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Effect of gravity on clustering patterns and inertial particle attractors in kinematic simulations
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In this paper, we study the clustering of inertial particles using a periodic kinematic simulation. The systematic
Lagrangian tracking of particles makes it possible to identify the particles’ clustering patterns for different values
of particle inertia and drift velocity. The different cases are characterized by different pairs of Stokes number (St)
and Froude number (Fr). For the present study, 0 � St � 1 and 0.4 � Fr � 1.4. The main focus is to identify
and then quantify the clustering attractor—when it exists—that is the set of points in the physical space where
the particles settle when time goes to infinity. Depending on the gravity effect and inertia values, the Lagrangian
attractor can have different dimensions, varying from the initial three-dimensional space to two-dimensional
layers and one-dimensional attractors that can be shifted from a horizontal to a vertical position.
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I. INTRODUCTION

Clustering could be defined as the propensity of an initially
uniformly distributed cloud of particles to accumulate in some
regions of physical space. This is an important phenomenon to
understand in order to explore, identify, and possibly monitor
some natural or handmade mixing processes, such as those
causing rain formation [1], sediment transportation [2], fuel
mixing, and combustion.

There are different ways to analyze particle clustering in
turbulent flow and direct numerical simulation (DNS) is the
most widely used method (e.g., [3–5]). Particle clustering
depends on both the flow conditions and the particle character-
istics. Different flow conditions can lead to different clusters.
The clustering mechanism would be different in the inertial
or dissipation range of turbulent flow [6]. In our paper, we
only study the effect of the scales in the inertial range and
this is possible by using a synthetic model where forcing
and dissipation are not needed to develop the inertial range.
While considering particle characteristics, most of the studies
on particle clustering have been conducted in the absence of
external forces on particles, but the effect of gravity (external
force) was discussed in relation to cloud physics and rain
formation in [5,7].

More recently, the effect of gravity on the clustering
mechanism has been further emphasized in [8–10]. In the
present study, to observe the clustering pattern in the presence
of gravity, the particles are initially uniformly distributed in the
kinematic simulation (KS) flow. Though there is no particular
difficulty in considering particles with different inertia in
kinematic simulation, this study is limited to monodispersed
seeding, i.e., particles having the same inertia. Furthermore,
the particles are considered small enough so that they neither
affect the flow nor interact with each other (one-way coupling).
The positions of particles are monitored as a function of time
and a Lagrangian attractor is observed for some cases. That is,
the initially distributed cloud of particles will end in a set of loci
that does not evolve any further. The particles move within that

*Corresponding author: F.Nicolleau@Sheffield.ac.uk

set of loci, which defines the structure of the Lagrangian attrac-
tor, and its dependence on St and Fr numbers is studied here.

We only consider attractors with integer dimensions (one-
dimensional and two-dimensional structures) which are easy
to identify. Different types of methods can be found in the
literature to identify and then quantify particle clustering
patterns, e.g., correlation dimension [6], radial distribution
function (RDF) [4], and the average-distance-to-nearest-
neighbor method [8]. The selection of a method is mainly
based on the objective of the study. For example, the RDF has
the advantage of being directly related to the droplet collision
rate. For the present work, the box-counting method (BCM)
and the nearest-neighbor-distance analysis are implemented to
identify the integer dimensions of Lagrangian attractor in the
presence of gravity.

The paper is organized as follows: in Sec. II, we introduce
the KS model, its notations, and its parameters. The different
kinds of Lagrangian attractor are discussed and introduced
in Sec. III. A quantitative analysis is conducted in Sec. IV.
Section V summarizes our main conclusions.

II. KINEMATIC SIMULATION TECHNIQUE

Kinematic simulation (KS) is a particular case of synthetic
turbulence where the focus is on the particle’s trajectory at the
expense of solving the Navier-Stokes equation. An analytical
formula “synthetic flow” is used for the Eulerian flow field.
The simplicity of the KS model excludes some features of real
turbulent flow, but captures the part of the physics which is
required to perform Lagrangian particle tracking. Such is the
idea with synthetic turbulence, which retains less information
than the whole flow, but tries to keep what is paramount for
the Lagrangian story.

KS modeling has been successfully employed and vali-
dated [11–13]. This kind of simulation is much less consuming
of computing time than DNS which is important for the present
study where we need to run many cases (about 400 cases for
up to 1200 turnover time). Each case corresponds to a given
St, Fr, and time and involves 15 625 particles.

With synthetic simulations, one can develop models where
turbulence ingredients and complexity can be added step
by step, helping researchers to understand their respective
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importance. These synthetic models can be a useful comple-
ment to direct numerical simulation. In particular, KS was
instrumental in discriminating between the role of Lagrangian
and Eulerian correlations for vertical diffusion in stratified and
rotating flows [14]. With KS, it is also possible to play with
the spectral law [15] and its consequences in terms of the
particle’s dispersion. We also refer to the work of [16,17] for a
discussion of how the work on KS can help to understand the
sweeping effect on two-particle dispersion.

KS was first introduced as a way to understand particle
dispersion rather than particle clustering, but we propose here
a work getting back to the main strength of KS, which is
to provide a coherent Lagrangian framework where some
parameters (e.g., spectra [15], waves [14,18], etc.) can be
studied in detail, posing the basis for a comparison with
experiments. Previous work [19,20] particularly supports the
use of KS for studying the evolution of the particle cloud in the
absence of gravity effect, which made the study more about
segregation than clustering.

As we are not interested in two-particle dispersion, we limit
our study to small Reynolds numbers, more precisely, to scale
ratio kimax/kimin = 15 (i = 1, 2, or 3).

A. Periodic KS method for isotropic turbulence

In kinematic simulation, the underlying Eulerian velocity
field is generated as a sum of random incompressible Fourier
modes with a prescribed energy spectrum E(k). Here we limit
the study to a Kolmogorov-type spectral law, E(k) ∼ k−5/3.
Using KS, the computational task reduces to calculate the
trajectory of each particle placed in the turbulent field initially
at X0. Each trajectory is, for a given initial condition, a solution
of the differential equation set

dX
dt

= V(t), (1)

dV
dt

= F[uE(X,t),V,t], (2)

where X(t) is the particle’s position, V(t) is its Lagrangian
velocity, and uE is the analytical Eulerian velocity used in
KS. F is a function relating the Lagrangian acceleration to the
Eulerian and Lagrangian velocities.

In KS, uE takes the form of a truncated Fourier series, i.e.,
the sum of Nk = N3 Fourier modes:

u(x) =
N∑

i=1

N∑
j=1

N∑
K=1

aijlcos(kijl · x) + bijlsin(kijl · x), (3)

where aijl and bijl are the decomposition coefficients corre-
sponding to the wave vector kijl. In its general form, the KS
field can also be a function of time, but we limit the study to a
steady KS. The effect of introducing a time dependence in the
Fourier modes will be the objective of future study.

Unlike the classic KS decomposition [21,22], here the
wave vectors kijl = (ki,kj ,kl) are implemented arithmetically

to enforce a periodic condition for the flow field:

ki = 2π

Lx

(ni − 1), (4)

kj = 2π

Ly

(nj − 1), (5)

kl = 2π

Lz

(nl − 1), (6)

where (ni,nj ,nk) are integers satisfying 1 � ni � N . In
practice, we choose (Lx = Ly = Lz) for creating isotropic
turbulence and to ensure the flow incompressibility; the Fourier
coefficient vectors aijl and bijl are set orthogonal to the wave
vector,

aijl · kijl = bijl · kijl = 0. (7)

Their magnitude is fixed by the energy spectrum, E(k),

|aijk|2 = |bijk|2 = 2E(k)�kijl/mk, (8)

where mk is the number of wave vectors of wave number
k = ‖kijl‖. The spectrum follows the Kolmogorov form in the
inertial range,

E(k) = Ak−5/3 for kmin � k � kmax, (9)

where A is a constant. From the spectral law, the rms velocity
and the integral length scale can be defined as follows:

urms =
√

2

3

∫ kmax

kmin

E(k)dk, (10)

L = 3π

4

∫ kmax

kmin
k−1E(k)dk∫ kmax

kmin
E(k)dk

. (11)

The Kolmogorov length scale is defined as η = 2π/kmax,
whereas the largest physical scale is L = 2π/kmin, which de-
termines the inertial range [η,L] over which (9) is observed. It
is worth noting thatL � L for sufficiently large inertial ranges.
However, here in contrast to other KS studies the inertial range
is small and L � 5L. In this paper, nondimensional numbers
(St and Fr) are based on the integral length scale L and, for
the sake of future comparisons, both are reported in Table I.
The ratio between the largest length scale and the Kolmogorov
length scale is kmax/kmin and the associated Reynolds number

TABLE I. Periodic KS parameters.

Lx = Ly = Lz 1
N 10
Np 15625
urms 0.8703
L 0.2106
L 1
η 0.0642
T 0.2420
td 1.1491
ki/kimin 15
kmax/kmin 15.5885
ReL 38.94
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(a) (b)

FIG. 1. (Color online) Particles’ (a) initial distribution and (b) reinjection.

is ReL = (kmax/kmin)4/3. This is the standard way to define a
Reynolds number in KS, and a DNS or an experiment yielding
the same ratio kmax/kmin would have a much larger Reynolds
number. Finally, a characteristic time for normalization can be
td = L/urms or T = L/urms. All of the periodic KS parameters
are gathered in Table I.

The particles are initially homogeneously distributed, as
shown in Fig. 1(a), and whenever a particle leaves the
turbulence box domain (e.g., Xi > Lx), it is reinjected from
the opposite side, as shown in Fig. 1(b), to keep the periodic
condition.

B. Equation of motion

Following [23], the equation of motion for the inertial
particle is derived from [24,25] and consists of a drag force
and drift acceleration (weight),

dV
dt

= 1

τa

{u[xp(t),t] − V(t) + Vd}, (12)

where τa is the particle’s aerodynamic response time and Vd =
τa g is the particle’s terminal fall velocity or drift velocity.

C. Nondimensional parameters

Three nondimensional parameters are introduced to make
qualitative and quantitative analyses of the particle clustering.

(a) The Stokes number expresses the ratio between the
particle’s response time (inertia effect) and the turbulence
characteristic time,

St = τa/T = τaurms/L. (13)

It measures the relative importance of the particle inertia. In
the limiting case St = 0, the heavy particles recover the motion
of the fluid tracers, whereas for St → ∞, the heavy particles
become less and less influenced by the surrounding velocity
field.

(b) The Froude number is the ratio between inertial forces
and gravitational forces,

Fr = urms/
√

gL. (14)

In our study, the rms velocity urms and inertial length scale are
constant and g is varied.

(c) The drift parameter is the ratio between the particle’s
drift velocity and the turbulence rms velocity,

γ = Vd/urms. (15)

The drift parameter can still be defined without gravity. Then
γ can be considered as measuring the effect of a mean
velocity Vd .

If Vd is caused by gravity,

γ = τag/urms, (16)

then in this case the drift parameter is affected by both the
gravity and the particle’s inertia.

(d) γ can be expressed as a function of Stokes and Froude
numbers so, for a given turbulence, the case corresponding to
a constant gravity, that is, varying τa only, is given by

Fr = const, (17)

γ ∼ St. (18)

III. RESULTS AND DISCUSSION

A. Clustering pattern variations in relation to time of evolution

The particles initially uniformly distributed in the flow field
are allowed to evolve until a Lagrangian attractor is achieved.
The shape of the attractor varies from clear one-dimensional
structures (Figs. 2 and 3) to three-dimensional distributed
structures column (d) of Fig. 4(e) or two-dimensional curtain-
like structures [column (d) of Fig. 4(h)]. For a short time, the
attractor’s shape is time dependent, as shown in Figs. 2 and 3.
The time evolution of the cluster depends on nondimensional
parameters St and Fr, as illustrated in Fig. 2, where it takes
four times longer to reach the one-dimensional Lagrangian
attractor than in the case of Fig. 3. In this paper, we do not
intend to study the temporal evolution of cluster attractors and
are only interested in the attractor’s asymptotic form (i.e., for
t → ∞).

In this section, we focus on the qualitative measure of
attractors and only a few cases are presented in Figs. 4 and 5.
A systematic quantification will be proposed in Sec. IV, which
consists of a comprehensive set of data generated with small
increments in Fr and St numbers. As the one-dimensional
Lagrangian attractor is observed for various pairs of St and
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FIG. 2. (Color online) Time evolution of inertial particles for St = 0.207 and Fr = 0.55 with t = 1 (top left), t = 10 (top right), t = 600
(bottom left), and t = 1200 (bottom right).

Fr, it was difficult to suggest any definite relationship between
one-dimensional clustering and St and Fr. Hence, a scheme of
further classification is adopted to establish such a relationship.
We use the following nomenclature:

(i) 1D-H: horizontal one-dimensional Lagrangian attractor
as in column (b) of Fig. 4(f).

(ii) 1D-V: vertical one-dimensional Lagrangian attractor as
in column (b) of Fig. 4(g).

(iii) 1D-HV: intermediate one-dimensional Lagrangian
attractor as in columns (a) and (c) of Fig. 4(g).

(iv) 2D-L: two-dimensional vertical curtainlike layer as in
column (d) of Fig. 4(h) (see also [7]).

(v) 3D: any three-dimensional structure without any partic-
ular structure in the cloud as in column (d) of Fig. 4(e).

The qualitative results are split into three different cate-
gories which can take into account the effect of gravity and/or
inertia:

(i) keeping St constant (Sec. III B),
(ii) keeping Fr constant (Sec. III C),
(iii) keeping γ constant (Sec. III D).

FIG. 3. (Color online) Time evolution of inertial particles for St = 0.413 and Fr = 0.85 with t = 1 (top left), t = 5 (top right), t = 100
(bottom left), and t = 300 (bottom right).
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FIG. 4. (Color online) Evolution of the particles cloud for 0.548 � Fr � 1.34 and 0.165 � St � 0.663, at t = 300.
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FIG. 5. (Color online) Evolution of particles with increasing St for a given γ at t = 300. Top: γ = 0.138; left to right: St = 0.100, 0.165,
0.249, and 1. Middle: γ = 0.689; left to right: St = 0.124, 0.165, 0.249, and 0.827. Bottom: γ = 2; left to right: St = 0.207, 0.600, 0.827,
and 1.

B. Clustering pattern variations in relation to constant
Stokes number (St)

We can analyze the results by fixing the Stokes number (St)
and varying the Froude number (Fr). Four representative cases
with varying values of Fr are shown in Figs. 4(a)–4(d), namely,
St = 0.165, 0.249, 0.331, and 0.663. For each of the Stokes
numbers, we explored within the range 0.548 � Fr � 1.34.

As the Froude number decreases, the particles first cluster
on a one-dimensional Lagrangian attractor; then they may
rearrange on another 1D or 2D Lagrangian attractor columns
(b) and (c) of Fig. 4(h), and column (d) of Figs. 4(g) and 4(h).
The Lagrangian attractor also moves from a predominantly
horizontal direction [column (a) of Fig. 4(e) and columns (a)
and (b) of Fig. 4(f)] to a vertical direction [columns (a) and (b)
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TABLE II. Different cases for studying the attractor topology for
different ranges of St.

Observed patterns

Case St range Fr range 1D-H 1D-V 2D-L 3D

A 0.041–0.124 0.42–1.34
√ √

B 0.165–0.300 0.42–1.34
√ √ √

C 0.331–0.413 0.42–1.34
√ √ √

D 0.496–1.000 0.42–1.34
√ √

of Fig. 4(g) and column (c) of Fig. 4(f)] with decreasing value
of Fr.

The qualitative shapes with varying values of Fr are listed
in Table II. When one-dimensional structures are in-between
horizontal and vertical (1D-HV) directions, as in column
(b) of Fig. 4(f), we ticked both 1D-H and 1D-V in the
table.

Now we describe each case one by one according to
observed patterns. For case A, corresponding to low values of
St, the decrease in Fr (increase in gravity) forces the particles
to cluster in a horizontal direction, whereas the particles will
disperse evenly as Fr is further decreased. The increases in
gravity destroy the particles’ clustering for low range of St.
Similarly, for case B, initially distributed inertial particles
cluster into a horizontal attractor (1D-H), as in column (b)
of Fig. 4(f), and then an increase in the gravity effect (lower
Fr) causes the particles to accumulate in the vertical direction
(1D-V), as in column (b) of Fig. 4(g). With further increases in
the gravity, they recover a 3D distribution, as shown in column
(b) of Fig. 4(h).The appearance of 1D-V in case B shows the
greater effectiveness of gravity at a relatively high range of the
St for a given value of Fr.

For further increases in the Stokes number St (case C), the
horizontal structure (1D-H) is not observed. Rather a vertical
1D pattern (1D-V) is seen, as in column (c) of Fig. 4(f),
which can transform into a 1D-HV attractor, as in column
(c) of Fig. 4(g), with decreasing values of Fr. This implies that
the particle inertia starts dominating over the flow Eulerian
structure and allows the gravity to play a more important
role. At higher values of St (case D), there is no more
one-dimensional clustering, but some clustering can still be
observed in the form of two-dimensional vertical curtainlike
structures, as shown in column (d) of Fig. 4(h), at low values
of Fr.

C. Clustering pattern variations in relation to constant
Froude number (Fr)

A constant Froude number corresponds to the case of
varying the particle’s property (τa) for a given environment
(turbulence and gravity), which exists in most of the exper-
imental situations. The variations in clustering patterns are
identified by keeping Fr constant while varying St. For the
purpose of qualitative measures, three different cases, as shown
in Table III, are considered with small increments in the St
ranging from 0 to 1.

In Fig. 4, cases of constant Fr correspond to the horizontal
rows [Figs. 4(e)–4(h)]. As St increases, the particles’ one-

TABLE III. Different cases for studying the attractor topology for
different ranges of Fr.

Observed patterns

Case Fr St range 1D-H 1D-V 2D-L 3D

E 1.01 0–1
√ √ √

F 0.717 0–1
√ √ √

G 0.548 0–1
√ √

dimensional clustering is first enhanced and then destroyed to
eventually reappear in the form of a two-dimensional layer
(2D-L).

For high values of Fr (low gravity), i.e., case E correspond-
ing to Fig. 4(f), particles settled on horizontal one-dimensional
structures (1D-H) for low values of St. The increase in St
values resulted in vertical one-dimensional structures (1D-V).
For the midrange values of Fr, i.e., case F corresponding
to Fig. 4(g), the clear one-dimensional horizontal structure
(1D-H) is no longer observed but instead some intermediate
(1D-HV) one-dimensional structures can be seen for low
St values, which converge into a layered curtainlike (2D-L)
structure as St is increased. Finally, low values of Fr [case G,
Fig. 4(h)] allow the particles to accumulate predominantly in
the direction of gravity, so vertical patterns are identified such
as 1D-V and 2D-L structures.

D. Clustering pattern variations in relation to constant
drift parameter γ

It results from the previous discussion that the variations
in inertial and gravity effects do not have a monotonic effect
on the particle clustering. Physically, gravity and inertia are
combined effects, but one can consider a particle subjected to a
drift velocity without referring explicitly to gravity. This effect
of drift can be assessed by identifying the patterns with the
drift parameter γ instead of Fr. So here we want to observe the
variation in the particle attractor by keeping the drift parameter
γ constant. Figure 5 shows the three cases γ = 0.135, 0.689,
and 2, as St increases for the arbitrary time t = 300. It is not
possible to keep the same range for St for all cases because St
and γ are linked.

For low values of 0 � γ � 0.2 (Fig. 5, top), particles tend
to accumulate as a horizontal attractor for low values of St. As
observed previously, further increases in St lead to particles
scattering. Eventually, particles disperse evenly in the flow for
high values of St.

As γ increases, 0.2 � γ � 0.8 (Fig. 5, middle), horizontal
attractors are no longer observed for low values of St; instead,
some intermediate 1D-HV and vertical 1D-V attractors are
observed with increasing values of St. Further increases in
inertia disperse the particles evenly in the flow field. The third
case, 0.8 < γ < 2 (Fig. 5, bottom), corresponds to relatively
high values of γ . The particles are trapped in a 2D-L structure.
The increase in St results in the particles dispersing more
homogeneously on this 2D-L attractor.

To summarize, an increase in γ can lead to a 1D-V or 2D-L
rather than a 1D-H attractor, and an increase in St destroys the
one-dimensional attractor, leading to the particles reorganizing
on a 2D-L.
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FIG. 6. (Color online) Benchmark for BCM.

This is in agreement with Ref. [8], which mentions gravity-
driven clustering of inertial particles in turbulence and reports
a different kind of particle clustering caused purely by gravity,
that is, clustering in a vertical stripe pattern formed when
strong gravity acts on heavy particles.

IV. QUANTIFICATION OF CLUSTERING PATTERNS

Visualizations of the particle cloud for small discrete
increments of the nondimensional parameters St and Fr can
be tedious. It means looking at about 400 cases in this
study in a systematic order. Beyond the simple visualization,
it is important to quantify the Lagrangian attractors using
an appropriate method for spatial clustering. Two different
methods are considered here: the box-counting method (BCM)
and the average-distance-to-nearest-neighbor method (�). The
average-distance-to-nearest-neighbor method is eventually
chosen for the final quantitative analysis.

A. Box-counting method

The box-counting method (BCM) is a commonly used
method to determine the fractal dimension of an object.
Though in our simulation the range of scales is too short to
observe the fractal patterns described in [26], BCM remains
a useful tool to discriminate between one-dimensional, two-
dimensional, and three-dimensional clustering patterns. The
fractal dimension D represents the relation between the box
size r and the number of boxes Nr needed to cover the cloud
of particles, that is,

Nr ∼ rD. (19)

It is straightforward to obtain the fractal dimension from a
log-log plot:

D = � ln Nr

� ln r
. (20)

A validation of the method is made on three clearly identified
shapes, namely, the one-dimensional Lagrangian attractor,
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FIG. 7. (Color online) Contour plot of the attractor fractal dimension D as a function of (St, Fr).
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FIG. 8. (Color online) Box-counting slope for very similar cases for different values of Fr at St = 0.207.

the two-dimensional curtainlike layered pattern, and a three-
dimensional distribution. As shown in Fig. 6, the difference
between these three patterns is clearly captured.

The BCM is sensitive to the achievement of the attractor;
that is, if few particles have not settled on the attractor, they
can alter the box-counting results. So, with this method, it is
necessary to make sure that the cloud shape is the asymptotic
final one which requires a very long time. As illustrated in
Fig. 2, though at a very short time t = 10 the position and shape
of the 1D-V is obvious, it is necessary to wait up to t = 1200 to
get the final cluster position that will allow a correct measure
for the BCM. All of the cases are reported in Fig. 7 for clusters
having reached their final shapes (attractors). Isocontours of D

as a function of (St, Fr) are plotted in Fig. 7 and it appears that
for St > 0.45, strong one-dimensional clustering has vanished.

A major problem with the box-counting method is to
discriminate between the dimension D of very similar patterns,
as shown in Fig. 8. Therefore, we cannot be sure that the
box-counting result is meaningful in a case with no clear
structures (i.e., without an integer dimension). As mentioned
earlier, in order to be accurate, the BCM must be applied to the
Lagrangian attractor. If the particle cloud has not settled on the
attractor as at time t = 10 or t = 600 in Fig. 2, the BCM will
not educe the 1D patterns. So, in practice, it means running
the cases for long times until the particles have all settled on
the Lagrangian attractor, which can be prohibitive.

B. Nearest-neighbor-distance analysis

The advantage of using this approach is that it is not
necessary to reach the final cluster at t → ∞; a snapshot at
earlier times gives us a clear idea of the kind of Lagrangian
attractor to expect. For example, in Fig. 2, the kind of 1D-V
Lagrangian attractor is clear at t = 10 and there is no need
to wait for the final asymptotic shape at t = 1200. Though
other methods may struggle to pick up the structure at t = 10
and will only give the correct diagnosis when all of the
points have settle on the attractor, that is, for t = 1200, the
nearest-neighbor-distance analysis will work for intermediary

times. The average distance to the nearest neighbor � [8] is
introduced to systematically quantify the clustering patterns.
At a given time for each particle Xm, its nearest neighbor Xn

is such that

�2
mi = (xm − xi)

2 + (ym − yi)
2 + (zm − zi)

2 (21)

is a minimum for i = n. Then we define the average distance
to the nearest neighbor as

� = 1

Np

√√√√ Np∑
m=1

�2
mn, (22)

where Xn = (xn,yn,zn) is the nearest particle’s neighbor.
We get three obvious benchmark values for this method:
(i) If the particles are homogeneously distributed as at time

t = 0 [Fig. 1(a)], then � � Lx/N = 1/25 = 0.04.
(ii) If the particles are distributed on a surfacelike attractor

2D-L as in Fig. 5, then � � Lx/N
3/2 = 1/253/2 = 0.008.

(iii) If the particles are distributed on a linelike attractor as
in Fig. 2, then � � Lx/N

3 = 1/253 = 6.4 10−5.
In practice, the method will detect a one-dimensional

structure (1D-H or 1-DV) for � � 0.008, while 2D layered
structures are observed for 0.01 � � � 0.014.

We applied the average-distance-to-nearest-neighbor
method to all run cases to see the variations in the attractor
patterns for the same time, t = 300. Colorwise, blue (darkest
spots for St � 0.4) corresponds to the 1D Lagrangian attractor,
yellow-green (light gray) to the 2D-L, and dark red (darkest
spots for St � 0.4) to 3D structures. Isocontours of � are
plotted as functions of (St, Fr) in Fig. 9(a) and (St, γ ) in
Fig. 9(b) to see the effect of varying gravity and inertia on the
Lagrangian attractors. Figure 9 confirms that the clustering of
inertial particles is not a monotonic function of either St or Fr
number. However, it is possible to identify regions in the plane
(St, Fr):

(i) In agreement with Fig. 7, there are no one-dimensional
structures for St � 0.5.
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FIG. 9. (Color online) Isocontours of (a) �(St,Fr) and (b) �(St,γ ) showing different types of clusterings.

(ii) We can refine the analysis in term of γ : In Fig. 9(b),
for large values of the Stokes number (St > 0.3) and gravity
effects (γ > 0.8), the 2D-L structures are predominant. This
is also in agreement with [9], whose calculations show that for
large values of St, particles may cluster strongly.

Another advantage of the average-distance-to-nearest-
neighbor method is that variations in horizontal �H and
vertical �V directions can be identified separately, which helps
to monitor anisotropic patterns. In practice, �H and �V are
defined as follows:

�H = 1

Np

√√√√ Np∑
m=1

(xm − xn)2 + (ym − yn)2, (23)

�V = 1

Np

√√√√ Np∑
m=1

(zm − zn)2. (24)

Figure 10(a) shows the isocontours of � as a function of (St,
Fr) in the region where one-dimensional Lagrangian attractors

are observed, i.e., 0.05 � St � 0.4. The two different types
of one-dimensional attractor, either horizontal (1D-H) or
vertical (1D-V), are further analyzed in Figs. 10(b) and 10(c).
Figure 10(c) shows the ratio �H/� where one-dimensional
attractors exist, that is, when � � 0.008. �H/� � 0.5, which
are the blue points (light gray area), indicate 1D-V structures;
whereas �H/� � 0.75, which are the red points (dark spots
for Fr � 0.7), indicate 1D-H structures. Figure 10(b) describes
a similar relationship based on �V . So it is clear from
the points’ color distribution that horizontal attractors are
predominant for large Fr, while vertical attractors are prevalent
as Fr decreases.

V. CONCLUSION

We used kinematic simulation (KS) to study the clustering
pattern of particles with inertia subjected to gravity effects.
For some combined inertia and gravity effects (St, Fr),
the particles cluster on a fixed space subset. That subset
can be one dimensional or two dimensional. In most of the
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FIG. 10. (Color online) (a) Iso-contours of � as a function of (St, Fr), (b) �V /� when � � 0.006, c) �H /� when � � 0.006.

cases, the particles did not cluster and disperse, occupying
most of the periodic box.

Using KS, it became possible to investigate many com-
binations of (St, Fr) and educe and classify those one-
dimensional or two-dimensional subsets. Though KS retains
only part of the turbulence physics, it helps to understand
the clustering patterns and the effect of gravity on these
patterns.

The main results can be summarized as follows (and in a
more synthetic presentation in Fig. 11):

(a) The effect of gravity may reduce or enhance inertial
particles clustering (as noticed in [9,10]) depending on the

Stokes number. This effect can lead to strongly anisotropic
clusterings (1D or 2D-L), which are very clearly evidenced by
the KS model.

(b) The 1D structure is better observed with the synthetic
flow, as in real flows unsteadiness may prevent the particles
from reaching that asymptotic state. These 1D attractors move
from the horizontal to the vertical direction as the Fr number
decreases.

(c) For our range of Froude numbers, we found two critical
Stokes numbers: for St > Stcr1 = 0.3 there is never occurrence
of a horizontal (1D-H) type attractor, and no 1D-type attractor
is found for St > Stcr2 = 0.5.

No 
1D attractor
after Stcr2

               3D                           3D                                                3D                                            3D
No
Horizontal
1D attractor
after Stcr1

                1D-H                        1D-H                                           1D-V                                            3D

                 3D                            1D-V                                            2D-L                                          2D-L

               2D-L                           2D-L                                          2D-L                                         2D-L

Stokes Number

0.041≤ St ≤0.165       0.165<St ≤0.3         Stcr1 ∼  0.3        0.3<St ≤ 0.5      Stcr2 ∼ 0.5         0.5<St ≤1.00

               3D                             1D-V                                           1D-V                                        2D-L

                3D                        1D-HV/V                                       1D-HV                                          2D-L

Fr=∞

V.High Fr
(0.95<Fr≤1.34)

High Fr
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Medium Fr
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V.Low Fr
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FIG. 11. (Color online) Flow chart describing the different attractors in relation to the two critical values of St.
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(d) For low values of Fr, curtainlike two-dimensional lay-
ered structures similar to the “curtainlike manifolds” already
observed in [7] are recovered as the high gravity prevents
the inertial particles from settling uniformly in the turbulent
flow.
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