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We present an approach that can resolve the controversy with respect to the role of electron-electron collisions
in calculating the dynamic conductivity of dense plasmas. In particular, the dc conductivity is analyzed in the
low-density, nondegenerate limit where the Spitzer theory is valid and electron-electron collisions lead to the
well-known reduction in comparison to the result considering only electron-ion collisions (Lorentz model). With
increasing degeneracy, the contribution of electron-electron collisions to the dc conductivity is decreasing and
can be neglected for the liquid metal domain where the Ziman theory is applicable. We give expressions for the
effect of electron-electron collisions in calculating the conductivity in the warm dense matter region, i.e., for
strongly coupled Coulomb systems at arbitrary degeneracy.
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I. INTRODUCTION

Physical properties of warm dense matter (WDM) have
become an emerging field of research. New techniques such
as intense ultrashort pulse laser irradiation or shock wave
compression allow one to produce states of matter with high
energy density in the laboratory that are of relevance for
astrophysical processes. In the density-temperature plane of
Coulomb systems, the region of degenerate, strongly coupled
plasmas is now accessible.

The calculation of properties of WDM is a challenging task.
Transport properties, in particular the dc conductivity, are well
investigated for a fully ionized plasma in the classical, low-
density limit as given by Spitzer and Härm [1] within kinetic
theory (KT), see also Ref. [2] and references given therein.
The evolution of the electron velocity distribution function is
described by a Fokker-Planck kinetic equation. The linearized
kinetic equations are solved with a Landau collision integral,
that includes both the electron-ion (e-i) and electron-electron
(e-e) collisions.

Alternatively, the conductivity of strongly degenerate elec-
tron systems such as liquid metals has been obtained by
Ziman and Faber [3] using the relaxation time approach.
The treatment of the e-i interaction has been improved by
Dharma-wardana [4] and others [5–7] who used expressions
for the pseudopotentials and ionic structure factors that are
appropriate for the particular ions under consideration. Lee
and More [8] extended this approach to the nondegenerate
regime. Desjarlais [9] later derived corrections to the Lee-More
conductivity model due to partial ionization. However, to
recover the Spitzer result for the conductivity, e-e collisions
have to be taken into account. This is not consistently possible
within the relaxation time approach [10] but has been done
by Stygar [11] and Fortov et al. [12] using interpolation
procedures, see also Adams et al. [13]. In this work, we
present a general approach using linear response theory (LRT)
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that allows also for a systematic treatment of e-e collisions at
arbitrary degeneracy.

The investigation of time-dependent fields is somehow
difficult in KT, too. Often, the collision term in the time-
dependent kinetic equation is replaced by an energy-dependent
but static relaxation time ansatz, see Landau and Lifshitz [14],
Dharma-wardana [4], or Kurilenko et al. [15,16]. According
to Landau and Lifshitz [14] it should be emphasized that such
an approach is only applicable in the low-frequency limit. The
high-frequency region, relevant for describing bremsstrahlung,
can be treated in LRT, see Ref. [17]. In the present work, we
focus on the static conductivity for a response to an electric
field that is constant in time and space (dc conductivity).

Recently, the Kubo-Greenwood formula [18,19] was con-
sidered as a promising approach to the dynamical conductivity
in dense, strongly interacting systems at arbitrary degen-
eracy. Based on the rich experience in electronic structure
calculations for solids, liquids, and complex molecules using
density functional theory (DFT) and the enormous progress
in computing power, ab initio simulation techniques have
been developed that allow one to treat a large number of
constituents with individual atomic structure. Most successful
so far has been a combination of DFT for the electron system
and classical molecular dynamics (MD) simulations for the
ions which we will refer to as the DFT-MD method in what
follows; for details, see Refs. [20–23]. This method does not
rely on effective pair potentials or two-particle cross sections as
in standard KT which become questionable in dense, strongly
coupled plasmas. The evaluation of the Kubo-Greenwood
formula using optimal single electron states gives the full
account of e-i interaction and treats e-e interactions based
on the exchange-correlation (XC) functional used in the
DFT cycle, in addition to the mean-field (Hartree) term. The
inclusion of e-e collisions into the DFT-MD calculations of
transport properties in WDM is a subject of lively debate,
especially for the limiting case of nondegeneracy.

Within this paper, we apply a generalized approach to
nonequilibrium processes according to Zubarev et al. [24,25].
Using this generalized linear response theory (gLRT) transport
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properties are related to equilibrium correlation functions
such as current-current or force-force correlation functions.
Different expressions for the conductivity are deduced which
lead to identical results should they be calculated exactly,
as was shown analytically by performing partial integration.
However, they are differently suited for performing calcula-
tions after perturbation expansions. In particular, expressions
that are consistent with KT (Spitzer result for the dc plasma
conductivity) are compared with the Ziman-Faber theory, the
Kubo-Greenwood formula, and the rigorous results for the
Lorentz model. In the Lorentz model, noninteracting electrons
are considered to move under the influence of the potential of
the ions at given configuration (adiabatic limit).

Transport theory for WDM benefits from different sources.
On one hand, the conductivity of liquid metals and disordered
solids is well described in the weak scattering limit (Fermi’s
golden rule) by the Ziman formula if the conducting electrons
are degenerate; see also the Ziman-Faber approach [3] where
alloys at finite temperatures are considered [26]. Main ingre-
dients are the element-specific electron-ion pseudopotential
and the (dynamical) ion structure factor that are adequately
described using the Kubo-Greenwood formula where the e-i
and the e-e interaction (via the XC functional) are considered
in any order. Evaluating the correlation functions within
DFT-MD [20–23], no perturbation expansion is performed.
On the other hand, the conductivity of plasmas is described by
KT so in the low-density, nondegenerate limit the Coulomb
interaction between e-i as well as e-e pairs leads to the
Spitzer result. At higher densities, gLRT can be applied that
considers correlation functions to be evaluated analytically
using the method of thermodynamic Green functions [25,27–
30]. Nonperturbative solutions are possible by classical MD
simulations using effective pair potentials, see Ref. [31], as
long as the nondegenerate case is considered.

Bridging between both the transport theory of condensed
matter and plasma kinetic theory, the contribution of e-e colli-
sions that is clear in KT remains unclear in the Ziman or Kubo-
Greenwood approach [4]. We address this problem within
gLRT that incorporates the Kubo formula as well as the KT as
particular special cases in Sec. II, see Refs. [17,25]. A simple
expression is derived that accounts for the contribution of e-e
interactions provided that the contribution of the e-i interaction
is known. Accounting for e-e collisions, we show that the dc
conductivity of WDM is reduced in the nondegenerate region,
which becomes less relevant with increasing degeneracy
(Sec. III). A simple fit formula is given in Sec. IV A. For
example, we present exploratory calculations for aluminum
in the WDM region in Sec. IV C. Further properties such
as the optical conductivity and other thermoelectric transport
coefficients like the thermal conductivity, see Refs. [32,33],
will be considered in subsequent work.

II. LINEAR RESPONSE THEORY AND EQUILIBRIUM
CORRELATION FUNCTIONS

A. Fluctuations in equilibrium and transport properties

In the following we outline the conceptional ideas on which
the generalized response equations are based. The definitions

of the physical system and the quantities for its description are
given for completeness of the presentation.

We consider a charge-neutral Coulomb system consisting
of ions with (effective) charge Ze and particle density nion

and electrons of charge −e, mass m, and particle density ne =
Znion. The Hamiltonian

Ĥ = T̂ + V̂ei + V̂ee (1)

of the system contains the kinetic energy (T̂ ) of the electrons
and ions, the electron-ion (V̂ei) pseudopotential, and the
electron-electron (V̂ee) Coulomb interaction.

The interaction with an external, spatially uniform electric
field Eext(t) is given by

ĤF(t) = −e
∑

i

r̂i · Eext(t) (2)

with r̂i the position operator of the different electrons in the
considered sample. We take the adiabatic limit and consider
the electron contribution to the current density operator

ĵ = e

m�

∑
i

p̂i = e

m�
P̂ , (3)

where � denotes the volume of the sample and P̂ the total
momentum of the electron subsystem. Without loss of gener-
ality we consider periodic time dependence of the field with
frequency ω. In LRT, the average value of the current has the
same periodic time dependence, 〈ĵ〉t = Re[j(ω) exp(−iωt)].
Similarly, an inhomogeneous external field can be decomposed
into Fourier components with wave vector k. In the spatially
homogeneous (k → 0) and isotropic case considered here,
the dynamical electric conductivity is defined as j(ω) =
σ (ω)E(ω), where E(ω) is the screened internal electric field.

There is a fundamental theory for transport coefficients that
relates those to equilibrium correlation functions [17,24,25].
We outline our approach and its general results in Appendix A.
A main ingredient is the possibility to extend the relevant
statistical operator considering a set {B̂l} of relevant observ-
ables that characterizes the nonequilibrium state of the system.
The fluctuations of the single-particle occupation numbers or
the respective current densities could be considered. If the
averages of these observables are already correctly taken into
account, they do not have to be calculated dynamically so
the corresponding nonequilibrium state is observed within
a shorter time when considering the evolution from an
initial state. As shown in Appendix A, generalized response
equations are derived to eliminate the Lagrange parameters Fn

according to self-consistency conditions. Assuming linearity
with respect to the external field, a system of linear equations
follows where the coefficients are equilibrium correlation
functions,

〈Â; B̂〉z =
∫ ∞

0
dteizt (Â(t),B̂)

=
∫ ∞

0
dteizt

∫ 1

0
dλTr{Â(t − i�βλ)B̂†ρ̂0}, (4)

where ρ0 is the equilibrium statistical operator. The time
dependence Â(t) = eiĤ t/�Âe−iĤ t/� is given by the Heisenberg
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picture with respect to the system Hamiltonian Ĥ , so ˙̂A =
i[Ĥ ,Â]/�. β = (kBT )−1 is the inverse temperature.

B. Different choices of relevant observables and
corresponding response functions

Solving the generalized response equations, transport
coefficients are related to equilibrium correlation functions,
which is an expression of the fluctuation-dissipation theorem
(FDT). In principle, the equilibrium correlation functions (4)
can be calculated because we know the equilibrium statistical
operator. Thus, the FDT seems to be very convincing and
promising to evaluate transport coefficients in dense, strongly
correlated systems like WDM. However, the evaluation of
the equilibrium correlation functions is a quantum statistical
many-body problem that has to be treated by perturbation
theory or numerical simulations. For an analytical approach,
the interaction between the charged constituents of the system
(e,i) is considered as perturbation. Additionally, we will show
that the choice of relevant observables {B̂l} is crucial for an
effective solution scheme. We discuss three different sets of
relevant observables Bl to characterize the nonequilibrium
state, which are taken in addition to the conserved observables
energy Ĥ and particle number N̂ of the system, see Ref. [25].

(i) The empty set of relevant observables B̂l is considered.
It is equivalent to the grand-canonical ensemble, see Eq. (A1).
All nonequilibrium distributions are formed dynamically. As
a result we obtain the Kubo formula [18],

σ Kubo(ω) = e2β

3m2�
〈P̂; P̂〉irred

ω+iη , (5)

where limη→0 has to be taken after the thermodynamic
limit. The response function is given by the correlation
function of the electrical current, see Eq. (3). It coincides
with the conductivity σ (ω) if only the irreducible part of
the current-current correlation function is taken. Despite
this compact, comprehensive, and intuitive expression, its
evaluation contains a number of difficulties. In particular, it
is not suited for perturbation expansions of the dc conductivity
because it is diverging in zeroth order of the interaction. We
come back to this issue in Sec. II C and Appendix D.

(ii) The fluctuations δn̂p = n̂p − 〈n̂p〉eq of the single-
particle occupation number n̂p are chosen as relevant ob-
servables Bl . In this way, we can derive expressions in parallel
to KT where the nonequilibrium state is characterized by the
single-particle distribution function f (p,t). The modification
of the equilibrium single-particle distribution function can be
calculated straightforwardly according to

Tr{ρ̂rel(t) δn̂p} =
∑

p′
(δn̂p,δn̂p′ )Fp′(t) = δf (p,t) . (6)

The Lagrange multipliers Fp(t) are determined from the
response equations (A3). These response equations are gen-
eralized linear Boltzmann equations that contain a drift
and collision term as expressions of equilibrium correlation
functions. A comprehensive discussion is found in Ref. [17].

The nonequilibrium single-particle distribution function (6)
is known if we have information about all moments of
the distribution function, i.e., the quantum averages of the

observables

P̂l =
∑

p

p
(

β p2

2m

)(l−1)/2

n̂p . (7)

For instance, P̂1 = P̂ is related to the electrical current and
P̂3 to the heat current. Taking a finite number L of these
functions (7) as the set of relevant observables {Bl}, see
Refs. [17,25,34,35], the response function is approximated
by a ratio of two determinants,

σ (L)(ω) = − e2β

m2�

∣∣∣∣∣∣∣∣
0 N11 . . . N1L

N11 d11 . . . d1L

...
...

. . .
...

NL1 dL1 . . . dLL

∣∣∣∣∣∣∣∣
/

×

∣∣∣∣∣∣∣
d11 . . . d1L

...
. . .

...
dL1 . . . dLL

∣∣∣∣∣∣∣. (8)

The Kubo scalar products are given analytically for the electron
gas as

Nll′ = 1

3
(P̂l ,P̂l′ ) = Znion �m

β


[(l + l′ + 3)/2]


(5/2)

× I(l+l′−1)/2
(
βμid

e

)
I1/2

(
βμid

e

) , (9)

with the ideal part of the electron chemical potential μid
e and

the Fermi integrals Iν(y) = 1

(ν+1)

∫ ∞
0

xνdx
ex−y+1 ,

dll′ (ω) = 1
3 {〈 ˙̂Pl ;

˙̂Pl′ 〉irred
ω+iη − iω(P̂l ,P̂l′ )}, (10)

are correlation functions (4) of the system in thermodynamic
equilibrium.

With increasing number of moments, L → ∞, the full
solution of the KT would be reproduced. Further convergence
issues, in particular for the static case, have been discussed in
detail elsewhere, see Refs. [30,34,36–38]. Note that the static
conductivity is increasing if more moments are taken into
account as a consequence of the Kohler variational principle,
see Ref. [17].

(iii) The current density operator is taken as relevant
observable B̂l . This relates directly to the thermodynamics of
irreversible processes where the state of the system is described
by currents. Corresponding generalized forces are identified as
the response parameters Fl . In a first step, we consider the total
momentum P̂ as relevant observable. The relevant distribution
function is a shifted Fermi or Boltzmann distribution. Further
details of the nonequilibrium distribution functions beyond
the average of momentum (which is correctly reproduced) are
formed dynamically. We obtain

σ Ziman(ω) = e2β

3m2�

(P̂,P̂)2

−iω(P̂,P̂) + 〈 ˙̂P; ˙̂P〉irred
ω+iη

, (11)

which we denote by Ziman since its static limit (ω = 0) for
T = 0 K is the Ziman-Faber formula [3] for the conductivity.
The Ziman formula is also denoted as second fluctuation-
dissipation theorem since the inverse transport coefficients are

related to the force-force correlation function 〈 ˙̂P; ˙̂P〉ω+iη. Note
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that P̂ is the first moment of the single-particle distribution
function (7). Therefore, the response function (11) is identical
with Eq. (8) for L = 1, the first moment approach in KT.

Using the explicit expression for the Kubo scalar prod-
uct (9), we obtain from Eq. (11) a generalized Drude expression
for the conductivity [39]

σ Ziman(ω) = ε0ω
2
pl

−iω + νZiman(ω)
, (12)

with the plasma frequency ωpl =
√

e2Znion/(ε0m). The dy-
namical collision frequency

νZiman(ω) = β

3Znion�m
〈 ˙̂P; ˙̂P〉irred

ω+iη (13)

is given in terms of the irreducible part of the force-force
correlation function. However, higher moments are needed in
order to take into account e-e collisions. As a special case, the
two-moment approach with P̂1,P̂3 as relevant observables is
discussed in Ref. [17] and will be considered in the explicit
calculations in Sec. III.

C. Perturbation theory for the dynamic conductivity
and convergence

For the dynamic conductivity, we derived expres-
sions (5), (8), and (11), which can be proven to be identical
by performing partial integration, see Refs. [17,25]. They
have, however, different properties when considering the time
behavior of the respective equilibrium correlation functions
and systematic perturbation expansions. This will be discussed
in the following.

1. Version (i), the Kubo formula (5), and the current-current
correlation function

The momentum of the electrons is conserved in zeroth
order of the interaction with the ions. Explicitly, evaluating
the correlation function (4) in lowest order, we have

σ Kubo(ω) = lim
η→0

e2β

3m2�

(P̂,P̂)

−iω + η
= lim

η→0

ε0ω
2
pl

−iω + η
. (14)

The dynamical conductivity is purely imaginary for finite
frequencies. This result is well-known as the Lindhard RPA
expression of the dielectric function ε(0,ω) = 1 − ω2

pl/ω
2.

The dc conductivity (ω → 0) diverges. Therefore, the Kubo
formula (5) is not appropriate to calculate the dc conductivity
within perturbation theory. Applying a perturbation expansion,
additional steps like partial summations or δη functions
with finite width are required, see Appendix D. Note, that
perturbation theory is suitable for finite frequencies.

2. Version (ii), the kinetic theory, and the single-particle
occupation number correlation function

The correlation functions dll′ (10) in the expression for
the conductivity (8) can be evaluated by perturbation theory
using thermodynamic Green’s functions, see Ref. [17] and

Sec. III A. From the definition of the generalized forces ˙̂Pl =
i[Ĥ ,P̂l]/� with Ĥ containing kinetic and potential energy, see
Eq. (1), it is evident that dll′ (ω = 0) is of second order in

the interaction. The kinetic energy T̂ commutes with P̂l . The

quantity ˙̂Pl entering the correlation function dll′ is decomposed
in the contributions due to the e-i and the e-e interaction. The
evaluation of the correlation functions

〈 ˙̂Pl ;
˙̂Pl′ 〉ω+iη = − 1

�2
{〈[V̂ei,P̂l]; [V̂ei,P̂l′ ]〉ω+iη

+〈[V̂ee,P̂l]; [V̂ee,P̂l′ ]〉ω+iη} (15)

in Born approximation for the screened Coulomb potential
V̂ei is given in Sec. III A for the static case; for arbitrary ω see
Ref. [17]. It should be emphasized that for the dc conductivity a
perturbation expansion is possible starting with a nondiverging
term in lowest order, in contrast to the Kubo formula (5).
Contributions due to e-e collisions are represented by the
second term in Eq. (15) for l,l′ > 1 only since the lowest-order
term vanishes, [P̂1,V̂ee] = 0.

3. Version (iii), the Ziman formula (11), and the
force-force correlation function

Following the discussion of the correlation functions
dll′ (15) it is evident that the collision frequency νZiman(ω),
Eq. (13), behaves regularly in the limit ω → 0 so one can
also perform this limit in expression (12). However, since the

e-e interaction does not contribute to ˙̂P ≡ ˙̂P1, it treats the
conductivity on the level of the Lorentz model only. It does
not give the correct result in the low-density limit as was
discussed in Ref. [17], see also the following Sec. III, but is
correct in the limit of strong degeneracy.

The well-known expression of the Ziman formula for
ω = 0 was derived in the Born approximation. It can be
improved considering higher-order terms in the perturbation
expansion [26]. However, secular divergent terms (van Hove
limit) then also arise that have to be treated by partial
summations [40,41]. This is avoided if the single-particle
distribution function is considered as relevant observable.
The account of higher moments P̂l of the single-particle
distribution function also improves the result for the Born
approximation. For increasing numbers of moments, see
Refs. [30,36], the solution converges to the Spitzer formula
if considering the low-density limit. Going beyond P̂1, the e-e
collisions contribute. Thus, to avoid singular expansions and
partial summations, we can enlarge the number of relevant
observables corresponding to the Kohler variational principle
as given by version (ii), see Ref. [17].

III. DC CONDUCTIVITY AND ELECTRON-ELECTRON
COLLISIONS

A. Renormalization function

As was shown in the previous section, the best choice of
relevant observables to take into account e-e collisions are
the fluctuations of the single-particle occupation numbers,
leading to Eq. (8). The calculations can be performed in
Born approximation without encountering any divergencies
and naturally including all relevant scattering mechanisms.
Adopting the Drude form (12) obtained from the Ziman
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formula as the general expression for the conductivity,

σ (ω) ≡ ε0ω
2
pl

−iω + ν(ω)
, (16)

we take this as definition of the dynamical collision frequency
ν(ω). To show the influence of e-e collisions on the conduc-
tivity, we relate the full dynamical collision frequency to the
solution in the one-moment approach (13) as a reference value
by introducing a complex renormalization function r(ω) in
such a way that

ν(ω) ≡ r(ω)νZiman(ω) = r(ω)
1

(P̂,P̂)
〈 ˙̂P; ˙̂P〉irred

ω+iη . (17)

If the solution is approximated within a finite number L of
moments according to Eq. (8), a renormalization function
r (L)(ω) is defined correspondingly so, see Refs. [35,39,42],

σ (L)(ω) = ε0ω
2
pl

−iω + r (L)(ω)νZiman(ω)
. (18)

Let us consider the simplest nontrivial approximation, the
two-moment approach with P̂1,P̂3, i.e., particle current and
energy current as relevant observables. Then, from Eq. (8), the
renormalization factor can be given explicitly in the static (dc)
case as (for the dynamic case, see Ref. [17])

r (2)(0) = d33d11 − d13d31

d11
[
d33 + N2

13

N2
11

d11 − N31
N11d13 − N13

N11d31
] . (19)

The correlation functions dll′ = 1
3 〈 ˙̂Pl ;

˙̂Pl′ 〉ω+iη = dei
ll′ + dee

ll′
have to be evaluated. The nondegenerate limit for a plasma
with singly charged ions has already been discussed in
Ref. [17]. Here we will calculate the renormalization function
for arbitrary degeneracy and effective ion charge Z. In screened
Born approximation, we have (summation over k,p includes
spin and respective wave-vector summation)

dei
ll′ = π�Z2

∑
k,p,q

∫ ∞

−∞
d�ω

∣∣∣∣ V (q)

εRPA(q,ω)

∣∣∣∣2

f e
k

(
1 − f e

|k+q|
)

× f i
p

(
1 − f i

|p−q|
)
δ
(
�ω − Ee

|k+q| + Ee
k

)
× δ

(
�ω − Ei

p + Ei
|p−q|

)
Kl(k,q)Kl′ (k,q), (20)

dee
ll′ = π�

2

∑
k,p,q

∫ ∞

−∞
d�ω

∣∣∣∣ V (q)

εRPA(q,ω)

∣∣∣∣2

f e
k

(
1 − f e

|k+q|
)

× f e
p

(
1 − f e

|p−q|
)
δ
(
�ω − Ee

|k+q| + Ee
k

)
× δ

(
�ω − Ee

p + Ee
|p−q|

)
(Kl(k,q)

+Kl(p, − q))(Kl′(k,q) + Kl′(p, − q)) , (21)

where f c
k = (eβ(Ec

k−μid
c ) + 1)−1, Ec

k = �
2k2/(2mc), and

Kl(k,q) = kz(βEe
k)(l−1)/2 − (kz + qz)(βEe

|k+q|)
(l−1)/2

with index c = i,e for ion and electron contributions,
respectively. Exchange terms in dee

ll′ are small and not
given here. The Coulomb interaction V (q) = e2/(ε0�q2)
is statically screened with εRPA(q,0) = 1 + κ2/q2, where
κ2 = [2�−3

e I−1/2(βμid
e ) + Z2nion]e2/(ε0kBT ) is related to

the Debye screening length, the (ideal) electron chemical

potential μid
e [see Eq. (9)], and thermal wavelength

�e = (2π�
2/mkBT )1/2. The explicit evaluation of the

correlation functions dei
ll′ ,d

ee
ll′ in the Born approximation

relevant for the two-moment approach r (2)(0), Eq. (19), is
shown in Appendix B. The limit of nondegenerate electrons
is discussed in the following subsection.

Whereas the statically screened Coulomb potential is a
reasonable description for the e-e interaction leading to a
convergent result for the correlation function, taking this
approximation for the interaction of electrons with ions
(effective charge Z) is only applicable in the low-density
limit. For WDM at higher densities, the interaction at short
distances is of relevance where the Coulomb potential has to
be replaced by a pseudopotential. Also, the ionic contribution
to the screening should be taken into account via the ion-ion
structure factor. Both effects are taken into account in DFT-MD
simulations, see Sec. III C. They would improve the result for
dei

ll′ in the high-density region.
By introducing the renormalization function rL(ω) in

Eq. (18) we have improved the Ziman result for the conduc-
tivity to the full solution of KT if an infinite set of moments
is used, L → ∞. Furthermore, evaluation of the correlation
functions (20) and (21) allows one to consider the influence of
e-e collisions beyond the Lorentz model so the correct Spitzer
result is obtained in the low-density limit. For the following
discussions it is helpful to introduce a correction factor, see
also Ref. [13],

Ree(ω) = σei+ee(ω)

σei(ω)
, (22)

where σei+ee(ω) denotes the dynamical conductivity deter-
mined within gLRT including the e-e interaction, whereas
σei(ω) is that of the Lorentz model neglecting e-e interactions.

B. Nondegenerate plasma with singly charged ions

Here we discuss results for the fully ionized hy-
drogen plasma (Z = 1) in the low-density limit, see
Refs. [27,34,37,43]. We introduce the plasma parameter

 = e2(4πne/3)1/3/(4πε0kBT ) and the electron degeneracy
parameter

� = 2mkBT

�2
(3π2ne)−2/3 (23)

as dimensionless parameters. Due to simple dependencies in
the low-density limit (
 � 1,� 	 1), the dc conductivity
σ (ne,T ) is traditionally also related to a dimensionless
function σ ∗(
,�) according to

σ (ne,T ) = (kBT )3/2(4πε0)2

m1/2e2
σ ∗(
,�). (24)

In the low-density limit, this function can be expressed as

σ ∗(
,�) = prefactor a

Coulomb logarithm L(
,�)
. (25)

Explicit expressions of the Coulomb logarithm L depend on
the treatment of the collision term, in particular the screening
and whether strong collisions have been taken into account,
see Refs. [27,34,37]. Different approximations and approaches
are summarized in Table I.
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TABLE I. Coulomb logarithm and prefactor in the low-density limit according to Eq. (25) for different approximations originally derived
via the Fokker-Planck equation (FP), the relaxation time approximation (RTA), or linear response theory (LRT). Collisions are treated in the
Born approximation (weak, B) or T matrix (strong, T).

Originally Prefactor a Coulomb

Notation Collisions derived by ei ei+ee logarithm

Spitzer [1] σ KT Strong FP 1.016 0.591 LSp

Brooks-Herring [44] σ Lorentz Weak RTA 1.016 – LBH

Ziman [3] σ Ziman Weak RTA 0.299 – LZi

Eq. (8), 1 moment σ (1),B Weak LRT 0.299 – LZi

Eq. (8), 2 moments σ (2),B Weak LRT 0.972 0.578 LZi

Eq. (8), 2 moments σ (2),T Strong LRT 0.972 0.578 LSp

KT for the fully ionized plasma in the high-temperature,
low-density limit leads to the Spitzer result [1] with the Spitzer
Coulomb logarithm

LSp(
) = 1
2 ln

(
3
2
−3), (26)

valid for 
2� 	 1 only. Strong collisions as well as e-e
collisions are taken into account. In contrast, the relaxation
time approximation allows one to derive analytical expressions
for 
2� � 1 in the case of the Lorentz plasma valid for
highly charged ions where collisions can be treated within
Born approximation. What follows is the Brooks-Herring
formula [44] with the Brooks-Herring Coulomb logarithm,

LBH(
,�) = − 1
2 ln(ζ ) − 1

2 (γ + 1) − ζ ln(ζ ) + . . . , (27)

where ζ = (2/3π2)1/3
/�, and γ = 0.577216 . . . is Euler’s
constant.

For completeness, we give the Ziman formula [3] that arises
from evaluating the force-force correlation function dei

ll′ (20),
calculating the Born approximation in the adiabatic and static
case. For the Coulomb logarithm we have

LZi = 3π1/2

4
�3/2

∫ ∞

0
dq q3fe(q/2)

∣∣∣∣ Vei(q)

εRPA
e (q,0)

∣∣∣∣2
ε2

0

e4
Sii(q) ,

(28)

containing the static ion-ion structure factor Sii(q). This
Coulomb logarithm is applicable for any degeneracy and leads
to the Brooks-Herring Coulomb logarithm in the low-density
limit (� 	 1,Sii(q) = 1).

Inspecting Table I, it is apparent that the known limiting
cases discussed above can be reproduced within gLRT. While
the one-moment approximation leads to the Ziman formula,
we conclude that the two-moment approach is already a
reasonable approximation to the prefactor a given by Spitzer. It
can be improved taking higher moments into account [30,36].

In any case, we find the low-density limit L = − 1
2 ln(n) +

O(n0), where the contributions O(n0) depend on the plasma
parameters and the approximation taken. Regardless of the
treatment of the collision integral, the conductivity is lower
if e-e collisions are taken into account. For the fully ionized
hydrogen plasma (Z = 1) in the low-density limit, we find the
correction factor (22)

RKT
ee = lim

�	1

σ KT

σ Lorentz
= 0.591

1.016
= 0.582, (29)

from the prefactors given in Table I. The prefactor aLorentz =
25/2π−3/2 ≈ 1.016 results from solving the Fokker-Planck
equation for the Lorentz model. The same prefactor is found
in the Brooks-Herring formula (27) using the relaxation time
ansatz. Thus, this result corresponds to the evaluation of the
conductivity according to version (ii) by taking into account
arbitrary numbers of moments.

The Ziman formula (28) with the prefactor aZiman =
3/[4(2π )1/2] ≈ 0.299 can be applied to the strongly de-
generate electron gas but is no longer exact for higher
temperatures. As discussed above, the force-force correlation
function [version (iii) in Sec. II C] in the Born approximation
cannot reproduce the details of the distribution function. The
inclusion of e-e scattering leads to the prefactor 0.591 in the
Spitzer formula (26); this result is reproduced starting from
Eq. (8). The convergence with increasing rank L is shown, for
instance, in Refs. [30,34,36]. We now compare the exact limit
Eq. (29) with the result using the prefactors in the two-moment
approach,

R(2)
ee = lim

�	1

σ
(2)
ei+ee

σ
(2)
ei

= 0.578

0.972
= 0.594. (30)

The two-moment approach with P1, P3 as relevant observ-
ables (i.e., particle current and energy current) allows for a
variational approach to the single-particle distribution function
working well for the low-density, nondegenerate limit. It will
be extended to arbitrary degeneracy in Sec. IV A.

C. The Kubo-Greenwood formula: DFT-MD calculations
of correlation functions in WDM

Recent progress in numerical simulations of many-particle
systems allows one to calculate correlation functions in WDM,
e.g., in planetary interiors [45]. In classical systems, MD
simulations have been performed for sufficiently large systems
using effective two-particle potentials in order to obtain
correlation functions that can be compared with analytical
results, see Refs. [31,46,47]. In WDM, it is inevitable to
allow for quantum effects and strong correlations in the
region where electrons are degenerate. This can be done, for
example, within MD simulations based on finite-temperature
DFT using Kohn-Sham (KS) single-electron states. To treat a
disordered system of moving ions in adiabatic approximation,
in addition to the general periodic boundary conditions for
the macroscopic system, the ion positions are fixed in a
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finite supercell (volume �c) at each time step so the KS
potential is periodic with respect to this supercell. We can
introduce Bloch states ukν(r) where k is the wave vector
(first Brillouin zone of the supercell) and ν is the band index.
Subsequently, the MD step is performed by moving the ions
according to the forces imposed by the electron system using
the Hellmann-Feynman theorem. This procedure is repeatedly
performed until thermodynamic equilibrium is reached. Then
physical observables such as the equation of state (pressure,
internal energy), pair distribution functions, and diffusion
coefficients can be extracted. In this way, the ion dynamics
is treated properly, allowing one to resolve even the collective
ion acoustic modes [48,49]. Furthermore, an evaluation of the
Kubo formula is possible for a number of snapshots of the
DFT-MD simulation; for details, see Refs. [20–23,50,51].

The DFT-MD method works very well for fairly high
density or coupling parameters, but the limiting case 
 � 1
and � > 1 has been addressed, too, see Refs. [52,53]. The
mean-field (Hartree) term contains the e-e interaction. It is
still an open question to what extent the e-e correlations in the
XC functional represent e-e collisions in this limit as discussed
above. The numerical results indicate that at least parts of the
e-e contributions are included.

The starting point for the calculation of the conductivity in
the DFT-MD method is the Kubo formula (5). The equilibrium
statistical operator ρ̂0 contains the Kohn-Sham Hamilton
operator ĤKS. The time dependence of the operators within
the Heisenberg picture in the correlation functions (4) is
treated as P̂(t − i�τ ) = e

i
�

(t−i�τ )ĤKS P̂e− i
�

(t−i�τ )ĤKS . Single-
electron states (ĤKS|kν〉 = Ekν |kν〉) are introduced, solving
the Schrödinger equation for a given ion configuration within
the KS approach. With the momentum operator (7) in sec-
ond quantization P̂ = ∑

kk′νν ′ 〈kν|p̂|k′ν ′〉â†
kν âk′ν ′ , the averages

with the equilibrium statistical operator are evaluated using
Wick’s theorem. From the Kubo formula (5), we find for the
real part of conductivity

Re σ KG
αβ (ω) = 2πe2

3�cm2ω

∑
kνν ′

〈kν|p̂|kν ′〉 · 〈kν ′|p̂|kν〉

× (fkν − fkν ′)δη(Ekν − Ekν ′ − �ω). (31)

Here a broadened δ function,

δη(x) = 1

π

η

x2 + η2
, (32)

is introduced and the matrix elements are given
by 〈kν|p̂|k′ν ′〉 = δk,k′[�kδν,ν ′ + 1

�c

∫
�c

d3ru∗
kν(r)(�/i)(∂/∂ r̂)

ukν ′(r)].
Extensive DFT-MD simulations have been performed, for

instance, for warm dense hydrogen [22,23,45] using up to
Nc = 512 atoms in a supercell (depending on the density)
and periodic boundary conditions so Nc discrete bands appear
in the electronic structure calculation for the cubic supercell.
Expression (31) has been evaluated numerically, where fkν =
f (Ekν) describes the occupation of the νth band, which
corresponds to the energy Ekν at k. Since a discrete energy
spectrum results from the finite simulation volume �c, the δη

function has to be broadened, see Appendix D, at least by

about the minimal discrete energy difference. An integration
over the Brillouin zone is performed by sampling special k
points, with a respective weighting factor W (k) [20,22]. The
imaginary part of the conductivity can be calculated using the
Kramers-Kronig relation.

The Kubo-Greenwood formula (31) takes adequately into
account e-i collisions via the interaction potential as well as the
ion-ion correlations via a structure factor. This way to treat the
e-i interaction makes the transition from WDM to solid-state
band structure calculations more consistent. Pseudopotentials
and ionic structure factors are correctly treated. The e-e
interaction is considered in the KS Hamiltonian in addition
to the mean-field (Hartree) term via the XC functional. Using
the representation by Bloch states |kν ′〉 which diagonalize the
KS Hamiltonian, the time dependence in the current-current
correlation function (31) is trivial leading to the δη function.
As shown in Appendix D, convergent results in the static case
can be obtained due to the broadening of the δη function (32).
It is not clear until now whether e-e collisions are rigorously
reproduced in this approach, and more detailed investigations
to solve this problem are planned for the future.

IV. RESULTS

A. The correction factor for arbitrary degeneracy

After discussing the correction factor (22) in the limit of
nondegenerate hydrogen-like plasmas, we give now results
for the static case Ree(ω = 0) = Ree for arbitrary degeneracy
that is relevant for WDM. Using the definition of the
renormalization functions r in the Drude-like expression (18),
we can express the static correction factor as

Ree = σei+ee

σei
= rei

rei+ee
, (33)

where rei+ee = r (2)(0) shall be calculated according to Eq. (19)
and for rei the e-e contributions are neglected. In general,
considering arbitrary degeneracy �, the result depends on
the plasma parameters T ,ne as well as the ion charge Z.
The correlation functions in Eq. (19) were calculated in
Born approximation. For the evaluation of the corresponding
integrals, see Appendix B. For easy access in any application
we give an expression which was fitted to the numerical data.
The following fit formula is valid in the temperature range
of T � 104 K up to temperatures where relativistic effects
need to be taken into account and free electron densities
ne � 1024 cm−3 with an error of less than 2%,

Ree(T ,�,Z) = 1 − A(Z) +
{

1

A(Z)
+ 1

0.75 B(Z)

× ln

(
1 +

[
e
− B(Z)

A(Z)

C(T ,Z)
�3/2

]0.75)}−1

+G(T ,Z)e− [ln(�)−M(T )]2

3 , (34)
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where we introduced the functions

A(Z) = 9
√

2

13(Z + √
2)

, (35)

B(Z) = 3{√2Z[67 + 39 ln(2)] + 56}
[13(Z + √

2)]2
≈ 21(19Z + 8)

[13(Z + √
2)]2

,

(36)

C(T ,Z) = eγ (1 + Z)

3π�

e2

4πε0

√
2m

kBT
≈150.13

1 + Z√
T [K]

, (37)

G(T ,Z) = 1

Z
[(0.044 ln(T [K]))3 − (0.0472 ln(T [K]))2

+ 0.0184 ln(T [K]) − 0.010], (38)

M(T ) = 6.0 − 2.5 ln(ln(T [K])), (39)

where γ is again Euler’s constant and � is defined in
Eq. (23). Instead of the density ne we use the electron
degeneracy parameter � in Eq. (34) that was designed using
the known limiting cases as discussed in Sec. III B. The
explicit dependence on temperature T and effective charge
Z in Eqs. (35)–(37) is based on the analytical result for the
classical behavior, see Appendix C, and the high-density limit
lim��1 Ree(T ,�,Z) = 1. Furthermore, we use a Gaussian-
like term in the fit in order to interpolate at arbitrary degeneracy
parameter �, with the functions given by Eqs. (38) and (39),
see Appendix C. The fit is valid not only for fully ionized
hydrogen but also for WDM with any effective ionization Z.

It should be mentioned that the general formalism is
valid also in partially ionized plasmas. Working with an
effective ionization is a quick option. Alternatively, for a
more sophisticated treatment, pseudopotentials between the
different components might be used and additional scattering
mechanisms with the neutral components have to be taken
into account. The effects of e-e collosions are relevant in the
low-density region where the short-range modifications of the
Coulomb potential leading to the pseudopotential are of less
importance. In this case, the evaluations can also be performed
for arbitrary e-i interaction and a corresponding modification
of the fit formula (34) can be derived.

Figure 1 shows the results for Z = 1 in dependence on the
density and temperature. The e-e interaction generally leads
to a reduction of the static conductivity which is expected due
to an additional scattering process. Also, this becomes less
relevant with increasing degeneracy due to the Pauli exclusion
effect. Figure 3 in Appendix C illustrates the results for Z = 2
and 3, respectively. With increasing effective charge, the e-e
correction factor becomes smaller.

Beside the comparison of the fit formula (34) with the
numerical results, Figs. 1 and 3 show the low-density limit
given by Spitzer, see Eq. (29), which would be reached at
very large values of � only. Also shown are approximations
proposed by Stygar et al. [11]

RStygar
ee (�,Z) = RKT

ee (Z) + 1 − RKT
ee (Z)

1 + 0.6 ln
(
1 + �

20

) , (40)

10-2 10-1 100 101 102 103 104

Θ

0.6

0.7

0.8

0.9
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R
ee

Spitzer
LRT
fit formula

Z = 1

Stygar
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4

5
6

log10(T[K]) 3

FIG. 1. (Color online) Correction factor Ree of the conductivity
due to e-e collisions as function of degeneracy parameter � at Z =
1 for different temperatures T = (103,104,105,106) K. Numerical
calculations (LRT, full lines) are compared with the fit formula (34)
(dot-dashed lines) and the approximations (40) of Stygar et al. [11]
and (41) of Fortov et al. [12] (dashed lines).

and Fortov et al. [12],

RFortov
ee (�,Z) = RKT

ee (Z) + 1 − RKT
ee (Z)√

1 + �2
, (41)

with the Spitzer values RKT
ee (Z = 1) = 0.582, see Eq. (29),

and RKT
ee (Z = 2) = 0.683, see Ref. [1]. The value RKT

ee (Z =
3) = 0.778 follows from the low-density limit 1 − A(Z) in
Eq. (34). The phenomenologically constructed approximations
of Fortov et al. and Stygar et al. do not include an explicit
dependence on T . The Stygar et al. expression gives the
behavior in the low-density limit qualitatively correct, whereas
the behavior in the region of strong degeneracy is better
described by that of Fortov et al. [12]. A numerical analysis of
the correction factor using gLRT has already been presented
by Adams et al. in Ref. [13] but no fit formula was given.

The inclusion of further effects such as dynamical screen-
ing, ion-ion structure factor, and strong collisions (see
Refs. [34,35,37,38,54]) requires more detailed investigations.
However, these effects are of less relevance for the correction
due to e-e collisions, in both the high-density and low-density
limits. In the latter case, corrections appear only in higher
orders of the virial expansion. Dynamical screening can be
taken into account approximatively by an effective screening
radius, see Refs. [38,55], but affects the correction factor by
less than 2%.

B. The contribution of e-e collisions

The discussion on the inclusion of e-e collisions in the
case of DFT simulations is still ongoing. However, this is
crucial when comparing different approximations, as will be
seen in the following subsection. Here we want to respond to an
argumentation given by Dharma-wardana in Ref. [4]. Using the
relaxation time approach, the single-center T matrix combined
with a total ion-ion structure factor derived from quantum HNC
was calculated. Comparison with data for aluminum and gold
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]

QMD (Desjarlais et al.)
RTA (Dharma-wardana)
exp. (DeSilva, Katsouros)
exp. (Clérouin et al.)
effect of e-e collisions
Θ = 1 

T1=10 000 K

T2=30 000 K

T1 T2

FIG. 2. (Color online) Aluminum dc conductivity as function of
density for 10 000 K (blue) and 30 000 K (red). Experiments
were performed by DeSilva and Katsouros [57] (triangles) and
Clerouin et al. [56] (stars) for which regression curves are given
by dashed-dotted lines (green). The DFT-MD results of Desjarlais
et al. [20] are shown as hollow circles on dashed lines. Calculations
of Dharma-wardana [4] based on the relaxation time approximation
(RTA) are given as crosses. Degeneracy effects become important
right to the vertical dotted lines (� = 1). Solid lines (green) show
the conductivity of a hypothetical Lorentz plasma, obtained by
extracting the e-i scattering contributions from the regression curve
(dashed-dotted line) according to the correction factor Ree, Eq. (34),
for the given densities and temperatures.

show good coincidence in the region of a degenerate electron
system. Here Fermi’s golden rule and the relaxation time ansatz
are justified, which follows from our discussion as well.

A more general discussion in Ref. [4] on the role of
e-e interaction for the electrical conductivity argues that
no resistivity can be observed because the total current is
conserved under e-e interaction. This seems trivial. However,
it is not accurate to conclude that this is also the case in the
general case of a two-component plasma. There is an indirect
influence via the screening of the electron-ion pseudopotential

interaction that arises within a mean-field treatment. Even
more, those collisions are entropy producing. The umklapp
processes in crystalline solids [26] are not relevant in a
plasma since there is no long-range order. It is correct that the
interaction with the ion subsystem is necessary to obtain any
change in the total electron current, but it cannot be said that e-e
interactions play no part in the static or dynamic conductivity
at all.

The Spitzer result takes into account the contribution
of e-e collisions to the conductivity. This is due to the
flexibility of the single-momentum distribution f (p) that is
sensitive to the contribution of e-e collisions. The same is also
obtained introducing moments of the distribution function as
done in the variational approach [34,35]. It is claimed and
generally accepted that the Spitzer result is the benchmark
for the low-density limit of a classical plasma. In contrast,
the conclusion drawn in Ref. [4], that this does not establish
the validity of results of the Spitzer type, is not convincingly
justified. The other main argument is that good agreement
between experimental data and calculations neglecting e-e
contributions shows that the direct role of e-e interactions,
taken for granted in the plasma literature, needs to be seriously
reconsidered. We have shown that it is the particular case
of highly degenerate WDM states where the contribution of
e-e collisions to the conductivity becomes small indeed. This
can readily be seen from the correction factor Ree(�) that
approaches the value 1 for � � 1.

C. Conductivity of aluminum plasma

The static electrical conductivity of Al plasma has been
investigated experimentally by a number of groups, see,
e.g., Refs. [56–58], and also been discussed in the context
of theoretical approaches, see Kuhlbrodt et al. [59–61] and
references therein and Refs. [4,20,21,56]. For example, we
consider experimental data that were theoretically analyzed
by Desjarlais et al. [20], see also Ref. [21], using the Kubo-
Greenwood formula (31). The results for the dc conductivity
are shown in Fig. 2. The dotted lines indicate the density for
which � = 1, i.e., degeneracy effects are important to the right
of these lines.
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0.8

0.9
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Fortov
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10-2 10-1 100 101 102 103 104
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Spitzer
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Z = 3
log10(T[K])
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6
5

4
3

Fortov

FIG. 3. (Color online) Correction factor Ree of the conductivity due to e-e collisions as function of the degeneracy parameter � for Z = 2
(left panel) and Z = 3 (right panel) for different temperatures T = (103,104,105,106) K; same notation as in Fig. 1.
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For solid-state densities, the electron system is degenerate
(� < 1, region right to the dotted lines) and the correction
factor is Ree ≈ 1 there, see Figs. 1 and 3. The conductivity
is essentially determined by the e-i interaction, whereas the
e-e interaction does not give a direct contribution but influ-
ences the e-i pseudopotential due to screening and exchange
interactions. In this region, excellent agreement between the
measured data [56,57] and the DFT-MD simulations using the
Kubo-Greenwood approach [20] can be stated. Evaluations
based on gLRT yield also the correct qualitative behavior in
this region but depend on the choice for the screening function
and the ion-ion structure factor [59–61], see Eq. (28).

At low densities, the aluminum plasma is at conditions
where � > 1 so the plasma is no longer degenerate. In this
region, the correction factor is Ree < 1, see Figs. 1 and 3,
so e-e collisions contribute to the conductivity. In order
to illustrate the influence of e-e collisions, we propose the
following procedure. Dividing the measured values by the
correction factor Ree, Eq. (34), yields the contribution of the e-i
collisions to the conductivity, thus giving simultaneously an
estimate for the effect of e-e collisions. To apply the correction
factor the charge state Z has to be specified. We use the
ionization degree calculated from coupled mass action laws,
see Refs. [54,57]. For the temperature of 30 000 K, at the
densities considered here a value Z ≈ 1 has been given. It
was also found that at 10 000 K the ionization degree is much
lower in this low-density region. The calculated average charge
state of Z ≈ 0.1 indicates that at most 1/10 of the Al atoms
are ionized, and, correspondingly, the free electron density
ne = nion ≈ natom/10 is also reduced. Besides the reduced
number of charge carriers, an additional scattering contribution
on the neutral atoms leads to a further reduction of the the
electrical conductivity, as was shown in Refs. [59–61]. Within
a partially ionized system this may become the stronger effect
than that of e-e collisions. This might well justify taking the
e-e contribution into account via the correction factor instead
of an explicit numerical calculation.

Please note that the electrical conductivity in this partially
ionized, nondegenerate region � > 0 and 
 < 1 strongly
depends on the ionization degree of the plasma and the
effective interaction between the electrons, ions, and neutral
atoms. The calculation of corresponding mass action laws and
two-particle potentials is the main problem in this region which
has been addressed in chemical models, see Refs. [59–61].
Applying DFT-MD simulations in this low-density region
is a challenge since most of the DFT codes are based
on plane-wave expansions which become computationally
expensive there. Furthermore, the XC functional has to be
chosen such that the correct band-gap (ionization energy) is
reproduced. Standard XC functionals, such as given by Perdew
et al. [62], underestimate the band gap systematically [63] so,
e.g., hybrid functionals [64] have to be applied. These issues
are the subject of future work. Finally, the general applicability
of linear response theory and the Kubo-Greenwood formula
under the conditions of the experiments should be considered.
In the low-density region the relaxation of the system to a
stationary state near thermodynamic equilibrium is slow when
the thermodynamic parameters are changing with time. In the
case of strong fields the linear response might not be valid any
more.

V. CONCLUSIONS

We conclude that e-e collisions have to be included in the
low-density, nondegenerate region of WDM. Compared with
calculations of the dc conductivity that take into account only
e-i collisions, such as the use of the relaxation time ansatz,
the contribution of the e-e collisions can be represented by a
correction factor Ree that depends mainly on the degeneracy
parameter �. In the case of a strongly degenerate electron gas
(� � 1), the contribution of e-e collisions can be neglected
since only umklapp processes are of relevance in solids. In
the nondegenerate limit � 	 1, the e-e collisions lead to a
reduction of the dc conductivity by a factor of about 0.5 for
Z = 1. With increasing Z the reduction becomes less relevant
leading to the Lorentz plasma result for Z 	 1.

The generalized linear response theory allows one to evalu-
ate the transport coefficients of WDM in a wide region, joining
the limits of strong degeneracy known from liquid metals and
of low densities as known from standard plasma physics. The
present work considers free electrons interacting with ions
having an effective charge Z. The fit formula given in Sec. IV A
to calculate the influence of e-e collisions on the conductivity
allow one for a better implementation in codes and other
applications. Besides the dc conductivity considered in this
work, the investigation of further thermoelectric transport
coefficients is currently of high interest, see Refs. [32,33].

Future work will be concerned with the frequency depen-
dence of the correction factor Ree. While it was already shown
numerically in Ref. [17] that the renormalization function is
not relevant in the high-frequency limit, lim(ωpl/ω)→0 r(ω) = 1,
the intermediate-frequency region has to be investigated for
any degeneracy.

The implementation of pseudopotentials and the ion-ion
structure factor become relevant with increasing free electron
density. However, at high densities, the influence of the
renormalization function is fading, r(ω) → 1. Therefore these
effects are of high relevance for the e-i collisions determining
the collision frequency νZiman but barely relevant for the
correction factor Ree.

Another issue is the composition of WDM in the low-
density, low-temperature limit where a chemical model is
applicable. The ionization degree and composition are derived
from a mass action law that gives the effective charge Z in
dependence of temperature T and ion density nion. In par-
ticular, for the partially ionized plasma, additional scattering
with neutrals will reduce the conductivity at low temperatures
considerably. The effect of e-e collisions is more visible in
the high-temperature region, also at moderate density, where
neutrals are less abundant and cannot cloud the picture. Further
work is necessary in order to relate predictions of chemical
models to those based on DFT and to clarify the role of e-e
collisions within DFT-MD in the low-density limit.
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APPENDIX A: GENERALIZED LINEAR
RESPONSE THEORY

In the case of a charged particle system considered here,
described by the Hamiltonian Ĥ , under the influence of an ex-
ternal field, ĤF(t) = −er̂Eext(t), the nonequilibrium statistical
operator has to be determined. Following Zubarev [35,65–67],
one starts with a relevant statistical operator

ρ̂rel(t) = 1

Zrel(t)
e−β(Ĥ−μN̂)+∑

l Fl (t)B̂l ,

Zrel(t) = Tr{e−β(Ĥ−μN̂)+∑
l Fl (t)B̂l }, (A1)

as a generalized Gibbs ensemble which is derived from the
principle of maximum of the entropy. This relevant distribution
is characterized by a set of relevant observables {B̂l} chosen in
addition to energy Ĥ and number of particles N̂ . The Lagrange
parameters β,μ,Fl(t), which are real valued numbers, are
introduced to fix the given averages

Tr{B̂l ρ̂(t)} = 〈B̂l〉t = Tr{B̂l ρ̂rel(t)}. (A2)

These self-consistent conditions ensures that the observed
averages 〈B̂l〉t are exactly reproduced by the Hermitian ρ̂rel(t).
Similar relations are used in equilibrium to eliminate the
Lagrange parameters β and μ. Starting with the relevant
statistical operator, the stationary nonequilibrium state is
formed dynamically, and this process converges faster the
more relevant observables B̂l are included to characterize the
initial state. The selection of the set of relevant observables
has no influence on the result if the calculations are performed
rigorously but will influence the result if approximations such
as perturbation expansions are performed.

In linear response, the response parameters Fl(t) are con-
sidered to be small so we can solve the implicit relation (A2).
The response parameter are determined after expanding up to
the first order with respect to the external field Eext(ω) (we
consider a homogeneous field, e.g., zero wave vector) and the
response parameters Fl , where Fl(t) = Re{Fle

−iωt }. We arrive
at the response equations [17]∑

l′
[(B̂l ;

˙̂Bl′) + 〈 ˙̂Bl ;
˙̂Bl′ 〉z − iω{(B̂l ; B̂l′) + 〈 ˙̂Bl ; δB̂l′ 〉z}]Fl′

= β
e

m
{(B̂l ; P̂) + 〈 ˙̂Bl ; P̂〉z} · Eext(ω), (A3)

with z = ω + iη (limη→+0) and the Laplace transform of
the correlation functions, Eq. (4). The time derivative of
the position operator in ĤF (t) leads to the total momentum
P̂ = ∑

p p n̂p and subsequently to the right-hand side of
Eq. (A3).

Considering L relevant observables δB̂l = B̂l − Tr{B̂lρ0},
Eq. (A3) is a system of L linear equations to determine the
response parameters Fl for a given external field Eext(ω). It
is the most general form of LRT, allowing for an arbitrary
choice of relevant observables B̂l and corresponding response
parameters Fl . Comparing with kinetic theory [17], the first
correlation function on the left-hand side can be identified as
a collision term, while the right-hand side represents the drift
term due to the external perturbing field.

The set of relevant observables B̂l to characterize the
nonequilibrium state can be chosen arbitrarily, and the calcu-
lated nonequilibrium properties are independent on this choice
provided no approximations like perturbation expansions are
performed. At least the set of relevant observables B̂l should
contain conserved quantities that determine the equilibrium
state. Conveniently, also long-living fluctuations in the system
that are hardly produced by the dynamical evolution (such
as bound state formation) should be taken into account.
Otherwise, a perturbation expansion is converging only slowly.
Different expressions and results can be understood as approx-
imations, working in a Markov approximation and describing
the system on different levels of sophistication. Results that
are obtained in lowest order are improved summing up (some-
times divergent) terms that occur in higher-order perturbative
expansions. Alternatively, we can suggest different choices of
the set of relevant observables B̂l like a variational approach
(Kohler variational principle), see Ref. [17].

Starting with the occupation numbers n̂p of the single-
particle states |p〉 as set of relevant observables B̂l , we arrive
at the generalized linear Boltzmann equations [17] (δ ˙̂np = ˙̂np)∑

p′
[(δn̂p, ˙̂np′ )+〈 ˙̂np; ˙̂np′ 〉z−iω{(δn̂p,δn̂p′ )+〈 ˙̂np;δn̂p′ 〉z}]Fp′

= e

m
β

∑
p′′

[(δn̂p,n̂p′′ ) + 〈 ˙̂np; n̂p′′ 〉z]p′′ · Eext(ω). (A4)

This is the basic equation to work out the linear response
approach given in Sec. II A.

APPENDIX B: CALCULATION AND SIMPLIFICATION OF THE CORRELATION FUNCTIONS, EQS. (20) AND (21)

The expression (20),

dei
ll′ = π�Z22(2si + 1)

∑
kpq

∫ ∞

−∞
d�ω

∣∣∣∣ V (q)

εRPA(q,ω)

∣∣∣∣2

f e
k

(
1 − f e

|k+q|
)
f i

p

(
1 − f i

|p−q|
)

× δ
(
�ω − Ee

|k+q| + Ee
k

)
δ
(
�ω − Ei

p + Ei
|p−q|

)
Kl(k,q)Kl′ (k,q), (B1)

is evaluated by performing the integral over �ω. In the resulting δ function that describes energy conservation, we can neglect the
ionic contributions because of the large mass ratio (adiabatic limit, elastic collisions of the electrons at the fixed ions). The ions
are treated classically, and the summation over p and spin summation gives simply (2si + 1)

∑
p f i

p = nion� = Nion, the number
of ions. In particular,

dei
11 = 2π�Z2nion�

∑
kq

[
e2

ε0�(q2 + κ2)

]2

f e
k

(
1 − f e

|k+q|
)
δ
(
Ee

k − Ee
|k+q|

)
q2

z , (B2)
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or with q2
z → q2/3 and transforming the δ function

dei
11 = e4

(4πε0)2

32π2

3
π�Z2nion�

4π 2π

(2π )6

∫ ∞

0
dq

q4

(q2 + κ2)2

∫ ∞

0
dk k2 f e

k

(
1 − f e

k

) ∫ 1

−1
dz δ

(
z + q

2k

) m

�2kq
. (B3)

Now the integral over z can be performed so k � q/2, and we transform the k integral as k dk = dk2/2 = d(βEk)m/(�2β) (note
that the superscript e for electrons is omitted throughout the rest of this appendix),

dei
11 = e4

(4πε0)2

4

3π2
π�Z2nion�

m

�2

∫ ∞

0
dq

q3

(q2 + κ2)2

(
− m

�2β

) ∫ ∞

β�2q2/(8m)
d(βEk)

d

d(βEk)

1

eβEk−βμid
e + 1

, (B4)

so the integral over k is performed,

dei
11 = e4

(4πε0)2

4

3π2
π�Z2nion�

m2

�4β

∫ ∞

0
dq

q3

(q2 + κ2)2

1

eβ�2q2/(8m)−βμid
e + 1

(B5)

or, using dimensionless Q =
√

β�2q2/m,

dei
11 = Zd

2

ne�3
e

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2

1

eQ2/8−α + 1
, (B6)

with α = βμid
e , the thermal wavelength �e [see below Eq. (21) in Sec. III A] and the prefactor

d = 4

3
(2π )1/2Z2n2

ion�m1/2β1/2 e4

(4πε0)2
. (B7)

In analogy to Eq. (B6) we now calculate the correlation functions (B1) with higher moments. With K1(k,q) = −qz, K3(k,q) =
−qz(βEk), and replacing (βEk) → x we find

dei
ll′ = Zd

2

ne�3
e

∫ ∞

0
dQ

Q3

(Q2 + �2β

m
κ2)2

Sll′ (Q), (B8)

with

S11(Q) = 1

eQ2/8−α + 1
,

S13(Q) = S31(Q) = Q2/8

eQ2/8−α + 1
+

∫ ∞

Q2/8
dx

1

ex−α + 1
,

S33(Q) = Q4/64

eQ2/8−α + 1
+ 2

∫ ∞

Q2/8
dx

x

ex−α + 1
.

We evaluate the e-e correlation functions, Eq. (21), in the lowest nonvanishing order. Because of total momentum conservation,
dee

11 = dee
13 = 0. The first and only correlation function within two-moment approach is

dee
33 = 2πβ2

�

∑
kpq

∫ ∞

−∞
d�ω

∣∣∣∣ V (q)

εRPA(q,ω)

∣∣∣∣2

f (Ek)[1 − f (Ek + �ω)]f (Ep)[1 − f (Ep − �ω)]

× δ(�ω − E|k+q| + Ek)δ(�ω − Ep + E|p−q|)[kzEk − (kz + qz)(Ek + �ω) + pzEp − (pz − qz)(Ep − �ω)]2. (B9)

The dynamically screened Coulomb potential will be replaced by the static Debye potential, see Sec. III A. The effect of dynamical
screening that leads to the Lenard-Balescu expression for the conductivity has been discussed elsewhere [34]. For the evaluation,
using spherical coordinates, we obtain

dee
33 = β2

�
2π�3

3(2π )9

∫
d3q

∫ ∞

−∞
d�ω

∫
d3p

∫
d3k

∣∣∣∣ e2

ε0�(q2 + κ2)

∣∣∣∣2

f (Ek)[1 − f (Ek + �ω)]f (Ep)[1 − f (Ep − �ω)]

× δ

(
�ω − �

2kq cos θk

m
− �

2q2

2m

)
δ

(
�ω − �

2pq cos θp

m
+ �

2q2

2m

)
× [q2(Ep − Ek)2 + 2q · (p − k − 2q)(Ep − Ek)�ω + (p − k − 2q)2

�
2ω2]. (B10)

The angles between the q direction and the direction of k or p are denoted by θk and θp, respectively.
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The square brackets written in spherical coordinates are(
�

4

4m2
q2(p2 − k2)2 + �

2

m
(pq cos θp − qk cos θk − 2q2)(p2 − k2)�ω + {p2 + k2 + 4q2 − 4pq cos θp + 4kq cos θk − 2pk

× [cos θp cos θk + sin θp sin θk(cos φp cos φk + sin φp sin φk)]�2ω2}
)

. (B11)

The last parentheses can be rewritten as cos φp cos φk + sin φp sin φk = cos(φp − φk). φp − φk can be introduced as new variable,
the integral vanishes. We are left with

dee
33 = β2

�
4π�

3ε2
0 (2π )6

m2

�4

∫ ∞

0
dq q2

∫ ∞

−∞
d�ω

∫ ∞

0
dk k2

∫ 1

−1
dzk

∫ ∞

0
dp p2

∫ 1

−1
dzp

e4

(q2 + κ2)2

× f (Ek)[1 − f (Ek + �ω)]f (Ep)[1 − f (Ep − �ω)]
1

kq
δ

(
zk + q

2k
− mω

�kq

)
1

pq
δ

(
zp − q

2p
− mω

�pq

)

×
[
q2 �

4

4m2
(p2 − k2)2 + 2(qpzp − qkzk − 2q2)

�
2

2m
(p2 − k2)�ω + (p2 + k2 + 4q2 − 4pqzp + 4kqzk − 2pkzpzk)�2ω2

]
.

(B12)

Introducing dimensionless variables Q as defined above and x = √
βEk, y = √

βEp, ω = νQ/(β�), and performing the integrals
over zp,zk , we have

dee
33 = 16πe4�m7/2

3ε2
0 (2π )6β5/2�6

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2

∫ ∞

−∞
dν

∫ ∞

|ν−Q/2|/√2
dx x

∫ ∞

|ν+Q/2|/√2
dy y

× 1

ex2−α + 1

1

1 + e−x2−νQ+α

1

ey2−α + 1

1

1 + e−y2+νQ+α

×
[

(y2 − x2)2 − 2(y2 − x2)νQ + 2(y2 + x2)ν2 − 4

(
ν2

2
− Q2

8

)
ν2

]
. (B13)

Now we substitute x2 = x̂ + ν2/2 − νQ/2 + Q2/8, y2 = ŷ + ν2/2 + νQ/2 + Q2/8, thus shifting the lower bound of the x

and y integral to zero. In general, the final expression

dee
33 = d√

2π

2

n2
e�

6
e

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 f ee
33 (α,Q) with

f ee
33 (α,Q) =

∫ ∞

−∞
dν

∫ ∞

0
dx̂

∫ ∞

0
dŷ[(ŷ − x̂)2 + 2ν2(ŷ + x̂)]

1

ex̂+ν2/2−νQ/2+Q2/8−α + 1

× 1

1 + e−x̂−ν2/2−νQ/2+α−Q2/8

1

eŷ+ν2/2+νQ/2+Q2/8−α + 1

1

1 + e−ŷ−ν2/2+νQ/2+α−Q2/8
, (B14)

is evaluated numerically. For the classical limit an analytical expression can be given, see Appendix C.

APPENDIX C: CORRELATION FUNCTIONS IN THE CLASSICAL LIMIT AND CONSTRUCTION OF A FIT FORMULA

Expressions for the correlation functions derived in Appendix B are further analyzed in the limit of nondegeneracy. We
introduce integrals of the form:

J1,b =
∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2

1

eQ2/8−α + 1

(
Q2

8

)b

, (C1)

J2,b =
∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2

∫ ∞

0
dx

(x + Q2/8)b

ex+Q2/8−α + 1
, (C2)

J3 =
∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 f ee
33 (α,Q), (C3)
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For the correlation functions, Eqs. (B8) and (B14), we find:

d11

�
= Zd

2

ne�3
e

J1,b=0, (C4)

d13

�
= Zd

2

ne�3
e

(J1,b=1 + J2,b=0), (C5)

dei
33

�
= Zd

2

ne�3
e

(J1,b=2 + 2J2,b=1), (C6)

dee
33

�
= d√

2π

2

n2
e�

6
e

J3. (C7)

In the classical limit [α � 0, κ2 ≈ κ2
D = β(1 + Z)nee

2/ε0] the integrals yield

J1,b = eα

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 e−Q2/8

(
Q2

8

)b

= eα

{− 1
2 Ei(−k̃2) b = 0

1
2 b = 1; 2

, (C8)

J2,b=0 = eα

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 e−Q2/8 = J1,b=0, (C9)

J2,b=1 = eα

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 e−Q2/8

(
Q2

8
+ 1

)
= J1,b=0 + J1,b=1, (C10)

J3 = e2α

∫ ∞

0
dQ

Q3(
Q2 + �2β

m
κ2

)2 e−2Q2/8
∫ ∞

−∞
dν

∫ ∞

0
dx̂

∫ ∞

0
dŷ e−x̂−ŷ−ν2

[(ŷ − x̂)2 + 2ν2(ŷ + x̂)]︸ ︷︷ ︸
4
√

π

, (C11)

= −4
√

πe2α 1

2
Ei(−2k̃2) = −4

√
πe2α

[
1

2
Ei(−k̃2) + ln(2)

2

]
, (C12)

with the coefficient k̃2 = k̃2(α) = �
2β

8m
κ2

D = (1+Z)e2

16π2�ε0
eα

√
2πm
kBT

, the exponential integral Ei(x) = − ∫ ∞
−x

e−t

t
dt = γ + ln |x| + O(x),

and γ as Euler’s constant, see Sec. III B. The term in order of k̃2 is neglected, we approximate Ei(−k̃2) ≈ γ + ln | − k̃2|, and
therefore Ei(−2k̃2) ≈ Ei(−k̃2) + ln(2). We obtain for the fractions of correlation functions:

N13

N11
= 5

2
, (C13)

d13

d11
= 1 − 1

Ei(−k̃2)
, (C14)

dei
33

d11
= 2 − 3

Ei(−k̃2)
, (C15)

dee
33

d11
=

√
2

Z

[
1 + ln(2)

Ei(−k̃2)

]
. (C16)

For the renormalization functions (19) in the two-moment approximation in the classical case we find

rcl
ei (α) = 4

13
− 84

169

1

Ei(−k̃2)
+ O

[
1

Ei(−k̃2)

]2

, (C17)

rcl
ei+ee(α) = 4(Z + √

2)

13Z + 4
√

2
+ 12Z[

√
2(ln(8) − 4) − 7Z]

(13Z + 4
√

2)2

1

Ei(−k̃2)
+ O

[
1

Ei(−k̃2)

]2

, (C18)

for the Lorentz plasma and the plasma with e-e correlations, respectively. The correction factor (33) is then given as

Rcl
ee(α) = rei(α)

rei+ee(α)
(C19)
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= 1 − 9
√

2

13(
√

2 + Z)
− 3{√2Z[67 + 39 ln(2)] + 56}

169(Z + √
2)2

1

Ei(−k̃2)
+ O

[
1

Ei(−k̃2)

]2

. (C20)

Instead of the degeneracy α the correction factor can be rewritten as a function of the degeneracy parameter �,

Ree(� 	 1) = 1 − A(Z) + B(Z)

[
ln

1

C(T ,Z)
�3/2

]−1

, (C21)

because of α ≈ ln( 4
3
√

π
�−3/2) in classical regimes. The functions A(Z), B(Z), and C(T ,Z) are given in Eqs. (35)–(37).

In the classical limit, the asymptotic behavior of the correction factor with respect to the temperature is given analytically with
Eq. (C21). In the degeneracy limit (α 	 0, � � 1), the correlation function dee

33 = 0, so the correction factor Ree = 1. Therefore
we construct a fit function Ree in which the analytical classical result goes to 1 for high degeneracy, see the first three terms of
Eq. (34) in relation to Eq. (C21). Equation (34) includes a fit coefficient a which does not affect the classical limit and can be
used for a better adjustment in the intermediate range. Finally, the discrepancy between our fit formula and numerical results was
reduced by a Gaussian-like term, see the last term of Eq. (34).

The fit formula Eq. (34) for the correction factor Ree is now compared with the numerical evaluation using the expressions
for the correlation functions according to (B8) and (B14) in Appendix B in Figs. 1 (Z = 1) and 3 (Z = 2,3).

APPENDIX D: BROADENING OF THE δ FUNCTION

Another topic is the broadening of the δ function to make a smooth transition in the static case (ω → 0). For the application
of the Kubo-Greenwood formula given as Eq. (31), Mazevet et al. [21] pointed out: “In practice, because of the finite simulation
volume and resulting discrete eigenvalues, the δ function must be broadened. We use a Gaussian broadening of the δ-function
that is as small as feasible without recovering the local oscillations in the optical conductivity resulting from the discrete band
structure.”

To discuss expression (31), we consider a finite value for η,

δη(z) = η

η2 + z2
. (D1)

The finite width of the δ function can be interpreted as an additional damping to overcome the level spacing due to the finite
volume with periodic boundary conditions. The limit η → 0 can be taken only in the final expressions, summing up all orders of
perturbation expansion. Expanding with respect to interaction V̂ , the van Hove limit (V̂ 2/η → 0) has to be taken, see Ref. [41].
Therefore, for finite η a perturbation expansion of (31) can be performed.

With the perturbation expansion

〈k1|p̂|k2〉 = �k1δk1,k2 + 〈k1|V̂ |k2〉
E1 − E2

(�k1 − �k2) (D2)

we have with k2 = k1 + q and 〈k1|V̂ |k2〉 = Vq

Re σ KG(0) = πe2
�

3m2�

∑
k,q

∂f (Ek)

∂Ek

(
kδq,0 + Vq

Ek − Ek+q

q + . . .

)2
η

η2 + (Ek − Ek+q)2
. (D3)

Considering the screened interaction with uncorrelated ions in the nondegenerate case, V 2
q = NionZ

2e4/[ε0�(q2 + κ2)]2, Eq. (D3)
leads to

Re σ KG(0) = πe2
�β

3m2

∫
d3k

(2π )3
f (Ek)

{
k2 1

η
+

∫
d3q

(2π )3

nionZ
2e4

[ε0(q2 + κ2)]2(Ek − Ek+q)2
q2 η

η2 + (Ek − Ek+q)2
+ . . .

}
. (D4)

Before the last term is reinterpreted as a δ function, we estimate the denominator Ek − Ek+q by the broadening parameter η of
the δη function so

Re σ KG(0) = πe2
�β

3m2

∫
d3k

(2π )3
f (Ek)k2τKG(k) + . . . (D5)

with

τKG(k) = 1

η
+ 1

k2

∫
d3q

(2π )3

nionZ
2e4

[ε0(q2 + κ2)]2(Ek − Ek+q)2
q2 η

η2 + (Ek − Ek+q)2
+ . . .

= 1

η
+ 1

k2

nionZ
2e4

ε2
0

∫ ∞

0

dq

(2π )2

q4

(q2 + κ2)2

(
m

�2kq

)3 ∫ 1

−1
dz

ηm/kq

(ηm/kq)2 + (z + q/2k)2

1

(z + q/2k)2
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= 1

η
+ 1

k2

nionZ
2e4

ε2
0

∫ ∞

0

dq

(2π )2

q4

(q2 + κ2)2

(
m

�2kq

)3
[

�
2kq

ηm

2

1 − (q/2k)2
+ π

(
�

2kq

ηm

)2
]

= 1

η
+ 1

η2

1

k3

nionZ
2e4mπ

ε2
0�2

∫ 2k

0

dq

(2π )2

q3

(q2 + κ2)2
+ O

(
e4

η

)
. (D6)

In principle, one has to sum the leading divergent terms ∝ (1/η)(e4/η)n. We give here only the first contributions,

1

η
+ 1

η2
A + · · · = 1

η

[
1 + 1

η
A + . . .

]
= 1

η

1

1 − 1
η
A + . . .

. (D7)

Now the limit η → 0 can be performed with the result −1/A.
For comparison, see Ref. [17], with the golden rule for the transition rates and S(q) ≈ 1 → |Vei(q)|2 ≈ V 2

q , the energy-
dependent relaxation time can be calculated

1

τk

= −2π

�

∑
q

V 2
q δ(Ek − Ek+q)

E · q
E · k

. (D8)

The q integral in Eq. (D8) can be performed using spherical coordinates where k is in z direction, E in the x − z plane. It is
convergent only in the case of a screened Coulomb potential. Using the statically screened Debye potential Vq = e2/{ε0�0(q2 +
κ2

D)} , κ2
D = βnee

2/ε0, we find the energy-dependent collision frequency

νk = τ−1
k = ne

Ze4

4πε2
0

m

�3k3

(
ln

√
1 + b − 1

2

b

1 + b

)
, (D9)

with b = 4k2/κ2
D in the Coulomb logarithm. The static conductivity is determined as

σ Lorentz
dc = e2

�
2

m2
β

1

�0

∑
k

k2
E τk fk(1 − fk) = ε0ω

2
plτ

Lorentz = e2ne

m νLorentz
. (D10)

We introduce the average relaxation time τLorentz and the static collision frequency νLorentz = 1/τLorentz. The approach can also
be applied for a pseudopotential describing the e-i interaction and an ion structure factor describing the ion configuration. The
Lorentz model is solved if using the relaxation time ansatz. It corresponds to the Brooks-Herring result where the semiconductor
conductivity for the screened electron-hole interaction is considered.
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