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Cluster virial expansion of the equation of state for hydrogen plasma with e-H2 contributions
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The equation of state of partially ionized hydrogen plasma is considered with special focus on the contribution
of the e-H2 interaction. Traditional semiempirical concepts such as the excluded volume are improved using
microscopic approaches to treat the e-H2 problem. Within a cluster virial expansion, the Beth-Uhlenbeck formula
is applied to infer the contribution of bound and scattering states to the temperature-dependent second virial
coefficient. The scattering states are calculated using the phase expansion method for the polarization interaction
that incorporates experimental data for the e-H2 scattering cross section. We present results for the scattering
phase shifts, differential scattering cross sections, and the second virial coefficient due to the e-H2 interaction.
The influence of this interaction on the composition of the partially ionized hydrogen plasma is confined to the
parameter range where both the H2 and the free-electron components are abundant.
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I. INTRODUCTION

The equation of state (EOS) describes the equilibrium
properties of matter, including the charge-neutral plasmas
considered here. At present, it attracts significant attention
of researchers working in different fields.

For instance, the calculation of thermodynamic properties
of plasmas in the warm dense matter (WDM) region is
necessary to model the planetary and stellar interiors [1,2].
With the extension of the plasma parameter region to the
condensed matter densities and temperatures up to several
rydbergs, it is now possible to describe the composition of the
giant planets such as Jupiter and Saturn [3–6]. High-energy-
density physics is another field where the WDM equation of
state is of interest [7]. In particular, the hydrogen EOS is
of relevance for inertial confinement fusion [8]. Although
these applications concern systems in nonequilibrium to
be described, for instance, by kinetic theory, the equation
of state of WDM based on equilibrium properties such
as temperature, chemical potential, and composition is an
important ingredient in the understanding of the microscopic
state of these systems. In the astrophysics of compact objects,
the use of a hydrodynamic description is justified because
WDM is strongly coupled so that the relaxation to a local
thermodynamic equilibrium is sufficiently quick.

Thermodynamic equilibrium is described by the grand
canonical ensemble. Within the quantum statistical approach to
the EOS, numerical techniques such as density-functional the-
ory and quantum molecular dynamics simulations have been
elaborated [9]. Correlations and bound-state formation are
of relevance. Simple treatments of plasma using perturbation
methods are not able to describe, for instance, the formation of
bound states. In particular, nonideal contributions are involved
due to the interaction between charged and neutral particles,
which can be treated within either the chemical picture where
bound states are considered as new components or the physical
picture where the elementary components (electrons and ions)
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are considered and the bound states are formed due to the
interaction.

In the chemical picture (see [10–14]), the plasma is assumed
to consist of well-defined reacting particles: electrons, ions,
atoms, and molecules. The simple chemical picture that
considers an ideal mixture of the different components is
valid only in the low-density limit. With increasing density,
the interaction between the constituents gives a contribution
to the thermodynamic equation of state. However, systematic
quantum statistical approaches [10,13] allow us to investigate
a wide range of thermodynamic parameters, avoiding incon-
sistencies such as double-counting effects.

Interactions are described via effective short-range poten-
tials for neutral particles and long-range potentials between
charged particles (see [10,13]). The thermodynamic character-
istics of nonideal plasma can be represented by the free energy,
which is calculated on the basis of different pseudopotential
models for a certain pair interaction. Usually, the nonideal
part of the free energy is considered to consist of the contri-
butions for Coulomb interactions (electron-electron, ion-ion,
and ion-electron), polarization interactions between charged
and neutral particles, and short-range interactions between
neutrals. This model has been successfully applied [11,12,14]
to investigate properties of partially ionized plasmas.

In the physical model, the fundamental structural elements
are the electrons and protons with Coulomb interactions. The
composite particles i.e., atoms, molecules, and other heavier
components, are obtained from few-body wave equations. The
latter are assumed to consist of fundamental particles and their
properties should be determined by solving the corresponding
Schrödinger equation. Within the physical picture, virial
expansions (with respect to density or fugacity) have been
evaluated [15]. In the density virial expansion, the second virial
coefficient is determined by pair interactions. Interactions
of electrons with the neutral composite particles appear in
higher orders (third virial coefficient, etc.). Alternatively, the
contribution of neutral particles can be taken into account
within a cluster virial expansion. In the fugacity expansion, the
formation of bound states (clusters) is consistently included.
For instance, in the low-density limit two-particle bound states
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are stable. Therefore, it is possible to consider the bound states
as new particles. We switch from the physical picture to the
chemical picture, which means the partial summation of ladder
diagrams that describes the formation of bound states with a
Green’s function approach. The three-particle interaction in the
physical picture will be considered as effective two-particle
interaction in the chemical picture after inclusion of cluster
states. An alternative to treating the physical model beyond
any perturbation expansions is path-integral Monte Carlo
simulation (see [16]). Attempts to understand the results in
terms of a composition including atoms and molecules are
defined by semiempirical cutoff radii.

The cluster virial expansion was described in details in a
previous paper [17]. The electron-atom interaction was studied
from a microscopic point of view. Different pseudopotentials
were compared and empirical data for separable potentials
were given. With the help of the Beth-Uhlenbeck formula [18],
it was shown that the second virial coefficient in the electron-
atom channel is related to scattering phase shifts as well as
bound states. In contrast to previous approaches, results for
the second virial coefficient in the e-H channel were not based
on any pseudopotential models, but were directly derived from
measured scattering data. Simultaneously, the contribution of
the bound state H− was included. The use of experimental
data as an input for the Beth-Uhlenbeck formula avoids any
empirical parameters and may be considered as a low-density
benchmark for any equation of state. In this present work, this
approach will be extended to include further components of the
plasma, in particular H2 molecules interacting with electrons.

We study partially ionized hydrogen plasma with electrons
(e), ions (protons i), hydrogen atoms (H), and hydrogen
molecules (H2) as constituents starting from the chemical
picture. We focus on the interaction of e-H2 and its contribution
to the equation of state. The influence of the molecular
component is essential in dense partially ionized plasmas.
The composition of hydrogen plasma has been calculated
following a set of mass action laws [10]. Figure 1 presents a
standard approach [10] to the composition of hydrogen plasma,
exemplarily for T = 15 000 K, with particle densities fractions
αc = Zcnc/ntot

e , where nc is the density of species c, ntot
e is

the total electron density, and Zc is the number of electrons
in the corresponding bound states. The free-electron-density
fraction is decreasing until total electron densities of 1023 cm−3

before pressure ionization sets in. The fraction of hydrogen
atoms dominates in the density region ≈1018–1024 cm−3. At
densities above 1021 cm−3, the molecule fraction plays an
essential role in physical processes. Note that, following [10],
the interactions between electrons and clusters are not taken
into account to calculate the composition in Fig. 1. The use
of experimental data for the interaction parts of chemical
potentials can give more accurate data for the composition.
In the present work, we consider partially ionized hydrogen
plasmas at temperatures T � 105 K and densities up to
1022 cm−3 until degeneracy effects play an essential role.
Another ingredient, the contribution of scattering states, is
considered. We apply the cluster virial expansion approach to
study the contribution of the electron-molecule interaction to
thermodynamical properties. The present work is organized
as follows. In Sec. II we briefly review the cluster virial
expansion and the Beth-Uhlenbeck formula for the second

FIG. 1. (Color online) Composition of hydrogen plasma at T =
15 000 K using mass action laws [10]. Particle-density fractions of
electrons, hydrogen atoms, hydrogen molecules, negative hydrogen
ions, and molecular ions are shown. Interaction between electrons
and bound states are not taken into account.

virial coefficient. Section III contains the calculation of the
scattering phase shifts for the electron-molecule system, via
both experimental differential cross sections and phase shifts
from appropriate pseudopotentials. In Sec. IV the phase
shifts are used to calculate the corresponding second virial
coefficient. Results for the H2-e second virial coefficient
are given for different temperatures and consequences for
the composition are considered. A summary is given and
conclusions are drawn in Sec. V.

II. CLUSTER VIRIAL EXPANSION AND
BETH-UHLENBECK FORMULA

The cluster virial expansion for the equation of state [19]
can be written as a function of fugacities zc = eβ(μc−E

(0)
c ),

βp =
∑

c

2sc + 1

�3
c

(
zc +

∑
d

zczd b̃cd + · · ·
)

, (1)

where c denotes species (c = e,i,H,H2), sc spin, μc chemical
potential, E

(0)
cd binding energy for isolated cluster species, and

�c = (2π�
2/kBT mc)1/2 the thermal wavelength of species c.

The first term is the ideal part of the pressure. The contribution
of the Coulomb interaction between charged particles and the
interaction with neutrals must be treated differently. For the
Coulomb interactions (e − e, e − i, and i − i), the nonideal
contributions of the equation of state have been intensively
investigated (for a review see Ref. [13]). For the interaction
with neutrals, the dimensionless second virial coefficient b̃cd

is determined by the respective interactions of e-H, i-H, H-H,
e-H2, i-H2, H2-H2, and H-H2 pairs. In particular, b̃H-H was
calculated in Ref. [20] and b̃e-H was studied in Ref. [17].
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TABLE I. Contribution of various transitions to total e-H2 scattering cross sections a2
B at different impact energies.

��������������Transition
Energy (eV)

7 10 13.6 20 45 60 81.6

total scatteringa 42.1 33.7 26.9 20.0
electronic excitationb 0.0 0.73 3.27 5.23
total scatt. – electronic exc. 42.1 33.0 23.6 14.8
elastic scatteringb 41.5 32.6 23.4 14.7 7.86 5.97 4.44
vibrational excitationb 0.60 0.35 0.11 0.05 0.05 0.03 0.03

aReference [24].
bReference [23].

An exact quantum mechanical expression for the second
virial coefficient was given by Beth and Uhlenbeck [19]:

b̃cd =
∑

�

(2� + 1)
∑

n

(e−βEn�
cd − 1)

+
∞∑

�=0

(2� + 1)
β

π

∫ ∞

0
e−βEηcd

� (E)dE, (2)

where � is orbital momentum, ηcd
� (E) is the scattering phase

shift, E is the energy of incident particles, and En�
c is binding

energy of the state with quantum numbers n�. The first term is
the bound part b̃bound

cd and the second is the scattering part b̃sc
cd .

In this paper we focus on the second virial coefficient
for e-H2. We calculate the scattering part of the second
virial coefficient b̃H2-e due to the electron-hydrogen molecule
interaction. The bound part includes a new component H2

−

in the system. The calculation of the bound part requires the
binding energy of the negative hydrogen molecule, which was
taken from the literature [21]. Note that alternatively to Eq. (2),
the bound state H2

− can be considered as a new species c in
calculating thermodynamic properties.

III. SCATTERING DATA

Scattering phase-shift data for e-H2 can be employed
to calculate the second virial coefficient b̃H2-e using the
Beth-Uhlenbeck formula (2). Due to the internal degrees of
freedom of the H2 molecule, the e-H2 scattering problem is
more complex compared to the e-H system. In addition to
electronic excitation and ionization, other processes have to
be considered. Here we assume that the maximum energies
of the incident electrons are below the ionization limit
Ei = 124 417.49 cm−1 ≈ 15.42 eV [22]. Then the total cross
section QT includes the following contributions:

QT = Qelas + Qatt + Qdiss +
∑

Qexcit, (3)

where the cross section for elastic scattering is Qelas, that for
dissociative attachment is Qatt, and that for impact dissociation
is Qdiss. In addition,

∑
Qexcit is the sum of all excitation

cross sections of rotational, vibrational, and electronic states.
Table I shows the contribution of those transitions, which
were estimated in Ref. [23]. The rotational excitation is
not given. However, this channel is mixed into elastic and
vibrational excitation transitions. As can be seen in Table I,
the electronic excitation channel is closed until 7 eV. At 7
eV the vibrational transitions contribute about 1.4% to the

total cross section, which decreases with increasing incident
energy. Up to 10 eV the total cross section is dominated
by elastic contributions. This statement is further verified by
considering the collision cross sections (see Fig. 2). Data were
taken from Ref. [25], where a complete set of cross sections
was presented including rotational, vibrational, and electronic
excitation processes as well as dissociative attachment. Note
that Qrot is determined from theoretical data of Ref. [26].
The most important processes in the low-energy region are
elastic scattering (momentum transfer) and rotational and
vibrational excitations. The most accurate data were obtained
in a swarm analysis due to Crompton and co-workers [26,27].
The rotational excitation channel is already open at 44 × 10−3

eV for the lowest rotational state (J = 0 → 2). Therefore,
experimental data for elastic differential cross sections would
include rotational excitations that show a large number of
possible states, even rotational-vibrational excitations [26,27].
Only in the experiment by Linder and Schmidt [28] was
elastic scattering separated from rotational excitations. The
vibrational channel sets in at 0.516 eV and the electronic
excitation channel at 7 eV. However, the contributions of
electronic, rotational, and vibrational excitations to the total
cross section below 10 eV are not more than 1.04%, 10%,
and 2.89%, respectively. According to our discussion above,
the vibrational and rotational contributions in the total cross

FIG. 2. (Color online) Cross section for e-H2 collision due to
different scattering channels: Qelas, elastic scattering; Qdiss, impact
dissociation; Qrot, rotational excitations; Qvibr, vibrational excita-
tions; and Qb3�+

u
, electronic excitations, adapted from Ref. [25].
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section of the e-H2 scattering can be neglected. We consider
only elastic contributions for our further calculations.

A. e-H2 scattering theory

Various theoretical methods were developed to solve the
Schrödinger equation for the e-H2 scattering process. The T -
matrix expansion method, the Schwinger variational method,
and the R-matrix method are so-called basis-set expansion
methods applied for the electron-molecule system (see the
detailed review of theoretical methods in Ref. [29]). An
alternative approach is a one-particle picture for the description
of the elastic scattering process in the fixed-nucleus (Born-
Oppenheimer) limit [29]. Molecules are fixed in position and
the Schrödinger equation is solved for the electrons in the static
electric potential arising due to the molecular configuration.

In low-energy limit, it is possible to use the modified
effective range theory (MERT) for the scattering of an electron
on a neutral polarizable system. The MERT was first developed
and applied by O’Malley et al. in Refs. [30,31]. Recently, the
applicability of the MERT for electron and positron elastic
scattering on molecular targets was investigated in Ref. [32].
Instead of the traditional MERT, the exact analytical solutions
of the Schrödinger equation for the long-range polarization
potential was used. This extends the applicability of the
MERT up to a few eV regime. Using the recommended
total-cross-section data for the hydrogen molecule [33], fit
parameters for the MERT model were found. Good agreement
with experimental data was achieved using only two partial
waves (s and p waves).

In this paper we solve the scattering problem of the electron-
hydrogen molecule system assuming that molecules are fixed
in space and are neither rotating or vibrating. In this case,
the interaction between an electron and a molecule is treated
similarly to that of an electron-atom system. That means that
the electron is scattered by an optical potential V ,

Heff = Te + V, (4)

and we use the phase function method [34,35] to solve the
Schrödinger equation.

The phase function equation or so-called Calogero equation
for the scattering phase shift η� is

dηcd
� (k,r)

dr
= −1

k
U (r)

[
cos ηcd

� (k,r)J�(k,r)

− sin ηcd
� (k,r)n�(k,r)

]2
(5)

(for more details see Ref. [36]). The Calogero equation is
solved for an initial condition ηcd

� (k,0) = 0, where k is the
wave number, � are orbital quantum numbers, J�(k,r) and
n�(k,r) are the Riccati-Bessel functions, U (r) = 2mcd

�2 V (r),
and V (r) is the interaction potential. The energy-dependent
scattering phase shifts ηcd

� (k) are determined as ηcd
� (k) =

limr→∞ ηcd
� (k,r).

B. Interaction potential

As we mentioned above, the accurate calculation of the
scattering problem requires an adequate approximation of
the optical potential. It is a full projectile-target (electron-
molecule) interaction potential that consists of static, ex-

change, and polarization contributions. The static potential
is given by the electrostatic interaction between the projectile
and the constituent particles of the target [26]. The exchange
effect is important at low energies; it occurs due to the
indistinguishability of the projectile and target electrons.
The polarization potential describes induced distortions of the
target by the impact electron. Since the goal is to consider
a collision process in plasma, the last effect (polarization) is
particularly important for the description of plasma properties.
Collisions of electrons on molecules in plasmas with not
too high densities occur at large distances. The polarization
potential for the electron-atom interaction has the asymptotic
behavior α/2r4 (at large distances) with the polarizability
α of the atom. Since this potential is diverging at small
distances, the Buckingham potential was suggested for the
e-a interaction [37]

Ve-a = − α

2
(
r2 + r2

0

)2 , (6)

where r0 is a cutoff radius. For hydrogen atoms α = 4.5a3
B

and r0 = 1.456aB [38]. If we consider the interaction of
electrons with diatomic molecules, the polarization model is
modified [26,29]:

Ve-H2 (r) =
(

− α0

2r4
− α2

2r4
P2(cos θp)

)

× [1 − exp (−r/r0)6], (7)

where α0 and α2 are polarizabilities parallel and perpendicular
to the internuclear axis �eR , respectively, P2(cos θp) is the
Legendre polynomial, and θp is the angle between the direction
of the incident electron and the z axis. This potential describes
the interaction of a molecule positioned at the origin and
the z axis coincides with �eR . For H2 (internuclear distance
R = 1.4aB), we use the experimental data of polarizabilities
α0 = 5.4265a3

B and α2 = 1.3567a3
B [26].

C. Phase shifts

The solution of the Calogero equation is used to obtain
the scattering phase shifts. The results for different orbital
momenta on the basis of the polarization model (7) are shown
in Figs. 3–5. We consider the phase-shifts result in Fig. 3.
At k = 0 the s-wave scattering phase shift η0(0) tends to the
value of π . According to the Levinson theorem [40] η(0) = nπ

(where n is the number of bound states), it corresponds to one
bound state. In our case it is the negative hydrogen molecule.
Here H2

− is a metastable state, which appears in reactions such
as dissociative attachment (H2 + e → H2

− → H + H−) and
associative attachment (H + H− → H2

− → H2 + e). The life-
time of this metastable state was measured to be 5–8 μs [41].
The theoretical value of the electron affinity (or binding
energy) for the bound state H2

− is 2.08 × 10−2 eV/molecule,
corresponding to 2 kJ/mol [21]. This value has been taken
to calculate the bound part of the second virial coefficient
in the Beth-Uhlenbeck formula (2), assuming that H2

− is a
resonance.

The phase-shift data for the s channel are compared with
the R-matrix data of Ref. [39]. As one can see, the present
results for the polarization model (7) are in good agreement
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(Ref. [39])

FIG. 3. (Color online) The s-wave scattering phase shifts for
e-H2. The R-matrix data [39] are compared with the results of the
present calculation on the basis of the polarization models (7) and (6).

with Schneider’s data. The parameter values of the polarization
potential (7) r0 and θp are fit to get good agreement for
phase shifts with theoretical data. The cutoff radius in this
calculation is taken as r0 = 1.0aB and θp = 90◦. Note that no
direct measurements of the phase shifts can be found in the
literature, only scattering cross-section data.

In Figs. 4 and 5 the scattering phase shifts for � = 1,2 are
presented using the same parameters for r0 and θp as for the
s wave. Both phase shifts are zero at zero incident energy of
the electron since no bound states exist for these scattering
channels. The d-wave results are very small in comparison to
the s channel at the low-energy limit. In general, to calculate
the second virial coefficients the phase shifts for � < 3 are
enough to obtain accurate results. The comparison of p and d

waves with Schneider’s data [39] shows deviations. This can
be explained by the different methods we used and the neglect
of symmetry effects in our approach. In the present calculation,

(
)

( )

(Ref. [39])

FIG. 4. The p-wave scattering phase shifts for e-H2. The R-
matrix data [39] are compared with the results of the present
calculation on the basis of the polarization model (7).

(Ref. [39])

( )

(
)

FIG. 5. (Color online) The d-wave scattering phase shifts for
e-H2. The R-matrix data [39] are compared with the results of the
present calculation on the basis of the polarization model (7).

a molecule without structure is considered, so the comparison
of data with other theoretical works in σ and π orbitals is not
possible. The only confirmation of these studies can be the
comparison of the calculated differential cross section with
experimental data.

Note that we have not included rotational and vibrational
excitations, which leads to an uncertainty in our approach. The
adiabatic nucleus approximation (fixed nuclei) was discussed
in detail in Ref. [26], comparing theoretical data as well as
experimental data from the swarm analysis. Although this is
not an issue in this paper, we mention that there are still open
questions about vibrational excitations since experiment and
theory are in controversy (see, e.g., Refs. [42–44]).

D. Elastic differential cross section

Experimental data for the electron-molecule collisions were
collected by Trajmar et al. [45], Brunger and Buckman [46],
and Yoon et al. [25]. The data of Linder and Schmidt (without
rotational excitation) were taken to compare this studies’
results for differential cross sections. Also, recent experimental
data from Muse et al. [47] are taken to perform the comparison
of differential cross sections.

Using the obtained phase shifts, the differential cross
sections can be calculated by the following formula:

dQ(k,θ )

d�
=

∣∣∣∣∣ 1

2ik

∑
�

(2� + 1)[e2iηcd
� (k) − 1]P�(cos θ )

∣∣∣∣∣
2

, (8)

where θ is the scattering angle (do not confuse with θp).
In our calculation we include the orbital momentum until
� = 5. The dependence of the differential cross section on the
scattering angle is shown in Figs. 6–9 for different incident
energies of the electron. The experimental data of Muse
et al. [47] and Linder and Schmidt [28] are compared with
the present calculations in Fig. 6. In Fig. 7 the results of the
polarization model (7) are compared with the R-matrix data
of Schneider [39] and experimental data [28] at E = 3.4 eV
(k = 0.5a−1

B ). Our results describe better the collision process
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(

)

(Ref. [47])

( )

(Ref. [28])

FIG. 6. (Color online) Differential cross sections for e-H2 at
incident energies 1 eV: solid line, calculation with the polarization
model (7); diamonds, experimental data from Ref. [28]; circles,
experimental data from Ref. [47].

at small scattering angles, whereas the R-matrix data work
only at middle angles.

The comparison of our results with experimental
data [28,47] at other energies shows good agreement almost
at all scattering angles. With increasing incident energy, a
slight deviation between experiment and our calculation is
observed. It can be explained by an increasing contribution of
rotational excitations, which is not included in our calculation.
In Fig. 9 also the differential cross section for electron and atom
scattering is presented. The atomic cross section, calculated
using the Buckingham potential (6), is smaller than the
molecular cross section almost by a factor of 2. Although we
use a simple approximation to describe the scattering process

( )

(
)

(Ref. [28])
(Ref. [39])

FIG. 7. (Color online) Differential cross sections for e-H2 at in-
cident energies of 3.4 eV: solid line, calculation with the polarization
model (7); diamonds, experimental data from Ref. [28]; circles,
theoretical data from Ref. [39].

( )

(Ref. [28])

(
)

FIG. 8. (Color online) Differential cross sections for e-H2 at in-
cident energies of 4.5 eV: solid line, calculation with the polarization
model (7); diamonds, experimental data from Ref. [28].

between the electron and hydrogen molecule, our results are
reliable, which was shown by a comparison with experimental
data.

IV. RESULTS AND DISCUSSION

A. Second virial coefficient for the e-H2 interaction

The data of scattering phase shifts shown in Figs. 3–5,
which are based on experimental data, will be used for
calculations of the second virial coefficient using the Beth-
Uhlenbeck formula (2). The phase shifts are obtained using
the polarization model (7). Table II shows results for the
normalized second virial coefficients b̃sc

H2-e and b̃bound
H2-e for the

(
)

( )

(Ref. [47])
(Ref. [28])

FIG. 9. (Color online) Differential cross sections for e-H2 at
incident energies of 8 eV: solid line, calculation with the polarization
model (7); diamonds, experimental data from Ref. [28]; circles,
experimental data from Ref. [47]; dashed line, present calculation
with the polarization model (6).
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TABLE II. Scattering and bound part of the second cluster virial coefficient b̃H2-e for different temperatures.

T (K) b̃sc
H2-e, s wave b̃sc

H2-e, p wave b̃sc
H2-e, d wave b̃sc

H2-e, full b̃bound
H2-e b̃H2-e, full

5000 0.9308 0.0179 0.0034 0.9522 0.0494 1.0015
7000 0.9173 0.0260 0.0049 0.9499 0.0350 0.9832
8000 0.9113 0.0301 0.0056 0.9482 0.0306 0.9776
9000 0.9056 0.0343 0.0064 0.9464 0.0271 0.9734
10000 0.9002 0.0386 0.0071 0.9460 0.0244 0.9703
11000 0.8951 0.0429 0.0079 0.9460 0.0222 0.9682
12000 0.8903 0.0473 0.0086 0.9462 0.0203 0.9665
13000 0.8856 0.0517 0.0094 0.9468 0.0187 0.9656
14000 0.8813 0.0562 0.0101 0.9476 0.0173 0.9649
15000 0.8770 0.0607 0.0108 0.9485 0.0162 0.9647
20000 0.8576 0.0836 0.0146 0.9560 0.0121 0.9681

scattering and the bound parts, respectively. The second, third,
and fourth columns of the table present data for the contribution
of the s, p, and d waves to the scattering part of the second
virial coefficient, respectively. Higher-order contributions are
small and negligible for the temperature range considered
here. The b̃sc

H2-e for higher orbital momenta is weaker than
for the s wave. With increasing temperature, the scattering
part of the second virial coefficient for the s wave decreases
weakly, but the results for the other two channels increase. This
occurs due to the difference in behavior of phase shifts (see
Figs. 3–5). The sixth column shows the bound part (H2

−)
of the second virial coefficient. The bound part decreases
with an increase of the temperature. At low temperatures
bound particles (clusters) are important. The full second virial
coefficient is presented in the last column. The dependence of
the full second virial coefficient on temperature is determined
by the scattering part. Data from Table II can be used to
study thermodynamical properties of the system. Note that
the second virial coefficients do not depend on the density of
the plasma. The density dependence is included in the virial
expansions for thermodynamical functions [see, for instance,
the pressure (1)].

B. Ionization equilibrium

The interaction between electrons and neutral clusters
can play an essential role for the plasma composition. In a
system with charged particles, hydrogen atoms, and hydrogen
molecules, the following chemical reactions are possible:
e + i � H, H + H � H2, e + H � H−, and e + H2 � H2

−.
Each reaction corresponds to a chemical equilibrium with
respect to the chemical potentials, respectively:

μe + μi = μH,

μH + μH = μH2 ,
(9)

μe + μH = μH− ,

μe + μH2 = μH2
− .

Note that the clusters H− and H2
− are included now as compo-

nents in the chemical picture. Alternatively, the contribution
of these bound states can also be obtained consistently from
the Beth-Uhlenbeck formula (2) as a bound-state contribution.
Further possible cluster states are not considered in this work;

in particular, the H2
+ bound state will be obtained in the H-i

interaction channel.
In nonideal plasma the chemical potential can be divided

into ideal and nonideal parts. For instance, for the chemical
potential, the following expression defines the virial coeffi-
cients [19]:

μc = μid
c − kBT

(
2
∑

d

ndbcd + 3
∑
de

ndnebcde + · · ·
)

,

(10)

where bcd is the second virial coefficient.1 There is a con-
nection between the dimensionless second virial coefficient
b̃cd [see Eq. (1)] and bcd : b̃cd = bcdgd/�

3
d , where gd is the

spin degeneracy factor. The first term of Eq. (10) μid
c =

kBT ln( nc�
3
c

gc
) + E(0)

c is the ideal part of the chemical potential

with binding energy E(0)
c of isolated clusters (H, H2, H−,

and H2
−). The nonideal parts �μcd are defined by the

second virial coefficients bcd and similarly for further terms
�μcde, etc., of Eq. (10). The virial expansion is diverging for
Coulomb interactions (for e-e, i-i, and e-i contributions). We
need to consider screened interactions and take the classical
Debye shift �i = −κe2/2 with the inverse screening length
κ2 = ( 4πnie

2

kBT
) as an approximation for protons. For electrons

we use the Padé formulas [10], which can be used at any
plasma degeneracy

�e = μD − (1/2)(πβ)−1/2n̄ + 8n̄2μGB

1 + 8 ln[1 + (1/16
√

2)(πβ)1/4n̄1/2] + 8n̄2
, (11)

where n̄ = ne�
3
e , μD = −(πβ)−1/4n̄1/2 is the chemical po-

tential in low-density limit (Debye limiting law), and μGB =
− 1.2217

rs
− 0.088 83 ln[1 + 6.2208

r0.7
s

] is the Gell-Mann-Brueckner
approximation for the highly degenerate region (in Ry), with
rs = (3/4πne)1/3/aB the Brueckner parameter.

Finally, using Eqs. (9) and (10), the system of equations
can be solved to derive the composition of the plasma with

1Note that the second virial coefficient as introduced by Beth and
Uhlenbeck [18,19] is −b2.
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FIG. 10. (Color online) Free-electron-density fraction αe at T =
15 000 K. The solid line shows the result of the set of equations (12).
The dashed line is the result of the set of equations (12) neglecting
interaction terms �μsc

e-H and �μsc
e-H2

.

components e, i, H, H2, H−, and H2
−,

nH

neni

= �3
e exp(−βE0) exp

[
β
(
�e + �i

−�μsc
H-H + �μsc

e-H + �μsc
e-H2

)]
,

nH2

n2
H

= bbound
H-H exp

[
β
(
2�μsc

H-H − �μsc
H2-H2

)]
,

nH−

nenH
= bbound

H-e exp
[
β
(
�e + �μsc

H−H

)]
,

nH−
2

nenH2

= bbound
H2-e exp

[
β
(
�e + �μsc

H2-H2

)]
,

ntot
e = ne + nH + 2nH2 + 2nH− + 3nH2

− , (12)

FIG. 11. (Color online) Composition of hydrogen plasma at T =
15 000 K taking into account e, H, H2, H−, and H2

− constituents. The
solid line shows the result of the set of equations (12). The dashed
line is the result of the set of equations (12) neglecting interaction
terms �μsc

e-H and �μsc
e-H2

.

TABLE III. Particle-density fractions at T = 15 000 K for e, H,
H2, H−, and H2

− calculated according to the set of equations (12).

ntot
e (cm−3) αe αH αH2 αH− αH2

−

1016 0.883 0.117 1.09 × 10−8 4.15 × 10−7 1.32 × 10−13

1018 0.230 0.770 4.75 × 10−5 6.94 × 10−5 1.46 × 10−8

1020 0.0272 0.964 0.00772 0.000957 2.62 × 10−5

1021 0.0110 0.891 0.0939 0.00315 0.00112
1022 0.0390 0.381 0.531 0.0202 0.0292

where E0 = 13.6 eV is the ground-state energy of hydro-
gen. The bound parts of the second virial coefficients are
bbound

H-H , bbound
H-e and bbound

H2-e . The dissociation energy of the
hydrogen molecule D0 = 4.75 eV, the vibrational constant
hν/kB = 6338.2 K [48], and the rotational constant B = 87.58
K [48] are included in the bound part of the second virial
coefficient

bbound
H-H = 1√

2
�3

H

(
T

B

)
1

1 − exp(−hν/kBT )
exp(βD0). (13)

Here �μsc
cd = −2ndb

sc
cd/β is scattering part of the nonideal

part of the chemical potential for species c and d. While
the rotational and vibrational states are taken into account
in the bound part (13), the respective excitations are not
considered to be of relevance in the scattering part, following
the discussion in Sec. III. The second virial coefficient for
the H2-H2 interaction is treated using the hard-core model
bH2-H2 = 2π

3 d3
H2

(T ). The diameters of the hydrogen molecule
dH2 and bsc

H-H are taken from Ref. [10]. Data for the second
virial coefficient bH-e can be found in our previous work [17].
The contribution to the second virial coefficient bH2-e is taken
from our calculation (see Table II).

We now focus on the influence of e-H and e-H2 interactions
on the ionization equilibrium. Solutions of the coupled
equations (12) at temperature T = 15 000 K are shown in
Figs. 10 and 11 in terms of the particle-density fractions αe =
ne/ntot

e , αH = nH/ntot
e , αH2 = 2nH2/ntot

e , αH− = 2nH−/ntot
e , and

αH2
− = 3nH2

−/ntot
e . Selected data are also given in Tables III

and IV. Figure 10 shows the result for the free-electron-density
fraction with and without interaction terms �μsc

e-H and �μsc
e-H2

.
Small corrections are observed only at higher densities where
pressure ionization sets in. The composition fraction curve
is shifted to slightly lower densities due to the additional
correlations included. However, looking at a particular density,

TABLE IV. Particle-density fractions at T = 15 000 K for e, H,
H2, H−, and H2

− calculated according to (12) neglecting interaction
terms �μsc

e-H and �μsc
e-H2

.

ntot
e (cm−3) αe αH αH2 αH− αH2

−

1016 0.883 0.117 1.09 × 10−8 4.15 × 10−7 1.32 × 10−13

1018 0.230 0.770 4.75 × 10−5 6.94 × 10−5 1.45 × 10−8

1020 0.0271 0.964 0.00774 0.000967 2.59 × 10−5

1021 0.00978 0.892 0.0944 0.00379 0.00114
1022 0.00682 0.387 0.566 0.0149 0.0249
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for instance, n = 1022 cm−3 (see Tables III and IV), the
free-electron-density fraction can change up to 20%. The
particle-density fractions of more constituents are shown in
Fig. 11. The atomic-density fraction is almost unchanged, but
the other density fractions (H2, H−, and H2

−) are reduced due
to the additional correlations taken into account. Additionally,
in the density region of 1021–1022 cm−3, the effect of the e-H2

virial coefficient leads to a decrease of the molecule-density
fraction, whereas the fractions of negatively charged carriers
(e, H−, and H2

−) and positively charged carriers are increased
(see Table III and IV).

C. Comparison with the excluded-volume approach

The excluded-volume concept is one of the popular simpler
approximations to take the interaction of electrons with
neutrals into account [49]. The fraction of volume occupied by
atoms can be defined with the filling parameter η = 4/3πr3

HnH,
where rH is an atomic radius. The second virial coefficient is
given for a system of hard spheres as

bex
e-H = − 2

3πr3
H. (14)

The composition of partially ionized hydrogen plasma is
calculated by replacing bsc

H-e in the previous calculations with
the second virial coefficient from the excluded-volume concept
bex

e-H with the hard-core radius of rH = 1.0aB. Within the
considered accuracy, this leads approximately to identical
results as for the calculations without an electron-atom inter-
action (see Table IV). This indicates that the excluded-volume
concept with rH = 1.0aB makes the interaction of electrons
and clusters negligible.

On the other hand, it is interesting to fit the radii of
hydrogen atoms and molecules on the basis of the second
virial coefficients according to Eq. (14). Using the data for
bH-e from Ref. [17] and for bH2-e from Table II, one can obtain
the corresponding radii. Table V shows the results of the fit for
different temperatures. The increase of temperature leads to
smaller radii. The high energy of projectile electrons leads to
fast collisions and closer distances. In the last two columns of
Table V, data from Ref. [10] are given. The radii are obtained
by the fitting of the classical virial coefficients assuming a real
potential for H-H and H2-H2 interactions.

Note that the mean particle distance de = di =
(3/4πntot

e )1/3 gives a general limit of applicability of the cluster
virial expansion for temperature and density parameters. At
the total electron density ntot

e = 1.37 × 1022 cm−3 the mean
particle distance is de = 4.90aB. This means that at T =
15 000 K the use of the second virial coefficients is possible
up to this density.

V. CONCLUSION

The cluster virial expansion was applied for the partially
ionized hydrogen plasma with molecular components. In
particular, the scattering phase shifts of electrons on hydrogen
molecules were calculated. The latter were taken as input for

TABLE V. Effective hard-core radius for the hydrogen atom and
molecule interacting with electrons. The first two columns show the
hard-core radius of the hydrogen atom and molecule according to
formula (14). The last two columns are taken from Ref. [10].

T (K) rH/aB, full rH2/aB, full rH/aB rH2/aB

10000 6.88 8.65
11000 6.33 8.25
12000 5.88 7.90
13000 5.50 7.58
14000 5.18 7.30
15000 4.90 7.05 1.50 1.78
20000 3.91 6.12 1.42 1.70
30000 2.91 5.03 1.30 1.57
50000 2.08 3.96
60000 1.86 3.65
70000 1.71 3.41
80000 1.59 3.21
90000 1.50 3.05
100000 1.43 2.91

the Beth-Uhlenbeck formula, which allowed us to calculate the
scattering part of the second virial coefficient. Results for the
e-H2 channel were based on the polarization pseudopotential
model (7), which was adapted to the experimental data of
scattering cross sections. A bound state H2

− occurs in the
bound part of the Beth-Uhlenbeck formula. Alternatively, it
can be considered as a different constituent within the chemical
picture.

Accurate calculation of the second virial coefficients in
a cluster expansion as presented allowed us to describe
thermodynamics. In particular, it was possible to obtain the
chemical potential, free energy, and equation of state of the
partially ionized plasma. The equation of state of plasma is
governed by Coulomb contributions. There is only a very
limited region where the formation of H2 is appreciable.
Then the H2-e interaction is relevant and gives a contribution
(see Fig. 11). Usually, a hard-core approach is considered
to estimate this contribution. We have shown that a more
systematic approach, which is based on microscopic processes,
is possible. An accurate value for the second e-H2 virial
coefficient is necessary if high-precision experiments are
performed in the region of coexistence of both components.

Improvements of the second virial coefficients should
include vibrational and rotational excitational channels in the
scattering theory. The influence of the excitational channels
on the equation of state is a task for future studies. It would
also be of interest to extend our method to conditions of
nonequilibrium.
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