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Anomalous collisional absorption of laser pulses in underdense plasma at low temperature
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In a previous paper [M. Kundu, Phys. Plasmas 21, 013302 (2014)], fractional collisional absorption (α) of laser
light in underdense plasma was studied by using a classical scattering model of electron-ion collision frequency
νei, where total velocity v = √

v2
th + v2

0 (with vth and v0 as the thermal and the ponderomotive velocity of an
electron) dependent Coulomb logarithm ln �(v) was shown to be responsible for the anomalous (unconventional)
increase of νei and α (∝νei) with the laser intensity I0 up to a maximum value about an intensity Ic in the low
temperature (Te < 15 eV) regime and a conventional ≈ I

−3/2
0 decrease when I0 � Ic. One may object that the

anomalous increase in νei and α were partly due to the artifact introduced in ln � through the maximum cutoff
distance bmax ∝ v. In this work, we show similar anomalous increase in νei and α versus I0 (in the low temperature
and underdense density regime) with more accurate quantum and classical kinetic models of νei without using
ln �, but with a proper choice of the total velocity dependent inverse cutoff length kmax ∝ v2 (classical) or
kmax ∝ v (quantum). For a given I0 < 5 × 1014 W cm−2, νei versus Te also exhibits so far unnoticed identical
anomalous increase as νei versus I0, even if the conventional kmax ∝ v2

th or kmax ∝ vth (without v0) is chosen. The
total velocity dependent kmax in the kinetic models, as proposed here, is found to explain the anomalous increase
of α with I0 measured in some earlier laser-plasma experiments.

DOI: 10.1103/PhysRevE.91.043102 PACS number(s): 52.50.Jm

I. INTRODUCTION

Absorption of laser light in dense plasma occurs via
(i) collisionless and (ii) collisional processes. There are a
plethora of collisionless mechanisms, e.g., linear resonance
[1–5], anharmonic resonance [6–11], Brunel heating [3,4,12],
etc., which happen only by meeting specific conditions
between laser and plasma parameters. However, collisional
absorption [1–4,13–20] through electron-ion collision (inverse
bremsstrahlung) occurs almost all the time in the subrelativistic
laser field. Although more than three decades have been spent
in the understanding of collisional absorption in laser-driven
plasmas, there is no universal agreement in the literature for
the average electron-ion collision frequency (νei) in the laser
field [1,2,21–26]. In the classical scattering model (CSM) of
νei (based on the Rutherford scattering), this disagreement is
due to the lack of knowledge of the exact form of the Coulomb
logarithm (ln �) in the expression of νei, where ln � depends
on the maximum and minimum cutoff distances (bmax and bmin)
of an electron from a colliding ion through the relation ln � =
0.5 ln(1 + b2

max/b
2
min). However, the dependence of bmax and

bmin on the laser and plasma parameters is still a debatable issue
[23–25,27–29], which makes νei uncertain. Unless explicitly
noted, for our convenience we use atomic units (a.u.) through
out this paper, i.e., |e| = me = � = 4πε0 = 1, where e and me

are charge and mass of an electron, � is the reduced Planck
constant, and ε0 is the permittivity of the free space.

In the case of an overdense plasma (where plasma frequency
ωp =

√
4πnp is higher than the laser frequency ω), the

maximum cutoff bmax is conventionally taken as the Debye
screening length λd = vth/ωp. Here vth = √

Te is the electron
thermal velocity, Te is the plasma temperature, and np = ne =
Zni is the plasma density, where ne,ni are electron and ion
density, and Z is the ionic charge state. For the underdense
plasma (ωp < ω) there should be either no screening or it
should be reduced. Based on this argument, bmax = vth/ω

is chosen (in the underdense case) in many earlier works
[1,2,21,22,26,30,31]. Classically, bmin is obtained by balancing

the Coulomb potential energy Ze2/4πε0bmin with the thermal
energy eTe of an electron, which gives the conventional
bmin = Z/v2

th (in a.u.). On the other hand, when quantum
phenomena are important, bmin is taken as the thermal
DeBroglie wavelength, i.e., bmin = λB = (2vth)−1. Thus, in
either case, ln � is conventionally taken to be independent of
the ponderomotive velocity v0 = E0/ω and the field strength
E0. As a consequence, for a given np, Te, and ω, one finds
that νei initially remains almost constant [22,26,32–34] with
increasing v0/vth up to some value of v0/vth, then decreases
as v−3

0 when v0/vth � 1 (see Fig. 1 in Ref. [22]). In terms of
the laser intensity I0 ∝ v2

0, νei remains constant up to some
intensity Ic, then it decreases as I

−3/2
0 when I0 � Ic. The

corresponding fractional absorption α (defined as the ratio of
the absorbed laser energy to the incident laser energy) of the
laser pulse vary with I0 in the same way as νei versus I0 since
α ∝ νei. However, in some experiments [2,35], with normally
incident s-polarized laser light, α was found to increase with
I0 up to a maximum value corresponding to an intensity Ic,
and a decrease when I0 > Ic. We explained this anomalous
increase of α versus I0 recently [29] with a variant of CSM
[23–25] (called ballistic model, BM) using total velocity
v =

√
v2

0 + v2
th dependent bmax = v/ω, and bmin = Z/v2 in

ln �. However, all CSMs using ln � have deficiencies and
do not always match with the more accurate kinetic models
[22,26,32–34,36–39]) of νei having no ln � dependence. Note
that in kinetic models the upper cutoff bmax does not appear,
and the only cutoff kmax = 1/bmin is used. Naturally, the artifact
introduced in ln � through bmax is questionable for CSMs.
In fact, a large (unphysical) value of νei may result with
the CSM compared to the kinetic models (particularly) in
the low temperature regime of our interest. For example, as
Te → 0 the collision frequency predicted by CSM becomes
abnormally so high that it predicts 100% fractional absorption.
Although we used CSM in Ref. [29] to show anomalous
absorption, the classical formulation may not be valid in the
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very low temperature (e.g., Te � 5 eV) regime for the classical
nondegenerate plasmas.

To overcome the above mentioned limitations of CSM, in
this work we use kinetic models (both quantum and classical)
and show that anomalous variation of νei and α with I0 are pos-
sible to explain in the regime of low temperature (<15 eV) and
underdense densities for a given laser wavelength, provided
kmax is chosen in some appropriate form. By choosing the
conventional classical cutoff kmax = v2

th/Z (see Refs. [22,33])
or the quantum cutoff kmax = 2vth, we first show the so far
unnoticed (i) anomalous increase of νei versus Te for a given
I0. Then we propose a modified kmax = v2/Z (for the classical
case) or kmax = 2v (for the quantum case), which additionally
depends on E0 and ω, and show (ii) anomalous increase of νei

vs I0 for a given Te < 15 eV. The anomalous variation of νei

and corresponding α with I0 (also with Te) are found only in
the low temperature and low intensity regime as in our earlier
work [29] with CSM, but it was not explored before with the
kinetic models. The proposed kmax in the kinetic model is used
to explain experimental results of laser absorption in Ref. [35],
where the low intensity growing part of the absorption curve
was not explained.

We assume a preionized, underdense plasma illuminated by
laser light of different peak intensities. The wavelength of the
pulse is λ ≈ 66 nm, as considered in Ref. [33]. The condition
for linear resonance absorption ω = ωp, which requires a
p-polarized light, is not satisfied for this case. However,
collisional absorption may continue in the underdense pedestal
region until the p-polarized light travels to the critical density
(it is the density nc = ω2/4π , where ωp = ω is met; for 66 nm,
nc ≈ 2.52 × 1023 cm−3) surface for the resonance absorption.
Collisional absorption, as reported here, is independent of the
polarization state of light, i.e., valid for s-polarized light also.

In Sec. II a description of kinetic models of νei is given.
Results of conventional and anomalous variation of νei with
Te and I0 are shown in Sec. III, and corresponding fractional
absorption α vs I0 is shown in Sec. IV with comparison to
experiments. A summary of the work is given in Sec. V.

II. KINETIC MODELS OF νei

Electron-ion collision frequency is related to the rate of
laser energy absorption (in unit volume) ε̇ = 〈eneve · E〉 as

νei = 4π
(
ω2/ω2

p

)
ε̇/〈E2〉, (1)

where ve is the electron velocity. Depending upon ε̇ (either
quantum mechanical or classical), we get νei varying with
I0 = E2

0 . Assuming the Maxwellian velocity distribution for
electrons (and stationary ions), the quantum mechanical
expression [33] of ε̇ is given by

ε̇ = 8
√

2πZ2neni

v3
e

ω2
∞∑

n=1

n2
∫ ∞

k=0

dk

k3|εRPA(k,nω)|2

× exp

[
−1

2

(
nω

kve

)2

− 1

2

(
k

kB

)2
]

sinh(nω/kBve)

(nω/kBve)

×
∫ 1

0
J 2

n (kr0z) dz. (2)

Here εRPA(k,nω) is the quantum mechanical dielectric
function (which is a complex quantity in general) in the random
phase [26,33,40] approximation (RPA) due to Lindhard [41],
kB = 2ve/� (note � = 1 in a.u.) is the inverse of the DeBroglie
wavelength λB , n is the order of the Bessel function Jn(μ), r0 =
E0/ω

2 is the excursion of a free electron in the laser field, and
k signifies the inverse of the distance of the electron from the
colliding ion. The summation over n indicates the contribution
from different multiphoton absorption processes, with n = 1
being the single photon contribution to the absorption. The
quantum effect enters through kB . The integrals and the
summation [in Eq. (2)] can be computed numerically with
chosen upper limits of n = nmax and k = kmax. The choice
of kmax is crucial for νei, and conventionally it is taken as
kmax = 1/bmin = v2

th/Z [22,33]. Note that Eq. (2) is free from
the cutoff bmax = 1/kmin, which is required for ln � in the
case of CSM. The complex dielectric function εRPA(k,ω) can
be obtained from the relation [40]

εRPA(k,ω) = 1 + 1

2

(
ωp

kve

)2
f (x − q/2) − f (x + q/2)

q
, (3)

where f (x) = π−1/2
∫ ∞
−∞ dt exp(−t2)/(t − x) is the plasma

dispersion function, x = ω/
√

2kve, and q/2 = k/
√

2kB.
f (x) is related to the the Dawson’s integral D(x) =
exp(−x2)

∫ x

0 dt exp(t2) as f (x) = −2D(x) + i
√

π exp(−x2).
Detail calculation of εRPA = ε1 + iε2 leads to writing the real
and imaginary parts as

ε1(k,ω) = 1 + 1√
2

(
ωp

ω

)2 (
ω

kve

)2

G2(k,ω), (4a)

ε2(k,ω) =
√

π

2

(
ωp

ω

)2 (
ω

kve

)3

G1(k,ω), (4b)

where G1(k,ω) = exp{−[(ω/kve)2 + (k/kB)2]/2} sinh(ω/kBve)
(ω/kBve) ,

G2(k,ω) = (kB/k)[D+(k,ω) − D−(k,ω)], and D±(k,ω) =
D([ω/kve ± k/kB]/

√
2).

A. Classical approximation

Classical results of G1, G2, ε1, and ε2 can be obtained by set-
ting kB → ∞ (for � → 0) giving GCL

1 (k,ω) = exp[− (ω/kve)2

2 ],
GCL

2 (k,ω) = √
2[1 − √

2( ω
kve

)D( ω√
2kve

)],

εCL
1 (k,ω) = 1 + 1√

2

(
ωp

ω

)2 (
ω

kve

)2

GCL
2 (k,ω), (5a)

εCL
2 (k,ω) =

√
π

2

(
ωp

ω

)2 (
ω

kve

)3

GCL
1 (k,ω). (5b)

To evaluate above limiting values, we have used the L’Hospital
rule, antisymmetry, and derivative properties of D(x), namely,
D(−x) = −D(x) and D′(x) = 1 − 2xD(x), when required.
Corresponding classical dielectric function εCL

RPA = εCL
1 +

iεCL
2 gives the classical expression of energy absorption
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rate,

ε̇CL = 8
√

2πZ2neni

v3
e

ω2
∞∑

n=1

n2
∫ ∞

k=0

dk

k3
∣∣εCL

RPA(k,nω)
∣∣2

× exp[−(nω/kve)2/2]
∫ 1

0
J 2

n (kr0z) dz. (6)

The Dawson-Oberman model (Eq. (22) in Ref. [22]) of νei can
be recovered from Eq. (6) by assuming |εCL

RPA|2 ≈ 1, leading to

ε̇CL
Dawson = 8

√
2πZ2neni

v3
e

ω2
∞∑

n=1

n2
∫ ∞

k=0

dk

k3

× exp[−(nω/kve)2/2]
∫ 1

0
J 2

n (kr0z) dz. (7)

We use Eqs. (2), (6), (7) and obtain corresponding νei from
Eq. (1) for a given set of laser and plasma parameters. The
CSM (called ballistic model, BM) of νei given by Mulser et al.
[25] is not described here for conciseness, but it will be used
for comparison with the kinetic models whenever it is needed.

III. RESULTS FOR νei

We now present results of νei at various values of Te con-
sidering different models mentioned above. Special attention
is given to the low temperature regime. Plasma is assumed
to be uniformly charged with Z = 1 (hydrogenlike), den-
sity ne = Zni = np = 1028/m3, temperature Te = 25.86 eV,
and ω/ωp = 5, giving the laser wavelength λ ≈ 66 nm as
considered in Ref. [33]. For numerical calculations of νei

we have chosen nmax = 20, and kmax is discretized up to
mmax = 100 distinct values such that kmax = mmax 	k and
k = m 	k. The above parameters are kept unchanged unless
mentioned explicitly.

A. Conventional variation of frequency

Figure 1 shows normalized frequency νei/ωp versus nor-
malized velocity v0/vth using expressions (2), (6), (7) and
the CSM [25,29] represented by “Bornath-Q,” “Bornath-C,”
“Dawson-C,” and “Mulser-C,” respectively, for Te = 25.86 eV.
Results are plotted in log-linear [Fig. 1(a)] and log-log
[Fig. 1(b)] scale for the purpose of comparison with Ref. [33].
In this case, we have used the conventional kmax = v2

th/Z, and
bmax = vth/ω (bmax is used only for the CSM case with ln �

shown as “Mulser-C”). The log-log plot [Fig. 1(b)] shows
good agreement with Ref. [33] (see Fig. 1 of Ref. [33]), but
the difference between different approximations of νei/ωp is
not clear, which is more visible in Fig. 1(a). For v0/vth > 1,
the quantum result (“Bornath-Q”) is found to match very
well with classical kinetic approximations (“Bornath-C” and
“Dawson-C”), but it is a little overestimated for v0/vth < 1 by
the classical kinetic approximations. Good agreement between
the classical approximations (“Bornath-C” and “Dawson-C”)
for all values of v0/vth justifies the assumption |εCL

RPA|2 ≈ 1 in
Ref. [22]. The CSM (“Mulser-C”), however, shows relatively
larger deviation (which is found to increase further for lower
temperatures Te < 25.86 eV) from the quantum result. This
is due to the artificial cutoff bmax in the CSM (“Mulser-C”),
suggesting that an improvement in ln � is required. Due to

FIG. 1. (Color online) Variation of νei/ωp with v0/vth in (a)
log-linear and (b) log-log scale with Te = 25.86 eV, Z = 1, np =
1028/m3, and ω/ωp = 5, giving λ ≈ 66 nm. Legends describe differ-
ent expressions used for νei, e.g., “Bornath-Q” [Eq. (2)], “Bornath-C”
[Eq. (6)], “Dawson-C” [Eq. (7)], and the ballistic model [25] by
“Mulser-C,” where we use bmin = 1/kmax = Z/v2

th, bmax = vth/ω for
ln �.

this deficiency, CSM is not pursued for further comparison.
However, in all cases, the universally accepted, conventional
feature is that νei/ωp remains almost constant up to a value of
v0/vth ≈ 1, and then it drops rapidly when v0/vth � 1.

B. Anomalous variation of frequency

Unfortunately, collision frequency at a lower temperature
Te < 25.86 eV has not been studied in detail with kinetic
models. From the literature [1,2] (and references therein) it
is often unambiguously quoted that νei should decrease with
Te as νei ∝ T

−3/2
e . We show that this conventional conjecture

is violated in the low temperature regime where νei may
increase with increasing Te, even if the conventional cutoff
kmax = v2

th/Z is taken to be true.
Figure 2 shows νei/ωp versus v0/vth, as in Fig. 1, with

Te = 10 eV [Fig. 2(a)] and Te = 15 eV [Fig. 2(b)]. Apart
from the common features, the comparison among Figs. 2(a),
2(b), and 1(b) clearly shows that νei/ωp increases from a value
≈ 2 × 10−4 to ≈ 2 × 10−2 (almost 100-fold increment) for
v0/vth < 1 as Te is increased from 10 to 25.86 eV. To show it
more clearly, Fig. 3 depicts νei/ωp versus Te for a fixed intensity
∼1014 W cm−2. It shows that νei/ωp increases monotonically
with increasing Te up to a maximum value about Te ≈ 35 eV
(indicated by a shaded region), and then νei/ωp decreases as Te

is increased beyond Te ≈ 35 eV. Just after the maximum the
rate of decrease of νei/ωp is much slower (νei/ωp vs Te is nearly
linear up to ≈ 60 eV) than the conventional νei/ωp ∝ T

−3/2
e

fall, shown by a thin dashed line.
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FIG. 2. (Color online) Variation of νei/ωp with v0/vth for (a) Te =
10 eV and (b) Te = 15 eV, using kmax = v2

th/Z. Other parameters are
the same as in Fig. 1.

1. The effect of laser field

So far, the effect of laser field strength has not been taken
into account in kmax (in earlier kinetic models), which is not
justified. kmax should depend on the parameters of the laser field
through the ponderomotive velocity v0 in some form which is
not exactly known, and the conventional relation kmax = v2

th/Z,
as used previously, should be modified [25,29] depending on
the total velocity v =

√
v2

0 + v2
th of the electron. Replacing vth

with v in kmax and taking kmax = v2/Z, we show below that

FIG. 3. (Color online) Variation of νei/ωp with Te (in eV) using
kmax = v2

th/Z and I0 = 1014 W cm−2. Anomalous increase of νei/ωp

is indicated by a shaded region. The νei/ωp ∝ T −3/2
e line shows

conventional scaling of νei/ωp with Te, which does not obey kinetic
results just after the frequency maximum with increasing Te, but it
may be valid for higher Te > 80 eV, where the T −3/2

e line becomes
parallel to the lines obtained by kinetic models. Other parameters are
same as in Fig. 1.

FIG. 4. (Color online) Variation of νei/ωp with the peak intensity
for different kinetic models using total velocity dependent kmax =
v2/Z. Other parameters are same as in Fig. 1. Frequency increases
up to a maximum value; after that, it decreases as the intensity is
increased.

the conventional I
−3/2
0 decrease of νei is also not obeyed in the

low temperature and low intensity regime.
Figure 4 shows νei/ωp versus I0 for the same parameters of

Fig. 1, except that kmax = v2/Z has been used here. We have
plotted νei/ωp against the peak intensity (instead of v0/vth as
in Fig. 1) since it is an experimentally measurable parameter.
For a fixed Te = 25.86 eV (as in Fig. 1), νei/ωp [corresponding
to Eqs. (2), (6), (7)] slowly increases with I0 up to a maximum
value. This anomalous increase of νei/ωp with I0 (similar to
νei/ωp versus Te in Fig. 3) is due to the total velocity dependent
kmax in the kinetic models, and it will be shown to be more
prominent at a lower temperature in Sec. IV.

2. Explanation for the anomalous increase of νei

To understand the anomalous increase of νei with Te and I0

in the existing models, let us consider only the quantum case
(“Bornath-Q”) of Fig. 4. Here we restrict to smaller values
of nmax = 1 and mmax = 21, with kmax = v2/Z. For a chosen
value of m where 1 < m � mmax, the k integral is computed
up to m	k. Results are shown in Fig. 5 for successive values

FIG. 5. (Color online) Variation of νei/ωp with intensity (using
full quantum calculation, represented by “Bornath-Q” in Fig. 4) for
successive k values up to kmax (represented by m up to mmax) and
nmax = 1. Other parameters are the same as in Fig. 4.
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FIG. 6. (Color online) Q(k) versus k (multiplied by ve = vth =√
Te) for Te = 25,50, . . . ,175 eV with a fixed intensity 1014 W cm−2.

We have chosen kmax = v2
th/Z, mmax = 21, and nmax = 1. Other

parameters are the same as in Fig. 4. With increasing Te the peak value
of Q, and the area under the corresponding Q versus k, gradually
increases to maximum value for Te = 75–100 eV; then it drops for
higher Te > 100 eV.

of k up to kmax. When k is small (for small m), frequency
versus intensity variation shows a well defined peak which
subsequently disappears when k increases to a higher value. It
hints that anomalous increase in the frequency with intensity
can be profound in the low temperature regime. The final curve
for k = kmax (m = mmax = 21) closely matches the quantum
result in Fig. 4 (“Bornath-Q”) for all intensities with less than
1% disagreement, although smaller values of mmax and nmax are
chosen for Fig. 5. The present result with nmax = 1 indicates
single photon absorption is the most dominant process, and
the contributions from higher order photoabsorption processes
with nmax > 1 are not so significant.

The minor difference between the quantum result
(“Bornath-Q”) and classical results (“Dawson-C” and
“Bornath-C”) in Figs. 3 and 4 suggests that the role of the
terms |εRPA(k,nω)|2, exp[−(k/kB)2/2], and sinh(nω/kBve)/
(nω/kBve) can be ignored at least for the understanding of the
anomalous increase of νei with Te. Suppressing the prefactor,
we express the remaining part of νei [using Eqs. (1) and (2)] as

R = 1

I0

nmax∑
1

∫ kmax

0
dk

(
n2ω2

k3v3
e

)
exp

[
−1

2

(
nω

kve

)2
]

×
∫ 1

0
J 2

n (kr0z) dz. (8)

Since single-photon absorption is the dominant process, it will
be sufficient if we understand the anomalous increase of νei

with respect to Te for nmax = 1. In this case we write R =
I−1

0

∫ kmax

0 dk Q(k), where the integrand Q(k) reads

Q(k) = (
ω2/k3v3

e

)
exp[−(ω/kve)2/2]

∫ 1

0
J 2

1 (kr0z) dz. (9)

Let us now keep I0 fixed and vary Te as in Fig. 3 with
kmax = v2

th/Z. In Fig. 6, we plot the function Q versus k

(multiplied by ve = vth = √
Te) for Te = 25,50, . . . ,175 eV.

As Te increases, the area under Q versus k curve first increases,
reaches a maximum value for Te = 75–100 eV (where curves

FIG. 7. (Color online) Variation of νei/ωp with Te (in eV) using
kmax = 2vth. Anomalous increase of νei/ωp is indicated by a shaded
region. The conventional scaling νei/ωp ∝ T −3/2

e line does not obey
kinetic results just after the frequency maximum with increasing Te,
but it seems to be valid for higher Te > 60 eV, where the T −3/2

e

line becomes parallel to the lines obtained by kinetic models. Other
parameters are the same as in Fig. 1.

are overlapped), and then it decreases for higher Te > 100 eV
(visible in the inset plot). The increasing area under the
successive Q versus k curves with increasing Te explains the
anomalous growth of νei/ωp in Fig. 3 in the low temperature
regime.

3. Frequency variation with quantum cutoff

In previous sections, we considered either a thermal
velocity dependent cutoff kmax = v2

th/Z or a total velocity
dependent cutoff kmax = v2/Z. There may be a situation [33],
where DeBroglie wavelength λB and the corresponding cutoff
kB = 1/λB becomes important. For the sake of completeness,
we now consider kmax = kB . Traditionally, in the literature,
only the thermal DeBroglie wavelength [33] leading to kmax =
kB = 2vth (in a.u.) is considered. Figure 7 shows νei/ωp vs
Te with the cutoff kmax = 2vth for the same parameters of
Fig. 1. Initially, νei increases with increasing Te, reaches a
maximum value, then drops as T

−3/2
e for large Te as in Fig.

3 where classical cutoff kmax = v2
th/Z was used. Compared to

Fig. 3, the maximum value of νei/ωp is now higher, but the
peak position is shifted toward a lower Te ≈ 15 eV, which
is expected due to linear dependence of kmax on vth = √

Te

in the present case. With two different cutoffs, we thus show
anomalous increase in νei in the low temperature regime.

The traditional quantum cutoff kmax = 2vth, however, does
not depend on laser field parameters and may not be justified
when electrons are driven by the laser field. In Sec. IV we
propose to use kmax = kB = 2v depending upon the total
velocity v (as in Sec. III B 1) to study absorption of laser light
in underdense plasma.

IV. COLLISIONAL ABSORPTION OF LIGHT WAVES
IN UNDERDENSE PLASMA

We have shown that anomalous increase of collision
frequency with temperature or intensity occurs in the low
temperature and low intensity regime. This information can be
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used to find absorption of laser light in an underdense plasma
slab. In this case, the fractional absorption of light (at a normal
incidence) can be written as [1,2]

α = 1 − It/Iinc = 1 − exp(−2κiL), (10)

where Iinc,It are the incident and the transmitted intensity
of light, κi = (n/nc)νei/vg, vg = c

√
1 − n/nc is the group

velocity of light, and L is the thickness of the plasma slab.
The relation α ≈ 2(n/nc)νei/vg holds when κi is very small,
and it shows that α should vary similarly to νei with respect to
Te and I0 for a fixed density of the plasma and laser frequency.

For illustration we assume a preionized plasma slab
with density np = nc/25 (i.e., np = 1028/m3) and thickness
L = 200 λ irradiated by laser of wavelength λ ≈ 66 nm.
From Figs. 3 and 7 it is clear that anomalous frequency
increase is possible if Te is less than the value at which
respective frequency maximum occurs. With the quantum
cutoff kmax = 2vth, the frequency maximum is shifted toward
a lower value of Te relative to the value corresponding to
the classical cutoff kmax = v2

th/Z in Fig. 3. It means that if
we intend to have frequency increase for both the cutoffs,
then Te should be well below 15 eV, which is evident from
Fig. 7.

Figure 8 shows variation of νei/ωp, and corresponding
α against I0 using (i) Te = 15 eV with the classical cutoff
kmax = v2/Z [in panels (a) and (b)] and (ii) Te = 5 eV with
the quantum cutoff kmax = 2v [in panels (c) and (d)]. Note that
in both cases we have used total velocity dependent cutoffs.
It is seen that νei and α grow hand in hand up to a maximum
value with increasing intensity up to ≈ 1016 W cm−2 (with the
classical cutoff) and ≈ 5 × 1015 W cm−2 (with the quantum
cutoff), and after that they fall together. This anomalous
growth of α was found in some experiments [2,35]. Earlier we
provided an explanation [29] for this experimentally observed
fact with a CSM [23–25] using total velocity dependent ln �.
Here we find the same anomalous growing nature of α versus I0

with more accurate kinetic models. It is seen that discrepancy
persists among these models, which may be as large as 20%
(for νei) in the low intensity regime. When I0 exceeds Ic,

corresponding to the maximum of νei (or α), discrepancy
among different models tends to disappear.

Comparison with experimental results

Using the classical cutoff at Te = 15 eV and the quan-
tum cutoff at Te = 5 eV, nearly 10%–35% and 30%–60%
maximum absorption of light is predicted in Figs. 8(b) and
8(d), respectively (for the parameters considered here), at
lower intensities <5 × 1015 W cm−2. In Ref. [35] maximum
fractional absorption was found nearly 65%, which is close
to that in Fig. 8(d). Since νei ∝ np, one can expect a higher
value of α (either due to a higher np < nc or due to a
larger plasma thickness L), and α may saturate to unity for
a wide range of laser intensity. Such a high level of nearly
100% collisional absorption was also reported in experiments
[2].

One may argue that reported experimental results [2,35] are
at different wavelengths (λ = 800 nm, and λ = 268 nm), and
it is not justified to compare those results with Fig. 8 at λ = 66
nm. To answer this, we have retrieved the experimental data
from Ref. [35] and plotted in Fig. 9 along with the results from
different kinetic models for λ = 268 nm. A plasma density
of np = 0.3nc, temperature Te = 5 eV, and slab thickness
L = 10λ are assumed, since these parameters are unknown to
us. The Fermi energy EF = (�2/2me)(3π2np)2/3 of electrons
for np = 0.3nc and the Fermi temperature TF = 2EF /5 being
much less than Te = 5 eV, plasma can be assumed to be
nondegenerate. Corresponding electron coupling parameter
�e = e2/aeTe (ae = n

−1/3
p is the interparticle distance) is found

to be ≈ 0.5. For such a coupling strength, which is closer
to unity, the classical Dawson-Oberman model [Eq. (7)] will
break [33]. However, Eqs. (2) and (6) by Bornath et al. are still
applicable. Good agreement is found between the experimental
data and theoretical predictions at various intensities (specially
below 1016 W cm−2) with a growth of α up to a maximum
value ≈ 65% about an intensity Ic ≈ 1015 W cm−2 and a
gradual decrease after Ic. Theoretical predictions are found to
deviate significantly from the experimental data at intensities

FIG. 8. (Color online) Variation of νei/ωp and α with laser intensity for a hydrogen like plasma of Z = 1, np = 1028/m3, and np = nc/25.
For (a), (b) Te = 15 eV with classical cutoff kmax = v2/Z, and for (c), (d) Te = 5 eV with quantum cutoff kmax = 2v are used. Thickness of the
plasma slab is L = 200λ = 13.38 × 10−6 m.
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FIG. 9. (Color online) Comparison of experimental data (from
Ref. [35]) of α versus I0 with predictions from kinetic models for
λ = 268 nm, np = 0.3nc, Te = 5 eV, and kmax = v2/Z. Thickness of
the plasma slab is chosen as L = 10λ = 2.68 × 10−6 m.

>1016 W cm−2. This may be due to the very simple assumption
of a constant np. In reality, density modification is slow at
lower intensities, but there may be significant rise in the
plasma density when I0 > 1015 W cm−2. Although there is no
such rule which can self-consistently decide np(I0), we may
assume a simple profile np/nc = 0.3 [1 + 1.5 tanh(I0/Ia.u.)]
as an illustration, where Ia.u. = 3.51 × 1016 W cm−2 is the
intensity corresponding to 1 a.u. Results of α versus I0 in
Fig. 10 (with variable density) show an improved agreement
of theoretical profiles with the experimental data, especially in
the higher intensity side compared to that in Fig. 9. However,
the modified, total velocity dependent kmax is not the only
possibility which explains the experimental data well; there
may be other unknown physical aspects for the anomalous
nature of collisional absorption.

Anomalous behavior of absorption was also measured in
Ref. [42] by offsetting the focal plane of the laser light with
respect to the target front and in the laser-driven parylene disks
[43]. However, physical explanation behind such absorption

FIG. 10. (Color online) Comparison of experimental data (from
Ref. [35]) of α versus I0, with predictions from kinetic models, using
a variable density profile np/nc = 0.3 [1 + 1.5 tanh(I0/Ia.u.)]. Other
parameters are as in Fig. 9.

seems to be still lacking. In Ref. [42], possible reasons for
anomalous absorption of light were thought to be due to
“enhanced collisional absorption due to the ion turbulence or
parametric decay instabilities” in a thin plasma layer adjacent
to the critical density surface, and the resonance absorption
process was not dominant. Experiments by Hass et al. [43] with
a parylene disk target showed a gradual increase of fractional
absorption from ≈ 27% at I0 ≈ 2 × 1015 W cm−2 to ≈ 41% at
I0 ≈ 4 × 1016 W cm−2, which is of “nonclassical” nature. The
standard theory of collisional absorption cannot account for
such anomalous absorption and deserves further investigation.

V. SUMMARY

We have reexamined electron-ion collision frequency νei

in an intense laser field and the corresponding absorption of
laser pulses in an underdense plasma with existing quantum
kinetic and classical kinetic models of νei. Particular attention
has been given to the low temperature (Te < 15 eV) and low
intensity (I0 < 5 × 1014) regime where electron-ion collisions
are significant. According to the conventional picture, most
of the models [1,2,21,22,26,34,35] of νei show that νei (and
the corresponding fractional absorption α) vary as T

−3/2
e and

I
−3/2
0 with respect to Te and I0, respectively. For a given

intensity I0 < 5 × 1014 W cm−2, assuming the conventional
expression of inverse cutoff distances kmax = v2

th/Z (classical)
or kmax = 2vth (quantum) as used in the literature [22,33], it
is shown that νei increases monotonically to maximum as Te

is increased from a lower value and after the maximum νei

decreases according to the conventional relation νei ∝ T
−3/2

e

when Te is too high. Thus, the conventional picture is found to
be true only in the high temperature and high intensity regime.
Moreover, the conventional kmax only depends on the thermal
velocity [22,33], which is not justified and must depend on the
ponderomotive velocity v0 = E0/ω. For a given Te < 15 eV
and a total velocity v =

√
v2

th + v2
0 dependent kmax (proposed

in this work), as the intensity is increased from a lower value
<5 × 1015 W cm−2, the frequency νei is also found to increase
monotonically up to a maximum value similar to νei versus Te

at a constant I0. The fractional absorption α which is almost
proportional to νei, follows the same anomalous variation with
respect to Te and I0 as νei. Thus, in both ways, we show growth
of νei and α with Te and with I0 up to a maximum using classical
and quantum cutoff kmax. Anomalous increase of νei with Te

and with I0 were not pointed out earlier with kinetic models,
because the low-temperature regime was not investigated as
reported here.

Previously, we reported [29] similar anomalous increase
of νei (and α) by a CSM of νei using a total velocity
dependent Coulomb logarithm ln �(v) in the expression of
νei. However, the cutoff bmax used in ln � in CSM is a known
artifact, and one may suspect that the anomalous increase of
νei and α in Ref. [29] were due to this effect. The kinetic
models, however, are free from bmax and give qualitative
support to our earlier findings [29]. Anomalous increase of
fractional absorption with intensity was also observed in
some experiments [2,35,43]. Our earlier work [29] using
CSM and the present work using kinetic models with a
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total velocity dependent kmax may be attributed to some of
those experimentally [2,35,43] found anomalous collisional
absorption. In fact, theoretical predictions are found to match
well with the experimental results of Ref. [35].
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