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Pseudorelativistic effects on solitons in quantum semiconductor plasma
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A theory for nonlinear excitations in quantum plasmas is presented for narrow-gap semiconductors by
considering the combined effects of quantum and pseudorelativity. The system is governed by a coupled
Klein-Gordon equation for the collective wave functions of the conduction electrons and Poisson’s equation
for the electrostatic potential. This gives a closed system, including the effects of charge separation, quantum
tunneling, and pseudorelativity. By choosing the typical parameters of semiconductor InSb, the quasistationary
soliton solution, which is a multipeaked dark soliton, is obtained numerically and shows depleted electron
densities correlated with a localized potential. The dynamical simulation result shows that the dark soliton is
stable and has a multipeaked profile, which is consistent with the quasistationary solution. The present model
and results may be useful in understanding the nonlinear properties of semiconductor plasma on an ultrafast time
scale.
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I. INTRODUCTION

The collective dynamics of a quantum electron gas in a
semiconductor are of great importance in possible applications
to the field of quantum computing [1]. Accordingly, quantum
semiconductor plasma physics has attracted much attention
due to its potential applications in semiconductor nanostruc-
tures, such as spintronics, nanotubes, quantum dots, and quan-
tum wells [2], where quantum effects are very important due to
the fact that the de Broglie wavelength of charge carriers can be
comparable to the characteristic spatial scales of the system in
modern miniature semiconductor structures. These quantum
effects can produce new interesting physical phenomena of
electrostatic and electromagnetic waves in semiconductor
quantum plasmas [3,4], which can be investigated by quantum
hydrodynamic (QHD) equations, of which the Bohm potential
stands for the quantum tunneling effect [5]. More recently,
the two-stream instability in a quantum semiconductor plasma
was studied using the QHD model [6]. The instability in an
electron beam pumped GaAs semiconductor can arise due
to the excitation of electron-hole pairs [7]. The longitudinal
waves and electromagnetic surface waves were all modified by
the quantum corrections [8,9]. The quantum effects would also
reduce the threshold electric field for the onset of parametric
amplification [10].

On the other hand, in Kane’s model the dispersion relation
of narrow-gap semiconductors shows that the conduction
electron is a relativistic one with effective velocity-dependent
mass, where the effective speed plays the part of the speed of
light, which is several orders smaller than the speed of light
in vacuum [11]. The large nonlinear optic effects in n-doped
narrow-gap semiconductors come from the nonparabolicity of
conduction electrons [12]. Accordingly, the latter can be used
to simulate electron acceleration in the wake field [13] or to
simulate the beat wave generation of plasmons [14].

The collective effect plays a crucial role in the investigation
of electron dynamics on an ultrafast time scale [15]. As the
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short electron pulse propagates in the metallic nanowires,
the stable wake field may be excited for a reasonable set
of experimentally accessible parameters, which can be used
to produce radiation in the extreme-ultraviolet range [16].
Recently, experiments and simulations have shown the ex-
istence of nonlinear collective excitation, such as solitons,
in the semiconductor microcavity [17,18]. The properties
of bright polariton solitons in semiconductor microcavity
operation are affected by the exciton-photon coupling [19].
Experimental observations of solitons have also been made in a
GaAs slab [20]. The dark solitons can withstand perturbations
and turbulence during a considerable time in the quantum
semiconductor plasma, where three typical semiconductors,
GaAs, GaSb, and GaN, are studied and the solitons in GaN
seem to be more stable than in GaAs and GaSb [21]. The
quantum effects strongly affect the modulational instability of
envelope solitons in semiconductor plasma [22]. The features
of solitary waves in different semiconductors (GaAs, GaSb,
GaN, and InP) are different depending upon the quantum
effects [23].

However, very little work has been done regarding the
soliton in semiconductor plasmas consisting of conduction
electrons with nonparabolicity. Electromagnetic solitons can
appear in dense n-doped InSb semiconductor plasma due to
pseudorelativistic nonlinear effects [24–26], but the above
research does not consider the quantum effects on electro-
magnetic solitons. Accordingly, the influence of the combi-
nation of pseudorelativity and quantum effects on solitons
is investigated in narrow-gap semiconductors in this paper.
In Sec. II, by introducing the quantum energy operator and
momentum operator into Kane’s dispersion relation of narrow-
gap semiconductors, the Klein-Gordon equation (KGE) is
derived for pseudorelativistic semiconductor quantum plasma.
In Sec. III, the KGE is solved by using a numerical method and
a steady soliton solution with a multipeaked profile is obtained.
To evaluate the stability of the dark soliton, the dynamics is
also investigated by a numerical method. In the final section,
the conclusion and importance of the present results are
given.
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II. BASIC EQUATIONS

Narrow-gap semiconductors have a large degree of non-
parabolicity. To give a basic model of the conduction electrons
in a narrow-gap semiconductor, we consider Kane’s dispersion
relation to stand for the nonparabolicity of conduction elec-
trons, which is a relativistic relation with effective velocity-
dependent mass. The Kane’s dispersion relation of narrow-gap
semiconductors is given by [11]

E = (p2c2
∗ + m2

∗c
4
∗)1/2, (1)

where E is the energy of a conduction-band electron, p is
quasimomentum, c∗ = (Eg/2m∗)1/2 plays the part of the speed
of light, with m∗ being the effective mass of the electron at
the bottom of the conduction band, and Eg is the width of
the gap separating the valence and the conduction band. For
semiconductor InSb the speed of light c∗ ≈ 3 × 10−3c, with c

being the speed of light in vacuum [11]. Nonparabolicity of the
conduction band leads to electron velocity-momentum depen-
dence, as one can obtain by v = ∂E/∂p. Then the expression
of velocity was v = p/m∗(1 + p2/m∗c2

∗)1/2 [13], which was
similar to the velocity of the relativistic electron gas plasma.
In this paper, the quantum effects will also be considered
for relativistic electrons in a narrow-gap semiconductor. By
the substitution E → i�∂/∂t + eφ and p → −i�∇ in (1),
where � is the Planck constant divided by 2π , we obtain the
KGE for an ensemble of conduction electrons in narrow-gap
semiconductor as(

i�
∂

∂t
+ eφ

)2

ψ − �
2c2

∗∇2ψ + m2
∗c

4
∗ψ = 0, (2)

where ψ represents an ensemble of conduction electrons,
φ represents the scalar potentials, and e is the magnitude
of the electron charge. Equation (2) can be reduced to a
collective Schrödinger for an ensemble of electrons in the
nonrelativistic limit, which was already used to investigate the
collective nonlinear excitation in electron-hole semiconductor
plasma [21].

Here Eq. (2) neglects degeneracy of electrons, which
appears due to the Pauli exclusion principle and is important in
dense matters. It has already been shown that the nonlinearity
of degeneracy can support the formation of stable dark solitons
and vortices in nonrelativistic electron gas plasmas [27]. But in
the present work, the nonlinear excitation has to be investigated
for pseudorelativistic quantum semiconductor plasmas. The
present KGE model (2) also neglects the effects of exchange
potential due to electron spin, which describes the interactions
between the electrons. The presence of exchange potential
strongly affects the collective breather modes in semiconductor
quantum wells [28], but the main limitation of the KGE
model is that the spin effect is neglected. The advantage
of the present KGE model is that it can take quantum and
pseudorelativistic effects on an equal footing and the electric
charge density can be calculated self-consistently from the
KGE. The corresponding electric charge densities are now
obtained as

ρe = −e

2m∗c2∗

[
ψ∗

(
i�

∂

∂t
+ eφ

)
ψ + ψ

(
i�

∂

∂t
+ eφ

)∗
ψ∗

]
.

(3)

The right-hand side of Eq. (3) is multiplied by the electron
charge −e. Accordingly, ρe can be interpreted as the electric
charge density rather than a probability density, since ρe is
neither positive nor negative now. The systems are closed by
Poisson’s equation

∇2φ = −1

ε
(ρe + en0) , (4)

where ε is the effective dielectric permittivity of the lattice.
For the InSb semiconductor, the effective dielectric is ε =
14ε0, with ε0 being the vacuum dielectric constant [24],
and n0 is the unperturbed density of the electrons and also
of the positive neutralizing ionic background. Equations (2)
and (4) are our desired system that describes pseudorelativistic
semiconductor plasma collective interactions in the quantum
regime. The KGE for an ensemble of electrons in the gas
plasma is already obtained to investigate the intense laser pulse
interaction with quantum gas plasma [29]. For electrostatic
waves, due to the charge separation between the conduction
electrons and the positive ionic background, the quantum
effects are important at short wavelengths. If the wavelength
is comparable to the characteristic length �/m∗c∗ ≈ 7.2 ×
10−9 m, the pseudorelativistic effects will also be important for
the conduction electron. Accordingly, the combined quantum
effects and relativity will be important for nonlinear collective
excitation in nanoscale in the narrow-gap semiconductor
plasmas.

We first discuss the linear properties of the system (2)
and (4). By linearizing the system (2) and (4) and using the
Fourier modes, the dispersion relation was already obtained
in the gas plasmas [29,30] and in a relativistic bosonic
gas [31,32], which shows that in the classical limit � → 0
the dispersion relation reduces to the Langmuir oscillations,
and in the nonrelativistic limit the dispersion relation reduces
to the ordinary dispersion relation of electrostatic modes
in quantum plasmas without the degeneracy effects. The
dispersion relation can be obtained alternatively by a kinetic
equation, which is exactly equivalent to KGE and describes the
space-time evolution of a spinless charged particle in plasmas,
where a new dispersion relation was obtained with first-order
quantum corrections and can also reduce to the ordinary
dispersion relation of electrostatic modes in the nonrelativistic
limit [33]. However, it should be noted that the new dispersion
relation has a degeneracy term [33]. In Refs. [29] and [30],
the dispersion relation also gives a pair branch mode. The
latter will be important in the ultradense gas plasmas, such as
in the astrophysics environment. However, in our system, the
relativistic effect is a pseudo effect. Then we just consider the
plasma mode in this paper and the pair production is safely
neglected.

III. THE STEADY SOLITON AND ITS DYNAMICS

In the following, the possibility of nonlinear excitations
is investigated by system (2) and (4) in one dimension.
For convenience, a new wave function �(z,t) is introduced
by the transformations ψ(r,t) = �(z,t) exp(−im∗c2

∗t/�). To
study quasi-steady-state structures propagating with a constant
speed v0, the physical quantity is assumed that φ = φ(ξ ),
where ξ = z − v0t . It is convenient to introduce the eikonal
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FIG. 1. (Color online) The spatial profiles of the conduction
electron density and the scalar potential (top to bottom panels) for
H = 0.233 (left column) and H = 0.074 (right column) with velocity
v0 = 0.

representation � = P (ξ ) exp[iθ (ξ )], where P and θ are real
valued. Then the coupled system of equations is derived as

d2P

dξ 2
+ γ 4

0

H 2

[
(φ + 1)2 − β2

P 4
− 1

γ 2
0

]
P = 0, (5)

d2φ

dξ 2
+ γ 2

0 [1 − (φ + 1)P 2] = 0, (6)

where γ0 = 1/
√

1 − β2 and β = v0/c∗. The parameter H =
�ωpe/m∗c2

∗ stands for quantum tunneling effects, where
plasma frequency is ωpe =

√
n0e2/m∗ε. For convenience,

the coupled system (5) and (6) was normalized as follows:
eφ/m∗c2

∗ → φ, P/
√

n0 → P . The time and space coordinates
were also normalized as ξωpe/c∗ → ξ , tωpe → t , respec-
tively. We solved the system (5)–(6) as a nonlinear boundary
value problem with the boundary conditions P = −1 at the
left boundary ξ = −10, and P = 1 at the right boundary
ξ = 10. The potential φ is set to 0 at the two boundaries. The
spatial domain is numerically resolved with 2000 intervals,
and the second derivatives in the system (5)–(6) are approxi-
mated by centered second-order approximations. The resulting
nonlinear system of equations is then solved numerically by
Newton’s method. The typical parameters for semiconductor
InSb plasma are chosen as [24] Eg = 3.7 × 10−20 J, m∗ =
me/74, ε = 16ε0, c∗ = c/253, n0 ∼ 1020 − 1023 m−3. The
numerical solutions are displayed in Fig. 1. As seen in Fig. 1,
the local depletions of the conduction electron densities with
a multipeaked dark soliton are associated with a localized
positive potential φ for v0 = 0. With the increasing of quantum
effects, the width of the multipeaked dark soliton also increases
and the number of peaks of the dark soliton decreased from
eight to six. But the dark number is always five. In order to
investigate the moving dark soliton, it is illustrated in Fig. 2
for v0 = 4.47 × 10−4c∗ and v0 = 0.0082c∗. One can see that
the profile of the moving dark soliton is quite different from a
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FIG. 2. (Color online) The spatial profiles of the conduction
electron density and the scalar potential (top to bottom panels) for
v0 = 4.47 × 10−4c∗ (left column) and v0 = 0.008 2c∗ (right column)
with the quantum parameter H = 0.233.

static soliton. The profile of the multipeaked dark soliton has
no symmetry compared to the static soliton. The electrostatic
potential of the moving soliton becomes single peak. The
electron density goes to zero at the center of both moving
solitons and a static soliton, due to the choice of boundary
conditions where the conduction electron wave function has a
phase shift and changes sign at the center of the solitons.

In order to assess the dynamics and stability of the dark
solitons, the time-dependent systems of Eqs. (2) and (4)
are solved numerically in one dimension. Here the system
of Eqs. (2) and (4) is rewritten in new dimensionless

FIG. 3. (Color online) The dynamics of the dark soliton of the
conduction electron quantum plasma |�|2 (top panels) and the scalar
potential φ (bottom panel) for the quantum parameter H = 0.074.
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FIG. 4. (Color online) The dynamics of the dark soliton of
conduction electron quantum plasma |�|2 (top panels) and the scalar
potential φ (bottom panel) for the quantum parameter H = 0.233.

form as (
iH

∂

∂t
+ φ + 1

)
� = W, (7)

(
iH

∂

∂t
+ φ + 1

)
W + H 2 ∂2�

∂z2
− � = 0, (8)

∂2φ

∂z2
= 1

2
(�∗W + �W ∗) − 1. (9)

Here in order to solve Eqs. (2) and (4) conveniently, the new
wave function �(z,t) is introduced again by the transforma-
tions ψ(r,t) = �(z,t) exp(−im∗c2

∗t/�), and a new quantity
is introduced as W = (iH∂/∂t + φ + 1)�. For convenience,
the coupled system (7)–(9) is normalized as eφ/m∗c2

∗ →
φ, �/

√
n0 → �, and W/

√
n0 → W . The time and space

coordinates are also normalized as zωpe/c∗ → z, tωpe → t ,
respectively. A pseudospectral method is used for calculating
the spatial derivatives with periodic boundary conditions,
and the standard fourth-order Runge-Kutta method is used
to advance the solution in time. The spatial domain is
from z = −5π to z = +15π with 1024 intervals in space.
The simulation is from time t = 0 to t = 10 with the time
step being �t = 0.000 01. The initial conditions are � =
tanh[20 sin(x/10)], which is consistent with the periodic

boundary conditions used in the simulations. In Fig. 3, one
can find that the dark soliton will become a multipeaked dark
soliton after some time for the quantum parameter H = 0.074.
The multipeaked dark soliton will appear at time t = 3, as the
initial soliton is single dark soliton. In Fig. 4, the dynamics
is illustrated for quantum parameter H = 0.233, where the
multipeaked dark soliton will appear at time t = 5. The width
of the dark soliton in the case of H = 0.233 is slightly larger
than that in the case of H = 0.074, which is consistent with the
steady soliton solution as illustrated in Fig. 1. The conduction
electron plasma wake oscillations are found in both Figs. 3
and 4, as illustrated by the electrostatic potential eφ/m∗c2

∗ in
the lower panel of Figs. 3 and 4.

IV. SUMMARY AND CONCLUSIONS

In conclusion, the nonlinear quantum electrostatic waves
in pseudorelativistic quantum semiconductor plasma are in-
vestigated by using Kane’s dispersion relation of n-doped
narrow-gap semiconductors, where the nonlinearity comes
from the nonparabolicity of conduction electrons. By intro-
ducing the energy operator and momentum operator into
the Kane’s dispersion relation, the KGE is derived for an
ensemble of conduction electrons standing for the combined
effects of quantum and pseudorelativity, which is closed by
Poisson’s equation for our system. The typical parameters of
semiconductor InSb are chosen for the numerical solution.
The steady static and moving dark soliton are obtained by
the numerical method, which shows that the multipeaked dark
soliton has a symmetric profile for the static soliton, and the
moving dark soliton has no symmetric properties and a more
complex profile. In order to assess the dynamics and stability
of the dark solitons, Eqs. (2) and (4) are numerically solved
by using a single dark soliton as the initial value. The results
show that a single dark soliton will become a multipeaked dark
soliton after a short time and can withstand perturbations and
turbulence during a considerable time. The profile of a dark
soliton in dynamic simulation is consistent with the steady
soliton. The present results may be useful in understanding
the nonlinear properties of semiconductor plasmas on an
ultrafast time scale, as femtosecond pump-probe spectroscopy
developed quickly.

ACKNOWLEDGMENTS

The authors are thankful for financial support from the
NSFC (No. 11104012) and the Fundamental Research Funds
for the Central Universities (No. FRF-TP-09-019A and
No. FRF-BR-11-031B).

[1] P. Zoller et al., Eur. Phys. J. D 36, 203 (2005).
[2] K. Seeger, Semiconductor Physics, 9th ed. (Springer-Verlag,

Berlin, 2004).
[3] G. Manfredi and P.-A. Hervieux, Appl. Phys. Lett. 91, 061108

(2007).
[4] F. Haas, G. Manfredi, P. K. Shukla, and P.-A. Hervieux, Phys.

Rev. B 80, 073301 (2009).

[5] G. Manfredi and F. Haas, Phys. Rev. B. 64, 075316 (2001).
[6] I. Zeba, M. E. Yahia, P. K. Shukla, and W. M. Moslem, Phys.

Lett. A 376, 2309 (2012).
[7] M. E. Yahia, I. M. Azzouz, and W. M. Moslem, Appl. Phys.

Lett. 103, 082105 (2013).
[8] A. Mehramiz, J. Mahmoodi, and S. Sobhanian, Phys. Plasmas

17, 082110 (2010).

043108-4

http://dx.doi.org/10.1140/epjd/e2005-00251-1
http://dx.doi.org/10.1140/epjd/e2005-00251-1
http://dx.doi.org/10.1140/epjd/e2005-00251-1
http://dx.doi.org/10.1140/epjd/e2005-00251-1
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1016/j.physleta.2012.05.049
http://dx.doi.org/10.1016/j.physleta.2012.05.049
http://dx.doi.org/10.1016/j.physleta.2012.05.049
http://dx.doi.org/10.1016/j.physleta.2012.05.049
http://dx.doi.org/10.1063/1.4818811
http://dx.doi.org/10.1063/1.4818811
http://dx.doi.org/10.1063/1.4818811
http://dx.doi.org/10.1063/1.4818811
http://dx.doi.org/10.1063/1.3478988
http://dx.doi.org/10.1063/1.3478988
http://dx.doi.org/10.1063/1.3478988
http://dx.doi.org/10.1063/1.3478988


PSEUDORELATIVISTIC EFFECTS ON SOLITONS IN . . . PHYSICAL REVIEW E 91, 043108 (2015)

[9] A. P. Misra, Phys. Rev. E 83, 057401 (2011).
[10] S. Ghosh, S. Dubey, and R. Vanshpal, Phys. Lett. A 375, 43

(2010).
[11] O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
[12] C. K. N. Patel, R. E. Slusher, and P. A. Fleury, Phys. Rev. Lett.

17, 1011 (1966).
[13] V. I. Berezhiani and S. M. Mahajan, Phys. Rev. Lett. 73, 1837

(1994).
[14] V. I. Berezhiani and S. M. Mahajan, Phys. Rev. B 55, 9247

(1997).
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