eventually
the collision of these eigenvalues with ones arising from the
continuous spectrum that leads to the instability of the solution
for sufficiently large ε. These features are illustrated in Fig. 8,
by analogy with the vortex cross characteristics of Fig. 7.
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FIG. 5. (Color online) Four-site, in-phase excitation: In the left panel of the figure three pairs of imaginary eigenvalues bifurcating from
the origin are shown by the blue solid line (the lower parabolic line corresponds to a double pair). The corresponding analytical prediction is
shown by the green dash-dotted line, while the prediction for the homogeneous model is presented by the magenta dash-dotted line. The edge
of the continuous-spectrum band is shown by the red dashed line. The right panel shows the configuration for ε = 0.075.
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FIG. 6. (Color online) Similar to the previous figures, but now for the four-site, out-of-phase excitation. The left panel shows the numerical
result (the blue solid line) and the analytical prediction (the green dash-dotted line) for the three pairs bifurcating from the origin towards the
real axis, rendering the configuration highly unstable. A typical example of the configuration profile for ε = 0.055 is shown in the right panel.

Finally, we consider the extended state in which all the sites
of the lattice are excited in accordance with the TFA, vm,n =√

μ/g(m,n) [see Eq. (6)]. First, assuming that the coupling
constant ε is small, Eqs. (6) and (2) readily yield the leading
order correction to the TFA, which, by itself, corresponds to
ε = 0 (recall the chemical potential is fixed as μ = 1):

vm,n ≈ v(0)
m,n + εv(1)

m,n = e−(|m|+|n|) − (ε/2)�2(e−(|m|+|n|)). (16)

In particular, the accordingly predicted amplitude of the
extended mode, at m = n = 0, is

Amax = 1 − 2(1 − e−1)ε ≈ 1 − 1.264ε. (17)

By means of our numerical continuation, it was possible
to follow this solution for all the values of the coupling that
we considered, up to ε = 0.2. As can be seen in the left panel
of the figure, the dependence of the amplitude of the solution
on the coupling constant is almost exactly approximated by
Amax = 1 − (5/4)ε, i.e., the perturbative result (17) predicts
the dependence very accurately. An example of a numerically
determined profile of the mode is shown in the right panel
of Fig. 9 for ε = 0.2. Furthermore, the numerical analysis
has demonstrated that the solution is stable throughout its
entire existence interval (up to ε = 0.2; the numerical solution
was not extended to large values of ε). Notice that here the
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FIG. 7. (Color online) The left panels of the figure illustrate the real (top) and imaginary (bottom) parts of the spatial distribution of a
two-dimensional vortex cross. The phases of the four excited sites are 0, π/2, π , and 3π/2, so that a phase circulation of 2π is achieved when
moving along a contour surrounding the mode’s pivot. The solution is shown for ε = 0.068, and its corresponding spectral plane is displayed
in the bottom right panel. The top right panel illustrates the O(ε) (or weaker; see the smallest eigenvalue pair) dependence for small ε of the
eigenvalue pairs bifurcating from the origin. It is the collision of these pairs with the ones bifurcating from the band edge (which is depicted,
as before, by the dashed red line), that leads to the instability at ε � 0.068.
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FIG. 8. (Color online) Same as the above figure, but now for a vortex square in the case of a nonlinearity profile symmetric around (0.5,0.5)
in the form of Eq. (8). The top left panel (real part) and bottom left panel (imaginary part of the solution), as well as the spectral plane of the
bottom right panel are given for ε = 0.074. The top right panel illustrates the trajectory of the imaginary part of the eigenvalues associated
with the stability of the configuration up to ε ≈ 0.08.

constraint due to potential collision of eigenvalues stemming
from the origin and from the continuous spectrum does not
exist, as actually all eigenvalue pairs bifurcate from the origin
along the imaginary axis.

B. Evolution of unstable modes

We now turn to direct numerical simulations of various
unstable states. Given that the single-site excitation is stable
throughout its domain of existence, we start with the two-site
in-phase configuration in Fig. 10. The top left panel of the
figure shows the final profile of the solution produced by

simulations at t = 600, for ε = 0.079. The initial condition is
the mode from Fig. 3, weakly perturbed by a multiplicative
small-amplitude random perturbation, intended to initiate
the instability. The bottom left panel shows the differ-
ence between the initial and final profiles, illustrating how
the instability expands across the solution. The right panels of
the figure show the evolution at the central and adjacent sites,
corroborating the same picture. Also evident in the latter is
the oscillatory character of the instability associated with this
solution.

The evolution of the out-of-phase two-site state for ε =
0.07 is shown in Fig. 11. The top left panel displays the profile
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FIG. 9. (Color online) The left panel of the figure shows the dependence of the amplitude of the extended solution on ε, while the right
panel displays a typical profile of the extended mode for ε = 0.2.
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FIG. 10. (Color online) Evolution of the unstable two-site, in-phase mode at ε = 0.079. The top left panel shows the final profile of the
absolute value of the discrete wave form at the final simulation time of t = 600, while the bottom left panel shows the difference between
absolute values of the top left profile and the initial one. The right panels show the absolute value at the central site (top) and at two adjacent
ones (bottom); the blue solid line corresponds to the initially excited (1,0) site, and the red dashed line to the (0,1) site.
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FIG. 11. (Color online) Similar to the previous figure but now for the out-of-phase two-site configuration at ε = 0.07. The top left panel
shows the result of the evolution at t = 600, while the bottom left panel shows its difference from the input, in terms of the absolute value. The
right panels illustrate the evolution at the central (top) and nearest-neighbor (1,0) (bottom) sites, demonstrating the exponential nature of the
instability.
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FIG. 12. (Color online) The same as previous figures, but now for the four-site, in-phase excited state with ε = 0.075. Notice the broadening
of the solution (left panels) and the oscillatory manifestation of the instability (right panels).

resulting from the dynamics at t = 600, while the bottom
left panel illustrates the spreading of the solution, through
its difference from the initial profile. It is interesting that
the structure in the top left panel appears to become more
“symmetrized” in the course of the evolution, bearing four
nearly symmetric excited sites around the central one. The right
panels once again correspond to the evolution of the central
site and one of its neighbors. Notice that here, as expected,
the growth and manifestation of the instability appear to be
exponential, rather than oscillatory.

Moving to the four-site configurations, we explore the
instability of the in-phase state at ε = 0.075 in Fig. 12, and
of the out-of-phase one at ε = 0.055 in Fig. 13. The former
state clearly features (see, especially, the right panels) an
oscillatory instability that destroys the configuration, making
it broader (see the bottom left panel) and more similar to the
configuration with all the sites excited, which is predicted by
the TFA; see Eq. (6) (and the top left panel).

On the other hand, the out-of-phase four-site state with
ε = 0.055, shown in Fig. 13, illustrates an exponential growth,
as illustrated in the right panels of the figure. Here, too, the
solution becomes more extended (see, e.g., the bottom left
panel), while its central amplitude increases, as shown in the
top left and top right panels.

Lastly, the evolution of the vortex configuration from Fig. 7
is displayed in Fig. 14. This configuration, too, is apparently
destroyed by the oscillatory instability. The latter leads to a
breaking of the symmetry of the amplitude pattern built of the
four sites which constitute the vortex (the bottom right panel),
as well as to populating the central site (the top right panel),
which has identically zero amplitude in exact vortex solutions.
The latter effect attests to the destruction of the vorticity, as is
confirmed by the top left panel, which shows that the norm of
the configuration (for the present case of ε = 0.068) is spread
over multiple sites surrounding the central ones. This is also
evident from the difference plot (between absolute values of
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FIG. 13. (Color online) The same as previous figures, but for the exponential instability dominating the dynamics of an out-of-phase
configuration at ε = 0.055.
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FIG. 14. (Color online) The same as previous figures, but for the vortex with ε = 0.068. The top right panel shows populating the originally
empty central site, while the four sites surrounding it no longer carry equal amplitudes, in the course of the development of the oscillatory
instability (the bottom right panel).

the initial and the final configurations) presented in the bottom
left panel.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work we have explored the existence,
stability, and dynamics of different bright solitary waves, as
well as vortex configurations, in the 2D defocusing nonlinear
Schrödinger lattice with a spatially modulated nonlinearity.
The fundamental modification of the present setup enabling
the existence of such states is the introduction of the spatially
modulated nonlinearity profile, with the local strength growing
from the center to the periphery faster than the squared
distance. As a result, single-site, two-site (in- or out-of-phase),
and four-site (in-, out- or with mixed-phase) configurations
have been systematically constructed near the anticontinuum
limit. A significant advantage of this construction is not only its
full controllability in this limit, but also the ability to analyze
the linear stability of the configurations. Going beyond these
simplest few-site constructions, we have also explored a vortex
cross, as well as the “extended” solution, in which all the
sites of the lattice are excited. In fact, solely this last solution
was previously identified in the 1D version of the discrete
system [15]. Here, this wave form was found to be the most
robust one, being stable in the entire parametric region that was
considered. All solutions with out-of-phase structures feature
instabilities accounted for by real eigenvalue pairs, while
in-phase, few-site states are subject to oscillatory instabilities,
caused by the collision of imaginary eigenvalue pairs with
the continuous spectrum or eigenvalue pairs bifurcating from
the edge of the continuous-spectrum band. Monitoring the

evolution of the unstable modes, we observed a trend of the
norm to spread over multiple sites surrounding the center,
and also an apparent tendency to rearrange into a structure
reminiscent of the stable extended solution.

There are numerous questions that merit further inves-
tigation in this nascent field. Gaining a more systematic
understanding, possibly through analytical considerations, of
vortex crosses and of vortex squares (e.g., of their eigenvalue
dependencies and a potential proof of the symmetry conditions
for their existence) are relevant directions. Moreover, detailed
stability analysis of the extended bright discrete-soliton con-
figuration should be interesting in its own right. Extending the
present configuration to the 3D setting (see Ref. [39]) is another
challenging issue. On the other hand, the extension of the study
of quantum solitons in the Bose-Hubbard counterpart of the
present setting from the 1D setting [17] to 2D is challenging
but certainly interesting. Some of these topics are currently
under study and results will be reported elsewhere.
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