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Resolving structural transitions in spherical dust clusters
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Finite systems in confining potentials are known to undergo structural transitions similar to phase transitions.
However, these systems are inhomogeneous, and their “melting” point may depend on the position in the trap
and vary with the particle number. Focusing on three-dimensional Coulomb systems in a harmonic trap a rich
physics is revealed: in addition to radial melting we demonstrate the existence of intrashell disordering and
intershell angular melting. Our analysis takes advantage of a novel melting criterion that is based on the spatial
two- and three-particle distribution functions and the associated reduced entropy which can be directly measured
in complex plasma experiments.
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I. INTRODUCTION

Sudden changes of the properties of a many-particle system
upon continuous change of its parameters are among the most
fascinating phenomena in nature. Such phase (or structural)
transitions have been discovered not only in physics but also
in chemistry, biology, and even social systems. Experimental
detection or theoretical prediction of the transition point and
analysis of its properties (such as the critical exponents; e.g.,
Ref. [1]) is of fundamental importance for understanding the
underlying physics and common features in, possibly, entirely
different systems. In macroscopic systems suitable quantities
to pinpoint the phase transition are based on the free energy, on
energy fluctuations (heat capacity, cV ), or on particle position
fluctuations (e.g., the Lindemann criterion). Microscopic ap-
proaches link the melting point to the interparticle correlations
in the system, e.g., to a characteristic peak height of the static
structure factor [2] or a jump of the first peak height of the
pair distribution function [3]. As a Lindemann-like melting
criterion, the fluctuations of the bond length can quantify the
level of rigidity in a finite cluster [4]. Other concepts are based
on transport properties such as diffusion [5].

While phase transitions pertain to macroscopic systems
only, solidlike or liquidlike behavior has been observed in
finite systems containing as few as 10 particles, e.g., in
quantum dots [6,7], ions in traps [8], dusty plasma crystals
[9], atomic clusters [10,11], and polymers [12]. The notion
of liquid and solid “phases” has been used successfully to
characterize qualitatively different behaviors which resemble
the corresponding properties in macroscopic systems; for a
further discussion, see Ref. [13].

The melting process is much more complex in finite
systems that have been attracting growing interest in recent
years: interfaces [14], two-dimensional layers [15–17], gas
or metal clusters [18,19], trapped ions [8], ultracold atoms
or molecules in traps, dust [4,20,21], or colloidal clusters
[22], or electrons in quantum dots [7,23]. Metal clusters
have been subject to several experimental studies [24–26],
theoretical works [27,28], and numerical simulations [29,30].
A concordant result is that the stability of these clusters with
short-range interaction increases with the cluster size. Smaller
clusters exhibit a melting point depression proportional to
one over the cluster radius. A similar behavior is observed
in finite clusters with long-range Coulomb interaction (ions

in traps, colloids). Schiffer found in simulations a decrease
of the melting temperature compared to a bulk system,
Tm(N ) − T ∞

m ∝ −N−1/3, which was attributed to the fraction
of particles in the surface layer that scales as ∝ N−1/3 [31].

Finite clusters of dust particles trapped in a plasma
discharge are special representatives of such mesoscopic
systems for which many details of structural transitions can
be studied experimentally in unprecedented detail. This is
due to the possibility of tracking the position and velocity
of each individual particle. Therefore, in the following we will
concentrate on finite dust clusters although many of the results
are expected to be applicable to other finite systems as well.
In particular, when discussing quantities that are suitable for
the analysis of phase transitions we will concentrate on those
that are accessible in experiments.

A characteristic feature of spherical dust clusters is that their
density is inherently inhomogeneous [6,7], and their melting
point may be space-dependent or depend on the precise particle
number N [31–33] and on “magic” configurations (closed
shells). Furthermore, the melting process of small Coulomb
clusters is known to consist of multiple transitions [34–37].
This makes a theoretical analysis of melting complicated
because different quantities that agree among each other for
macroscopic systems may yield very different predictions in
finite systems. For example, Stamerjohanns et al. showed that
certain transitions in finite clusters are not captured by the
specific heat capacity [19].

A prominent example of finite clusters are repulsively
interacting particles in a harmonic trap that, at low temperature,
are localized on concentric rings [in two dimensions (2D)] or
shells [in three dimensions (3D)]; cf. Fig. 2. These are crystal-
like clusters with complex spatial correlations of particles
within and between shells. In 2D systems, a temperature
increase leads to a peculiar two-step “melting” [6,7,38]: first
the intershell angular correlations are lost (shells are free to
rotate against each other), and, at a higher temperature, particle
transitions between shells eventually destroy the shell structure
(“radial melting”). The former process in particular depends
crucially on the exact occupation numbers of the shells.

In 3D clusters the situation is more complex. Here intershell
transitions have been observed in experiments [39,40] and
explored theoretically [33,36,41]. There have been some
predictions about additional melting-type processes [36,42].
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In contrast, a recent analysis based on the diffusivity of
finite systems [43] showed just one structural transition, in
agreement with experiments on laser heated dust clusters
[44]. This is surprising since there is no obvious reason
why the intrashell disordering within shells should occur
simultaneously with radial melting or why 3D clusters should
behave qualitatively different from 2D ones. We will show
below that the main reason is that many quantities (such
as diffusion coefficients) studied so far are not suitable to
distinguish between different types of structural transitions

It is the purpose of this paper to resolve this problem.
Here we show that the physics of 3D clusters with long-range
interaction is much richer than observed in experiments so far,
in agreement with theoretical studies [34,36]. In fact, several
structural transitions exist:

(1) Radial melting (RM): this describes the process in
which the radial order between distinct shells is lost.

(2) Intrashell disordering (ID): the loss of angular order
within one shell (this is closely related to angular melting
[6,7,36]) and may occur in different shells at different
temperature. Typically we observe that this is a gradual process
that is very sensitive to the precise particle number. At low
temperatures often transitions between different intrashell
isomers (without changing the particle number within the
shell) are observed, yet the angular order is lost completely
only during the radial melting process.

(3) Intershell melting (ISM): an angular disordering pro-
cess that is well known from 2D systems where, below a
critical temperature, the relative angle of two adjacent shells
is fixed and the shells are “locked.” A similar angular locking
is possible for 3D shells as well, but we observe it only at very
low temperature.

One driving mechanism that accompanies all of the
above structural transitions are intershell particle transitions
(sometimes referred to as transition between different radial
isomers, i.e., configurations with different shell occupations).
Intershell transitions usually set in in at a temperature well
below that of RM where distinct shells still exist. As we will
see, intershell transitions also affect the intrashell disordering.
We will show, based on first-principle [45] Monte Carlo (MC)
simulations, that these structural transitions may be substan-
tially displaced from each other in temperature. We predict the
characteristic values of the critical temperatures for various
typical clusters so that an experimental observation should be
possible.

Our analysis is based on a novel general melting criterion
that is derived from the reduced entropy and the associated
reduced heat capacity of two- and three-particle complexes. A
particularly useful feature is that it is computed exclusively
from the (correlated) particle positions which are directly
accessible in dusty plasma experiments.

This paper is organized as follows: In Sec. II we introduce
the reduced k-particle densities for spatially inhomogeneous
spherically trapped clusters and define the associated entropies
S(k) and heat capacities c(k). A first test is then performed
for an infinite homogeneous 2D layer where the peak of
c(2) precisely agrees with the known melting point. After
specializing S(k) and c(k) to spherically confined systems, we
present in Sec. III numerical results for three representative
spherical dust clusters that are summarized in Sec. IV.

II. THEORY

A. Theoretical basis: Spatial two- and three-particle
correlation functions

The correlations of the particle positions and the structural
order in a macroscopic system are characterized by the radial
pair distribution function (PDF) g(r12) = g(|r2 − r1|), the
probability to observe an arbitrary pair of particles at a distance
r12 = |r12|. The dependence on the modulus r12 alone is a
consequence of the translational and rotational invariance of
the Hamiltonian. In a crystalline state the latter is broken
and, if the system is finite, the former symmetry is lost. Then
the natural generalization is the full two-particle distribution
function ρ2(r1,r2): the joint probability to observe one particle
at an exact space point r1 and a second one at r2. Even this
may be not sufficient to uniquely describe the local structure,
in particular, in the case of particle ordering on spherical shells,
as occurs in traps. In that case, a more sensitive quantity is the
three-particle distribution function ρ3(r1,r2,r3). We will show
below that ρ2 and ρ3 are very well suited to quantitatively study
the order and structural changes upon variation of temperature,
and we also present a simple approach how to detect from them
the point(s) of structural transitions.

The classical k-particle equilibrium distribution (k =
1, . . . ,N) follows from the full N -particle distribution ρ via
integration over the remaining N − k positions [46,47],

ρk(r1, . . . ,rk) = 1

(N − k)!

·
∫

d3rk+1 · · ·
∫

d3rN ρ(r1, . . . ,rN ), (1)

where ρ is normalized to N !. We introduce a new set
of coordinates, (Q,B) with dim Q = q, dim B = β, and
q + β = 3k, where ρk is independent of all components of
B, as a consequence of symmetries of the Hamiltonian. So
in the new variables ρk → ρ̃k depending only on q argu-
ments. The associated coordinate transformation is defined
by (r1, . . . ,rk) = �(Q,B), and |J�(Q,B)| is the Jacobi
determinant.

The distribution function in the new variables is

ρ̃k(Q) =
∫

dβB|J�(Q,B)|︸ ︷︷ ︸
:=Vk (Q)

ρk[�(Q,B)]︸ ︷︷ ︸
independent of B

(2)

= Vk(Q) · ρk[�(Q,B)]. (3)

Note that ρ̃k(Q) will be practically sampled from the co-
ordinates obtained in experiments or numerical simulations.
However, the functional form of the geometrical factor Vk

is important for the normalization and for derivations of the
reduced entropy S(k). Following the general introduction of
the k-particle density, this concept is first explained for an
infinite 2D system before proceeding to the system of our
main interest: spherical 3D clusters.

B. Test case: Macroscopic 2D Yukawa system

Before applying ρ̃2 and ρ̃3 in generalized coordinates to
the spherical system (15), we test them for a well-studied case
of an infinite 2D layer (Yukawa OCP). Therefore, the general
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result (3) is first applied to this system for the pair distribution
function (PDF, k = 2) and the triple correlation function (TCF,
k = 3):

(1) For the PDF, we use Cartesian coordinates for the first
position and polar coordinates (r12,ϕ) for the distance between
particle one and two. Due to the translational and rotational
invariance of the Hamiltonian, we have Q = {r12} and B =
{x1,x2,ϕ}.
The Jacobian is |J�(Q,B)| = r12, whereas the geometrical
factor in the pair distribution becomes

V2(r12) =
∫

d2r1

∫ 2π

0
dϕ r12 = 2πr12V , (4)

where V is the volume of the system. In order to be consistent
with the textbook definition of the PDF, this geometrical factor
is multiplied by the squared overall density ρ2

0 in

ρ̃2(r12) = PDF(r12) · 2πr12V · ρ2
0 . (5)

(2) For the TCF in the flat 2D system, the first position is
again described in Cartesian coordinates. We introduce polar
coordinates with the x axis along r2 − r1 for describing the
second and the third position relative to the first position. The
latter two position vectors are r2 → {dI,ϕ1} and r3 → {dII,ϕ},
and we have Q = {dI,dII,ϕ} and B = {x1,x2,ϕ1}. The Jacobian
is |J�(Q,B)| = dIdII, and the geometrical factor in the TCF
(2D) becomes

V3(dI,dII,ϕ) = 2 ·
∫

d2r1

∫ 2π

0
dϕ1 dIdII (6)

= 4πdIdIIV (2D), (7)

where the factor 2 in front the integral has to be added, since
we do not resolve the orientation of the bond angles. Bond
angles above ϕ′ > π are mapped to the interval [0 : π ] by
ϕ′ �→ 2π − ϕ′. The TCF (2D) is defined by

ρ̃3(dI,dII,ϕ) = TCF(dI,dII,ϕ) · 4πdIdIIV , (8)

as an extension of the PDF to particle triples.
To analyze structural (“melting-like”) transitions upon

heating it is advantageous to introduce a dimensionless
coupling parameter: the ratio of the mean interaction energy
of neighboring particles to their thermal energy: � = e2

akBT
.

For Yukawa interaction the coupling parameter has to be
modified as discussed, e.g., in Ref. [3], but this is not
essential for the present discussion. As a result the system
state dependence (the ensemble) is reduced to three parameters
(N,κ,�).

A typical example of the TCF (2D) for a solid and liquid
system is shown in Fig. 1(a) and 1(b), respectively, indicating
a strong temperature dependence of the TCF.

C. Reduced entropies

What remains is to find a quantitative measure that allows
one to detect, from the TCF (or PDF), the “phase” boundary
and the “melting” point(s). Here we propose to use the
Shannon entropy (or negative information) [48], which can
be interpreted as a measure for the disorder (or information)
of a statistical distribution. Before presenting our definitions
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FIG. 1. (Color online) Macrosopic 2D Yukawa OCP, κ = 1, N =
2000: (a) TCF in the crystal phase. (b) TCF in the strongly correlated
liquid regime. The length scale is a. (c) Specific heat cV and reduced
entropies of TCF and PDF [Eq. (13)]. Inset: Sketch of TCF parameters
for a 2D system. In (a) and (b) the TCF is averaged over a finite dI

range (see bars). In (c) no averaging is applied to S(3). In (a) and (b)
the pair distances are in units of a.

and results we briefly recall similar approaches that are based
on reduced distribution functions.

The entropy concept has been of fundamental importance
in nonequilibrium in the context of irreversibility of relaxation
processes (Boltzmann’s H-theorem [49]) and for open and
chaotic systems (e.g., Refs. [50,51]). On the other hand, the
idea to calculate, for a correlated equilibrium system, a reduced
entropy from k-particle distributions has been widely used for
extended systems [46,52,53], especially in the context of glass
transitions [54,55]. The first new point in our work is that we
present a result that is applicable to spatially inhomogeneous
systems.

An early idea is due to Stratonovich [56] who defined
separate entropy-type contributions from correlated config-
urations of 2,3, . . . particles. While this certainly captures
all correlation effects in the system, individual contributions
carry a high degree of redundancy since in most cases two-
and three-particle correlations are sufficient to characterize
the many-particle state. We will, therefore, concentrate on the
reduced entropies computed from either the two-particle or
the three-particle distribution function alone. Thus, we are not
attempting to reproduce the exact thermodynamic entropy but
to capture the dominant correlation contributions and their
temperature dependence. Finally, while earlier works often
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studied the entropy for certain analytical approximations for
the higher order distribution functions (e.g., Refs. [46,52]) and
references therein, we will avoid any approximation, but use
the exact pair and three-particle distribution calculated from a
first-principle [45] computer simulation.

We now proceed with our approach to the reduced entropy
as a measure for the structural order of correlated equilibrium
systems. We will first study the example of a macroscopic 2D
system of Sec. II B and generalize the result to 3D clusters
in Sec. II D. Since ρ2 (ρ3) is a well-defined, normalized, and
non-negative probability density it can be used to compute
averages of all observables that depend on not more than
two (three) coordinates. A suitable observable is then −lnρ2

(−lnρ3), which yields the reduced two-(three-) particle entropy
(in units of kB). The spatial contribution of the well-known
thermodynamic entropy of N classical particles in 2D can be
expressed as

S = − kB

N !

∫
d2r1 · · ·

∫
d2rN ρ(r1, . . . ,rN )

· ln{	l2·Nρ(r1, . . . ,rN )}, (9)

where ρ is the spatial N -particle distribution with normaliza-
tion N ! and 	l results from the decomposition of the phase-
space cell into spatial and momentum width 2π� = 	p · 	l.
The actual choice of 	l just causes a constant offset in S.

In analogy with Eq. (9), we introduce the reduced entropy
of the three-particle density as

S(3) = −kB
(N − 3)!

N !

∫
d2r1

∫
d2r2

∫
d2r3 ρ3(r1,r2,r3)

· ln{	l6ρ3(r1,r2,r3)}. (10)

Without any further approximation, we can execute this
integration in generalized coordinates and apply Eq. (3),

S(3) = −kB
(N − 3)!

N !

∫
dqQ

∫
dβB |J� (Q,B)|︸ ︷︷ ︸

=V3(Q)

· ρ̃3(Q)

V3(Q)
ln

{
	l6 ρ̃3(Q)

V3(Q)

}
︸ ︷︷ ︸

independent of B

(11)

= −kB
(N − 3)!

N !

∫
dqQ ρ̃3(Q) ln

{
	l6 ρ̃3(Q)

V3(Q)

}
, (12)

with Q = {dI,dII,ϕ} and V3 = 4πdIdII for the TCF (2D). V3

in the denominator cancels the Jacobi determinant under the
integral, but under the logarithm V3 remains. Formally we
can write the reduced entropy as the expectation value of
the logarithm of the PDF or the TCF, respectively, in the
canonical ensemble,

S(2) ≡ −〈ln PDF〉 , S(3) ≡ −〈ln TCF〉 , (13)

where 〈. . . 〉 denotes averaging with ρ̃2 and ρ̃3, respectively.
The 	l factor can be absorbed by the system of dimensionless
units. The derivation for the reduced entropy S(2) associated
with the two-particle density ρ2 is analogous.

We perform parallel tempering MC simulations (see below)
with N = 2000 particles and periodic boundary conditions
and sample the functions (5, 8) from the particle positions.

A significant fraction (≈20%) of the proposed swapping
moves are accepted when we chose a fine temperature ladder
with 21 system replicas between � = 120 and � = 240. The
temperatures (or coupling parameters) are equidistant on a
logarithm scale (≈3.5% increase per step). We sample 3D
histograms from which we compute ρ̃2 and ρ̃3. We verified
convergence with respect to the number M of discretization
cells; typically this is achieved for M = 300, . . . ,400 for each
direction. Then we compute S(2,3) according to Eq. (13).

The TCF for � in the solid and liquid regimes is shown in
Fig. 1(a) and 1(b), respectively. Since we can plot the TCF only
as a function of two coordinates, we average over the argument
dI, selecting a finite range around the nearest neighbor distance
(see figures). The hexagonal order in the solid regime manifests
itself in preferred bond angles ϕ at multiples of 60◦ [30◦] for
nearest neighbors at dII ≈ 2 [for second neighbors at dII ≈ 4].

Finally, the entropies S(2,3) are plotted versus � in Fig. 1(c).
They exhibit a sharp drop at � ≈ 185, at the peak of the specific
heat cV which is obtained in the same simulation. This is just
the freezing point known from the literature [3,57].

This behavior suggests to analyze the quantity

c
(k)
V ≡ − ∂S(k)

∂ ln �

∣∣∣∣
V

= T
∂S(k)

∂T

∣∣∣∣
V

, k = 1,2,3, . . . , (14)

where (k) refers to the k-particle distribution function used
in Eq. (13). In our case, c

(2)
V and c

(3)
V refer to the PDF and

TCF, respectively. The physical reason for the good agreement
between the peaks of cV and c

(2,3)
V is obvious: Eq. (14)

coincides with the definition of the specific heat (heat capacity
in units of kB and N ) of a thermodynamic (infinite) system,
provided the thermodynamic entropy S (computed from the
full canonical Gibbs distribution) is substituted for S(k). If the
local order in the system is dominated by pair (three-particle)
correlations, then the reduced entropy S(2) (S(3)) should capture
the temperature dependence of S, and the “reduced specific
heat” c

(2)
V (c(3)

V ) should reproduce cV .

D. Reduced entropies of charged particles
in a 3D harmonic trap

We now return to the system of interest: charged particles
trapped in an isotropic 3D harmonic trap described by the
Hamiltonian

Ĥ =
N∑

i=1

p2
i

2m
+

N∑
i=1

m

2
ω2r2

i + e2
N∑

1�i<j

e−κrij

rij

, (15)

where rij = |ri − rj |. The particles have a pairwise repulsion
which includes long-range (Coulomb, κ = 0) interaction
and short-range Yukawa-Debye interaction with the inverse
screening length κ . The model (15) has been very successful in
describing trapped particles in many fields, including electrons
in quantum dots and ions in traps (κ = 0) as well as colloidal
systems and complex plasmas (κa ∼ (0.5, . . . ,2), where a is
the Wigner-Seitz radius; see, e.g., Refs. [9,36]). The ground
state of this system consists of concentric spherical shells
(3D) (see Fig. 2) and is well understood from simulations
[8,31,58]. In the following the system (15) is considered to be
in a heat bath with temperature T and fixed particle number
N and trap parameters, i.e. in a modified canonical ensemble
(N,ω,T ) where the role of the volume is taken over by the trap
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rI

rII

ϑ

ϑI

ϑII

ϕ

FIG. 2. (Color online) Sketch of a spherical 3D cluster with two
shells; particles on inner and outer shell are drawn in red and
blue, respectively. Intrashell Voronoi diagrams (nearest neighbors
of enclosed particles) are sketched in gray. In the C2P, the radii rI and
rII as well as the pair angle ϑ are recorded (right). In the TCF three
particles are chosen from the same shell (left), and two angular pair
distances ϑI, ϑII and the bond angle ϕ are recorded.

frequency ω that controls the mean density. All quantities are
now computed at fixed ω instead of volume V .

In the definition of the coupling parameter �, the length
r0 = 3

√
e2/mω2 is used as a representative of the Wigner-Seitz

radius for spherical clusters. As shown in Ref. [59], this length
has the correct limit r0 = a for large Coulomb balls. In the
following r0, E0 = [e4mω2]1/3 and t0 = ω−1 are used as units
for length, energy, and time, respectively. By the application
of the coupling parameter, the system state dependence (the
ensemble) is reduced to three parameters (N,κ,�), as in the
case of a macroscopic one-component plasma (OCP). We
focus on the Coulomb case with κ = 0 in the following. The
finite width of the peaks of the heat capacities results from the
finite particle number.

The general result from Eq. (3) is now applied to the Hamil-
tonian (15) for the center-two-particle correlation function
(C2P, k = 2) and the triple correlation function (TCF, k = 3)
as follows:

(1) For the C2P, we introduce spherical polar coordinates
with the z axis along r1, so the two position vectors are
r1 → {rI,ϑ1,ϕ1} and r2 → {rII,ϑ,ϕ2}, and we have Q =
{rI,rII,ϑ} and B = {ϑ1,ϕ1,ϕ2}. In these coordinates, the angle
ϑ describes the angular pair distance of the two particles
with respect to the trap center; see Fig. 2. The Jacobian
is |J� (Q,B)| = r2

I sin ϑ1r
2
II sin ϑ , whereas the geometrical

factor in the center-two-particle distribution becomes

V2(rI,rII,ϑ) =
∫ π

0
dϑ1

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

× r2
I sin ϑ1r

2
II sin ϑ (16)

= 8π2r2
I r2

II sin ϑ . (17)

Since the two-particle density must not depend on the coordi-
nates B, due to the rotational invariance of the Hamiltonian,
we can integrate ρ2 over B in order to obtain ρ̃2 in the new
coordinates Q. The result is the product of the geometrical
factor V2(rI,rII,ϑ) [Eq. (17)] and the quantity of interest: the

center-two-particle correlation function, C2P,

ρ̃2(rI,rII,ϑ) = C2P(rI,rII,ϑ) · V2(rI,rII,ϑ). (18)

For the plots in the paper, a slightly modified C2P was chosen.
Instead of relating ρ̃2 to the geometrical factor V2, it was
related to the ρ̃ id

2 (rI,rII,ϑ) = 8π2r2
I r2

IIρ(rI)ρ(rII) where ρ(r) is
the radial density. The “ideal” pair density ρ̃ id

2 is the pair density
that one would find in a system with the same radial density
as the cluster but without any structure within the shells. The
C2P is set to unity between the shells where both ρ2 and ρ id

2
are zero.

(2) For the TCF within a spherical shell, we introduce
spherical coordinates with the z axis along r1 and y axis
along r1 × r2. The three position vectors are r1 → {rI,ϑ0,ϕ0},
r2 → {rII,ϑI,ϕ1}, and r3 → {rIII,ϑII,ϕ}, and we have Q =
{rI,rII,rIII,ϑI,ϑII,ϕ} and B = {ϑ0,ϕ0,ϕ1}.
To analyze intrashell order, we select three particles from the
same shell and drop the radial coordinates rI, rII, and rIII. ϑI

(ϑII) is the angular pair distance between the first and the
second (third) particle, and ϕ is the “bond” angle; see Fig. 2.
The Jacobian is |J� (Q,B)| = r2

I sin ϑ0r
2
II sin ϑIr

2
III sin ϑII,

and the geometrical factor in the triple-correlation function
on the sphere becomes

V3(ϑI,ϑII,ϕ) = 2 ·
∫ π

0
dϑ0

∫ 2π

0
dϕ0

∫ 2π

0
dϕ1

× r2
I sin ϑ0r

2
II sin ϑIr

2
III sin ϑII (19)

= 16π2r2
I r2

IIr
2
III sin ϑI sin ϑII, (20)

where the factor 2 in front of the integral has to be added again,
since we do not resolve the orientation of the bond angles.
Since all three particles were selected from one shell with
radius RS, the volume element is V3 = 16π2R6

S sin ϑI sin ϑII.
We can again split the three-particle density in the chosen co-
ordinates into the geometrical factor and the triple correlation
function (TCF),

ρ̃3(ϑI,ϑII,φ) = TCF(ϑI,ϑII,φ) · V3(ϑI,ϑII,φ). (21)

First applications of the TCF to spherical dust clusters were
presented in Refs. [40,44] and confirmed that the TCF is
sensitive to the gradual loss of order upon a temperature
increase.

Taking advantage of the symmetries of the Hamiltonian, the
reduced entropies which are associated with the two- and three-
particle densities ρ2(r1,r2) and ρ3(r1,r2,r2) are transformed
into

S(2) ≡ −〈ln C2P〉, S(3) ≡ −〈ln TCF〉, (22)

where the derivation is analogous as for the flat 2D system
above; cf. Sec. II B.

Since the choice of 	l has no qualitative influence on the
further results, we chose 	l = r0 equal to the unit of length
for the C2P. When the density ρ2 is expressed in units of r0,
the 	l-factor is unity, and it is hence omitted in the following.
For the TCF on the spherical shell, we chose 	l = RS, which
equals the average radius of the analyzed shell, in order to
cancel the factor R6

S in the denominator that results from the
volume element; cf. Eq. (12) in Sec. II C.
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III. NUMERICAL SIMULATIONS

A. Simulation method

We use the Metropolis Monte Carlo (MC) method where
a Markov chain of configurations is generated by randomly
displacing single particles. Each displacement is accepted or
rejected with the Metropolis acceptance probability, which
depends on the energy change in units of kBT . One MC
step describes a sequence of these displacements, so that
the positions of all particles are possibly changed between
two MC steps. Since it requires a very large number of MC
steps to overcome an energy barrier between two metastable
configurations (“isomers”) at low temperature by chance, the
canonical ensemble cannot be sampled effectively with single
particle moves only.

In order to sample all relevant isomers in reasonable
simulation time, we use the parallel tempering (or exchange)
Monte Carlo method [60]. For this purpose, a set of 81 replica
configurations is simulated in parallel for every cluster shown
in this paper. Each of these replicas has a different temperature,
and the temperatures are geometrically distributed over a
range that covers four orders of magnitude. After every
Mswap = 123 MC steps a sequence of swapping moves is
performed. For a swapping move, two adjacent replicas are
chosen and their potential energies are compared. If the hotter
of the two clusters has a lower energy, then the configurations
are swapped. If not, the swap is accepted by chance with
a probability that decreases exponentially with the product
of the energy difference and the difference of the inverse
temperatures. Again, accepting some of the moves which swap
a configuration with a higher energy to the colder system
is essential to comply with the detailed balance condition.
Having 20 replicas of the system per order of magnitude
ensures the acceptance of a significant fraction of the proposed
configuration swaps between adjacent temperatures. This
algorithm allows for an ergodic sampling of the accessible
phase space, which is verified by checking that rare isomers are
equally distributed over the entire sequence of configurations
even at low temperatures.

From the particle coordinates, the spatial pair and three-
particle distributions functions in the generalized coordinates
are sampled every Msample = 1000 MC steps as 3D histograms.
The large number of MC steps between the samples ensures
their statistical independence. Moreover Mswap and Msample

were chosen as prime to each other in order to exclude aliasing
effects.

The reduced entropies S(k) are calculated after the simula-
tion individually for each temperature point, and the associated
heat capacities c(k) are then obtained from cubic spline
interpolations of S(k) versus ln �.

B. Numerical results for 3D Coulomb clusters

1. Typical spherical cluster N = 80

We now consider, as an example, a Coulomb cluster with
N = 80 particles (see Fig. 2) which has, in the ground state,
two shells with 60 and 19 particles and one particle in the trap
center [58]. We performed first-principle [45] MC simulations
for a �-range spanning four orders of magnitude. Figure 3(a)
shows the C2P for � = 1000. The first radial coordinate rI is
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FIG. 3. (Color online) Spherical 3D Coulomb cluster with N =
80 particles on two shells. Left (right) column: � = 1000 (� = 100).
(a, d) C2P for a reference particle from the inner shell [selected by the
rI integration (bar)]. (b, e) [(c, f)] TCF on the inner [outer] shell. The
first particle pair is selected as nearest neighbors by the ϑI integration
range (bar). The length scale is r0.

integrated over the inner shell range (see the bar in the plot)
to obtain ρ̃2(rII,ϑ) and ρ̃ id

2 (rII,ϑ), meaning that one particle
is always selected from the inner shell. Going from ϑ = 0◦
to 90◦, at rII ≈ 2, a sequence of extrema is visible that reflect
intrashell pair correlations, whereas peaks at the radius of
the outer shell, rII ≈ 3.5, correspond to intershell angular
correlations.

The right column of Fig. 3 shows the same quantities for
a 10 times higher temperature (� = 100) where all structures
are completely washed out, indicating a fluid state.

The vertical axis in the four lower parts of Fig. 3 shows
the angular pair distances ϑI of particle one and three of the
triple, whereas the horizontal axis shows the bond angle ϕ;
see Fig. 2. For the plots (c, f), the TCF of the outer shell was
integrated over a range ϑI ∈ [18◦,36◦], which means selecting
those particle triples where particle one and two are nearest
neighbors. Along the horizontal line at ϑII ≈ 27◦, we find those
triples where both particles two and three are nearest neighbors
to the first particle. The clear peaks around bond angles of
ϕ = 60◦, 120◦, and 180◦ result from a pseudo-hexagonal order
within the shell, which can also be seen in Voronoi pattern in
Fig. 2. Since the hexagons are deformed and a finite number
of pentagonal Voronoi cells, i.e., particles with five nearest
neighbors, exists due to the curvature of the sphere, these peaks
are smeared out in the ϕ direction. Another indication for a
pseudo-hexagonal intrashell structure is the ϕ = 30◦ peak for
second neighbors. As a “long”-range feature of this structure
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A bond is classified by the
coordination numbers of the
two particles connected by
the bond. The coordination
number is the number of
nearest intra-shell neighbors
determined in the Voronoi
analysis.
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FIG. 4. (Color online) (a) Occurrence of different states of the
Coulomb cluster with N = 80 particles. The states are divided into
configurations with N1 = 19 (solid red line, above the horizontal
0-line) particles or less (dashed) on the inner shell and those with
N = 20 (solid blue line, below the 0-line) or more (dashed). The
fraction of the former (latter) configurations is plotted above (below)
the zero line. The intrashell order is analyzed by the means of the
Voronoi construction within the shell, which allows us to determine
intrashell nearest neighbors. An intrashell configuration is classified
by the number of bonds of each class and the eight most important
configurations plotted as filled curves. The fraction of additional less
important configurations with N1 = 19 or 20 is represented by the
shaded area. (b) Specific heat capacity and “capacity” c(3)

ω from the
TCF on the inner shell. The two intrashell disordering � regions are
indicated by vertical dashed lines.

at strong coupling � = 1000 (c), we also see distinct peaks
for distant particles. For example, a peak at fourth neighbors
(ϑII ≈ 102◦) and a bond angle of ϕ = 95◦ report the existence
of a bond-angular order beyond nearest neighbors. When
compared to the TCF of a flat 2D system, Fig. 1(a) and 1(b),
the similarities between the patterns are striking for the solid as
well as for the liquid system. Since the phase transition is much
sharper in the extended system, the two selected � values for
solid and liquid 2D crystal differ only by a factor of two, while
the � values for the spherical cluster differ by a factor of 10.

Due to the small number of particles on the inner shell
of 19 to 20 (see Fig. 4), most particles have five instead of
six nearest neighbors within the shell here. Hence, the TCF

4

6

8

10

12

en
tr

op
y

S
(n

)

S(1) × 2

S(2)

S(3) 1st shell S(3) 2nd shell

(a)

0

0.5

1

1.5

10510 100 1000 10 000

cω

0.8

1

1.2

1.4

1.6

c(n
)

ω

coupling parameter Γ

cω(b)

R
M

ID
1

ID
1,

2

FIG. 5. (Color online) (a) Reduced entropies for the cluster of
Fig. 3 vs � computed for the C2P (solid line), the radial density (dash-
dot), and for the TCF on the inner (dashed) and outer shell (dotted). (b)
Reduced specific heat (14) for the entropies from (a) compared to the
specific heat. RM, radial melting; ID1 (ID2), intrashell disordering
on inner (outer) shell.

patterns [Figs. 3(b) and 3(e)] are significantly different from
those of the outer shell or the flat system discussed above.
For example, the peak at a bond angle ϕ = 120◦ for second
neighbors (ϑI ≈ 90◦) is missing.

To understand and quantify the details of the structural
transition(s) we compute the entropies S(1) [from the radial
density ρ(r)], S(2) (from the C2P) and two expressions for
S(3) (from the TCF of either the inner or the outer shell).
The results are shown in Fig. 5(a) and exhibit a monotonic
decrease with � with several steeper drops. These again show
up as distinct peaks in the derivatives (14), which we compare
to the exact specific heat cω in Fig. 5(b). First, we notice a
common peak of cω, c(1)

ω , and c(2)
ω around � = 136 clearly

attributed to radial melting (RM). The nearby peaks of c(3)
ω for

both shells indicate loss of intrashell order at slightly higher
�. The complete loss of order within each shell is consistent
with melting observed in macroscopic 2D layers around
� = 137 [3,57]. Another peak in c(3)

ω [pink dashed line (blue
dotted line)] is seen at � ≈ 13 156 (� ≈ 11 000) indicating
the onset of intrashell disordering within the inner (outer)
shell, due to transitions between different configurations of
Voronoi pentagons and hexagons (“intrashell isomers”) [58].
This transition is accompanied by the transition between two
radial isomers. While at high coupling the outer shell is
always occupied by N2 = 60 particles, we observe a significant
probability of occurrence of the configuration with N2 = 59
particles on this shell, for lower �.

Finally, there is another peak in c(3)
ω of the inner shell (and

in cω) around � = 977 which is associated with enhanced
transitions of particles between shells [61]. By means of the
intrashell Voronoi analysis, we find that, for N1 = 19, the shell
configuration splits up into several intrashell isomers around
this value of �. While for N1 = 20 particles on the inner shell
different intrashell isomers are found also at higher coupling,

043104-7



H. THOMSEN AND M. BONITZ PHYSICAL REVIEW E 91, 043104 (2015)
ra

di
us

r I
I

0

1

2

3

0

5

C
2P

(a)

1st particle on inner shell

ΓA = 31 623

rI range

ra
di

us
r I

I

0

1

2

0° 30° 60° 90° 120° 150° ϑ

(b)
ΓB = 5623

rI range

c(n
)

ω

he
at

ca
pa

ci
ty

c ωcω

0

1

2

Γ10 100 1000 10 000
1

1.5

2
(c)

ΓAΓB

R
M

IS
M

ID
2

c
(2)
ω c

(3)2
ωc

(3)1
ω

FIG. 6. (Color online) Intershell angular melting (ISM) in the
spherical 3D Coulomb cluster with N = 38 particles. (a, b) C2P (the
first particle radius is averaged over the inner shell) below (above)
the melting temperature. The length scale is r0. (c) Specific heat and
reduced specific heat vs �. While radial melting (RM) is seen in cω
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ω , based on the C2P.

we find only one intrashell configuration at � � 1000 when
this shell is occupied by N1 = 19 particles, see Fig. 4(a).

2. Magic spherical cluster N = 38

The results shown above are typical for finite spherical
Coulomb and Yukawa clusters except for “magic” clusters
which exhibit particular stability against certain excitations.
In particular, we inquire whether an intershell angular melting
(ISM) transition, known from 2D clusters [6,7], exists here
as well. As an example we consider the case N = 38 with
6 (32) particles on the inner (outer) shell and study the C2P
for particle pairs from two different shells. The associated
intershell angular correlations are visible in Fig. 6(a) as
localized spots in the horizontal strip around rII = 2.7. At
a five times higher temperature [see Fig. 6(b)], these spots
overlap, indicating ISM. This is confirmed by the entropy S(2)

computed from the C2P and the associated specific heat c(2)
ω

[Fig. 6(c)] which exhibits a clear peak around � = 14 175.
Our interpretation is confirmed by the missing of this peak in
c(3)
ω (computed from the TCF for particles on the same shell).

Interestingly, also the full specific heat cω misses this peak
[62], which indicates that the reduced quantities c(k)

ω , when
computed for adequately selected particle pairs or triples, may
be even more sensitive to structural transitions than the full
heat capacity.

For the “magic” particle number N = 38, the intrashell
order freezes together with the radial structure. Due to the
high symmetry of this order, a high temperature is required to
find different intrashell isomers. The reduced heat capacity
c(3)1
ω of the TCF on the inner shell (N1 = 6) agrees with

the radial melting peak in the heat capacity. Interestingly,
for the outer shell c(3)2

ω shows a steplike rise at this point
rather than a peak. During their numerical study, Calvo and
Yurtsever found two different isomers with the same (6, 32)
radial composition for � � 20 000 with very close energy
(	E = 3 · 10−4), whereas only one isomer was found, at
higher coupling [4]. Our interpretation is that these two isomers
differ with respect to the relative orientation of inner and outer
shell, and the occurrence of more than one isomer indicates
the intershell angular disordering process, which we observe
by means of the C2P at approximately the same coupling
strength. In Sec. III C, we compare our findings from c(k)

ω

with the fluctuations of the angular distance between adjacent
particles as a Lindemann-like melting parameter for this
cluster [35].

3. Larger spherical cluster N = 120

For the two investigated Coulomb clusters with N = 80 and
N = 38 particles, we found intrashell disordering processes
which were accompanied by a transition between two radial
isomers or by radial melting processes, respectively. This raises
the question whether intrashell disordering can take place
without a change of the particle number in the shell, for certain
3D clusters.

Such a transition is, indeed, found in a larger Coulomb
cluster with N = 120 particles. The ground state configuration
is (82, 32, 6), counting the particle numbers from outer to
inner shell. Up to � ≈ 400, no isomers with different shell
occupation numbers are found in the simulations although
the heat capacity c(3)

ω shows a peak already at � ≈ 50 000;
see Fig 7(b). This capacity was calculated from the TCF on
the outer shell, and it is hence sensitive to transitions within
that shell. We performed an intrashell Voronoi analysis in
order to elucidate this low temperature transition. As shown
in Fig. 7, different intrashell isomers make up a significant
fraction of the ensemble, for lower coupling strength, while
virtually only one isomer is found for higher coupling strength.
Interestingly this isomer has two particles with seven nearest
neighbors in the Voronoi cell. The analysis of the outer shell’s
structure by means of the Voronoi diagram confirmed the
assumptions that the peak in c(3)

ω (outer shell) is connected to an
intrashell disordering transition without any effect on the radial
structure.

C. Comparison with angular distance fluctuations

In this section, we compare our novel melting parameters
with the mean angular distance fluctuations (ADFs) for the
magic number clusters with N = 38 particles. The ADFs are
a Lindemann-like parameter that has been frequently use to
analyzed the intershell fluctuations in spherical 2D clusters;
e.g., Refs. [6,7]. More recently the ADFs have been applied
also to the intrashell and intershell fluctuations of 3D Coulomb
clusters by Apolinario et al. [35]. The ADFs provide a qual-
itatively different approach to detecting transition processes
in finite systems. The ADF captures the property of the solid
phase that the neighbors of any particle remain the same over
a very long time. In contrast, in the fluid phase, the neighbors
change frequently. This means, in the solid phase, the angular
distance of neighboring particles exhibits small oscillations
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FIG. 7. (Color online) Intrashell disordering transition (ID) in the
outer shell of a spherical Coulomb cluster with N = 120 particles
around � = 50 000. (a) The particle number on the outer shell is
constant for � � 400 while transitions between different intrashell
isomers take place at higher �. The intrashell Voronoi analysis allows
for a classification of these isomers. (b) While the thermodynamic
heat capacity cω captures only the radial melting (RM) at � ≈ 165,
the reduced heat capacity c(3)

ω computed from the entropy of the TCF
captures also the intrashell disordering.

whereas the amplitude becomes large as particles leave their
neighborhood in the fluid phase. The ADFs are defined by [35]

	αγβ = 1

Nγ

Nγ∑
i=1

〈
α2

ij

〉 − 〈αij 〉2 (23)

and measure the angular displacement for a pair of particles
within a given shell (γ = β) or from different shells (γ �= β).
The particle number on shell γ is denoted by Nγ and αij is the
angular pair distance with respect to the trap center between
particle i on shell γ and its nearest neighbor j on shell
β [35].

There are several methods to evaluate Eq. (23) which
differ in the number of neighbors included in the sum and
in the simulation scheme. Here we use Langevin molecular
dynamics (LMD) simulations and two versions. In the first
variant denoted by 	αclosest

γβ , the nearest neighbor j of a given
particle i is determined once, at the beginning of the
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FIG. 8. (Color online) Comparison of reduced heat capacities,
c(k)
ω , and angular distance fluctuations (ADF), 	α, Eq. (23), for the

magic number Coulomb cluster with N = 38 particles. (a) Intrashell
disordering on the inner shell, measured by c(3)1

ω from the TCF and
by 	α11 for pairs of two particles within the inner shell. (b) The
same for the outer shell. (c) Intershell angular disordering, measured
by c(2)

ω from the C2P and by 	α12, for pairs of particles belonging
to different shells. While the (reduced) heat capacity cω (c(k)

ω ) was
obtained in an MC simulation with parallel tempering, the fluctuations
	α were obtained as averages over 40 Langevin molecular dynamics
(LMD) simulation runs for each temperature. In panels (a) and (b)
we also compare to data by Apolinario et al. in Fig. 5 of Ref. [35].
(The temperature was scaled by 3

√
0.5 because of the different energy

unit used in that reference.) Note the different temperature scale in
panel (c).

simulation. In a second variant denoted 	αall
γβ , all pairs of

particles ij from shells γ and β are sampled, disregarding their
proximity. Both variants are calculated in LMD simulations
using a time step 	t = 0.005 and a damping coefficient γ =
0.5, in units of t0 and t−1

0 , respectively. The LMD simulations
were initialized by a configuration from the MC simulation at
high coupling strength �, and 106 time steps were performed
for data production after the equilibration.

Figure 8(a) shows the ADF for the six particles on the inner
shell of the cluster. The sharp increase of 	αclosest

11 is in good
agreement with the peak in the reduced heat capacity c(3)1

ω from
the TCF on that shell. Part (b) of the figure refers to the outer
shell. The increase of 	αclosest

22 takes place around � = 100.
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Around this point, the reduced heat capacity has a broad peak.
The increase of 	αclosest

22 falls on the decreasing slope of this
peak, which is seen more clearly in Fig. 6(c). [Note that in
Fig. 6(c) the � axis is inverted.]

Finally, Fig. 8(c) shows the intershell ADF, in comparison
with c(2)

ω obtained from the C2P function. In view of the
low critical temperature for the loss of the intershell angular
order observed in Fig. 6, we chose a logarithmic temperature
scale for this figure part. While the peak of c(2)

ω indicates
that the intershell angular disordering transition occurs around
�ISM = 14 175, the increase of the ADF 	α12 is found at
significantly lower coupling strength (higher temperature).
This discrepancy is interesting but not fully understood yet.
While the C2P function depends on the accessible phase space
volume, the ADF are sensitive to the evolution of the cluster.
During this evolution, the transition between two isomers
which differ with respect to the relative angle of the two
shells constitutes a rare event, at low temperatures. Hence the
LMD simulation time can become insufficient to obtain good
statistics for these events, in the very high coupling regime.

As the C2P function resolves also the radial structure of
the dust cluster, c(2)

ω exhibits a second peak at the radial
melting point, around �RM = 85 [see Fig. 6(c)], which has
no equivalence in the angular distance fluctuations.

In Figs. 8(a) and 8(b) we also compare with data by
Apolinario and Peeters (open black dots) for the same cluster
[35]; see Fig. 5 of that reference. In all our simulations
the increase of 	α is found to occur at significantly lower
temperatures. This may result from a different treatment
of neighbors during the calculations of the ADF or from
differences in the molecular dynamics simulations.

IV. CONCLUSION

In summary, we have proposed alternative quantities for
the analysis of structural transitions in inhomogeneous finite
systems: the reduced entropies S(k) and the associated reduced
heat capacities c(k)

ω = T ∂S(k)

∂T
computed from the k-particle

distribution functions. Our results indicate that spherical 3D
clusters with long range interaction [63] exhibit (at least) three
different structural transitions: (1) intershell angular melting

(at � � 104), (2) radial melting, at � ∼ 140, and (3) intrashell
disordering which starts, in different shells at different �

around 10 000 and typically extends up to the RM transition.
We note that different melting processes in 3D Coulomb

clusters were investigated before; for a detailed study, see
Ref. [4]. These authors performed both parallel tempering
MC simulations to access the specific heat and molecular
dynamics (MD) simulations to obtain dynamic properties,
such as the Lindemann parameter. The analysis of the spatial
pair- and three-particle correlation functions performed in the
current work allowed us to obtain complementary information.
In particular, we are now able to distinguish between radial
melting, intershell angular melting, and intrashell transitions.
Since these functions are thermodynamic properties of the
system, they can be obtained in the same MC simulation as
the thermodynamic heat capacity and require no knowledge
about the dynamic properties. Moreover, these quantities are
very well compatible with enhanced Monte Carlo techniques
such as parallel tempering.

The reduced entropies S(k) and the reduced heat capacities
c(k) are easily computed and directly measurable in exper-
iments with colloids or dusty plasmas where the particle
positions are detected, and it will be interesting to verify the
reported structural transitions.

In the present work, we were able to assign the additional
peaks in c(k)

ω to certain disordering processes. An open question
is the connection between these and phase transitions of the
cluster and whether one can determine the order of these
transitions, in analogy to macroscopic systems.

Finally, the proposed method of reduced entropies and heat
capacities is not restricted to spherical traps. It should be
equally applicable to other finite systems, including interfaces,
as well as to quantum systems.
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