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Cusps and cuspidal edges at fluid interfaces: Existence and application
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One of the intriguing questions in fluid dynamics is on the interrelation between dynamic singularities in
the solutions of fluid dynamic equations – unboundedness of the velocity field in an appropriate norm – and the
geometric ones – divergence of curvature at fluid interfaces. The present work focuses on two generic interfacial
singularities – genuine cusps and cuspidal edges – found here in both two and three dimensions thus establishing a
relation between real fluid interfaces and geometric singularity theory. The key finding is the necessary condition
for the existence of geometric singularities, which is a variation of surface tension. It is also established here that
the dynamic and geometric singularities entail each other only in the case of three-dimensional cusps. Explicit
asymptotic solutions for the flow field and interface shape near steady-state singularities at fluid interfaces are
developed as well. The practical motivation for the present study comes from the fundamental role interfacial
singularities play in sustaining self-driven conversion of chemical into mechanical energy.
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The appearance of singularities in the solutions of non-
linear partial differential equations, that is, when modeled
physical quantities become unbounded, is a consequence of
the simplification continuum theory gives over the molecular
level description and usually indicates that some important
unresolved physics takes place [1]. On the other hand,
singularities can also exhibit themselves geometrically as that
of curves in two dimensions and surfaces in three dimensions,
e.g., in the context of fronts [2–4] and fluid interfaces [5–7],
when geometric quantities (e.g., curvature) diverge.

Indeed, singularities in the solutions of fluid dynamics
equations – the focus of the present work – can emerge not
only as a divergence of the velocity field in an appropriate
norm, which is a central question in the theory of existence
of solutions [8], but also geometrically as a divergence of
curvature at fluid interfaces, which is usually avoided in the
existence studies of fluid dynamics with interfaces [9,10] (i.e.,
the interface is usually assumed to be smooth throughout the
entire evolution). The interrelation between these two kinds of
singularities is the first key question addressed in the present
study and brings together topological and analytical views of
fluid dynamics, which are arguably equally important [11,12].
Often, mathematical singularities occur when viscosity and/or
surface tension is neglected [13]. The present study shows that
one can get a singularity even if these physical effects are both
present. While singular solutions are known in the dynamics
of viscous flows, especially in fixed geometries such as the
Jeffrey-Hamel flow in a converging channel [14] and on a
polygon [15], in problems with free interfaces primarily corner
[14,16] and cone [5] type solutions were studied, e.g., in the
context of Taylor cones [17,18] and chemical-reaction driven
tip streaming [19].

The present work focuses on two generic, according to
Whitney’s theory [20], types of interfacial singularities [21] –
cusps and cuspidal edges shown in Fig. 1 – constructed here
in both two and three dimensions thus establishing a relation
between real physical interfaces and singularity (catastrophe)
theory [22]. Cusps differ from cone singularities as the angle
at their apex vanishes, and are known to play an important
role in many other areas of physics, e.g., gravitational lensing

[23], cuspy halo in cosmology [24], and day-side cusps in
magnetosphere [25], to mention a few.

In fluid dynamics, approximations [26] to cusps in the
framework of macroscopic (continuum) theory were studied
before in two dimensions with the methods of complex
variable theory by Jeong and Moffatt [27] in the case of
clean interface and by Antanovskii [6] in the presence of
surfactants; however, due to the requirement of analyticity
of a conformal mapping, these studies were limited to regular
solutions, i.e., when the interfacial curvature remains finite
except for the case of surface tension vanishing everywhere
[27], not just locally. In contrast, the second key question
in the present work is on the necessary condition for the
existence of the genuine cusp and cuspidal edge singularities,
which, as will be shown here, is a variation of surface tension
thus bringing Marangoni phenomena [28] – fluid flows result-
ing from variations of interfacial tension – into the picture.
As opposed to the singularities forced externally [29–34],
cf. Fig. 2(a), self-driven Marangoni singularities have not
been thoroughly studied. Marangoni-driven flows exhibiting
interfacial singularities, which motivated the present study,
were found experimentally only recently [19,36–39] and are
shown in Figs. 2(b) and 2(c).

On the theoretical side, it was recently demonstrated that the
existence and topology of the observed interfacial singularities
driven by Marangoni effects can be deduced using mean-
curvature flow theory extended to account for variations of
interfacial tension [40]. This, in turn, suggests that some of
the physical mechanisms underlying the formation of these
interfacial singularities originate from the surface tension flow,
but existence and the actual form of these solutions were
not demonstrated from first principles, i.e., as satisfying the
Navier-Stokes equations (NSEs) governing fluid motion [14].

Since there can be a multitude of physical problems leading
to singularities with the same asymptotic behavior and the task
of constructing a general global analytic solution is formidable,
the analysis offered here is local in nature, which is sufficient
for our purpose of establishing only necessary conditions for
the existence of singularities. With the asymptotic analysis
to follow we will be able to answer both key questions
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FIG. 1. Two of the generic singularities [22] in three dimensions
relevant to the situation when there is a continuum media (fluid) on
one side of the interface: (a) cusp, (b) cuspidal edge (singular part of
a cuspidal lip [4] – its transverse cross section is a two-dimensional
cusp).

formulated above. In fact, a local approach is very common
when analyzing solutions near geometric singularities, e.g.,
in fluid dynamics [14,41–43], electrodynamics [44], and in a
general mathematical context [45]. Such constructed leading
order local solutions are determined up to some unknown
constants, whose values can be found from the global solution
only as is common for elliptic problems [46].

In two dimensions, the analysis is relevant for both studying
three-dimensional (3D) cuspidal edges, cf. Fig. 1(b), as well
as cusps in two dimensions, which can be considered as a
transverse cross section of cuspidal edges. Hence, we will start
with incompressible viscous flow formulation, which in two
dimensions can be written in terms of the stream function ψ

defined such that the x- and y-velocity components are given
by (u,v) = (ψy,−ψx):

(ψy∂x − ψx∂y)�ψ = ν�2ψ, (1)

where � = ∂2
x + ∂2

y is the Laplacian and ν is the kinematic
viscosity. The problem is closed with dynamic normal and
tangent boundary conditions at the cusp interface h(x) = c xα ,
where 0 < α < 1 and for negative x one takes −x:

n · T · n = −σ ∇ · n, (2a)

t · T · n = t · ∇sσ, (2b)

as well as the kinematic boundary condition:

u · n = 0, (3)

i.e., −hxu + v = 0. Here Tij = −p δij + 2 μeij is the stress
tensor, eij is the rate of strain tensor, μ is the dynamic viscosity,

p is the pressure, σ is the interfacial tension, t and n are the
tangential and outer (with respect to the fluid phase) normal
vectors, respectively, ∇s is the interfacial gradient, s is the arc
length parametrizing the interface, and ∇ · n is the interface
curvature, which diverges as ∇ · n � hxx/h3

x = O(x1−2α).
Without loss of generality, we will place the system of

coordinates at the apex of the singularity, which will simplify
notations and the form of solutions. In the case when inertia in
(1) can be neglected, which will be verified a posteriori, the
analysis of (1) reduces to the Stokes approximation

�2ψ = 0, (4)

i.e., the solution is considered at small spatial scales where
viscosity dominates. If one represents the stream function as
ψ(x,y) = xβyγ , Eq. (4) admits any values of the exponents
β and γ from the following sets: (β,γ ) = ({0,1,2,3},{0,1})
or ({0,1},{0,1,2,3}), which implies that a solution can be a
combination of any admissible values of the exponents β and γ

thus giving the following basic elements of the stream function:

ψ = {1; x,x2,x3; y,y2,y3; x y,x y2,x y3; x2 y,x3 y}. (5)

In addition, in the context of cusp singularities it will be also
relevant to consider solutions of the form

ψ(x,y) = ψ0(x) + ψ1(x,y) + · · ·
= d0x

β0 + d1x
β1yγ1 + · · · , (6)

which differs substantially from the works of Lugt [42] and
Brøns [41] on nonsingular interfaces in the sense that Taylor
series expansions (i.e., with integer powers) are no longer
applicable as the solutions are not expected to be regular near
cusps – instead, the first term depends on one coordinate only
and the second term possesses noninteger powers. Leaving
aside the irrelevant solutions corresponding to β0 = 0 (which
gives the constant leading-order term) and γ1 = 0 (which gives
β0 = β1 and no dependence on y), we arrive at the following
possible exponents:

(γ1,β1) = (2,β0 − 2) or (4,β0 − 4); β0 = {1,2,3}. (7)

Let us identify the conditions under which a solution local
near a cusp singularity exists in the Stokes approximation.
The corresponding stream function (6) satisfies the kinematic
boundary condition (3) provided

β1 = β0 − αγ1, (8a)

d0 + d1 cγ1 = 0, (8b)
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FIG. 2. (Color online) Physical examples of steady-state interfacial singularities: (a) drop deformed due to external forcing of an extensional
flow [17,35] – viscous stresses in the surrounding phase deform the drop, which forms pointed ends; (b) chemical reaction-driven tip streaming
[19,36,37] – the acid-base chemical reaction at the water-oil interface produces a surfactant, which drives the Marangoni flow along the interface
leading to a conical shape of the drop with a singular cone tip; (c) surfactant-driven fingering [38,39] – soapy water displaces air in the narrow
space between two glass plates (Hele-Shaw cell) and eventually leads to fingering with cusps between the fingers.
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which allows us to rewrite the formula (6) as

ψ(x,y) = d0x
β0 + d1x

β0

(
y

xα

)γ1

+ · · · , (9)

where the ratio y/xα � 1 in the interior of the singularity
(fluid phase). Thus, to make the representation (6) meaningful
one needs to bring the second term to the next order of
approximation compared to the first term, i.e., one must have

γ1 < 0. (10)

Note that because of (8b), the stream function vanishes at
the interface ψ = 0 (at the leading order) as it should. The
determined conditions (8) and (10) narrow down the class of
possible solutions (6) [47].

The dynamic boundary conditions (2) produce at the
leading order

− μhxψxx = σx, (11a)

−p + 2 μ

hx

ψxx = σ
hxx

h3
x

. (11b)

Given the form of the interface h(x) = c xα and the leading
order term of the stream function ψ0 = d0 xβ0 , one gets the
following key scalings for the surface tension and pressure
when β0 = {2,3}:

σ ∼ xα+β0−2, (12a)

p ∼ x−α+β0−1, (12b)

respectively. Note that in this case (β0 = {2,3}) both surface
tension and pressure are bounded and vanish at the cuspidal
point as x → 0; the y component of the velocity field scales as
O(v) = xβ0−1 and thus vanishes as well, for x → 0. Also, the
vorticity, ω = −�ψ , scales as ∼d0 xβ0−2, i.e., is bounded near
the cusp apex. The surface tension gradient takes the form

σx = −μc β0(β0 − 1) d0x
α+β0−3, (13)

where, as was pointed out before, the unknown constants can
be determined only from knowledge of the global solution,
i.e., the boundary conditions away from the singularity set the
values of these constants. The presence of unknown constants
in (13) is also a reflection of the self-similar character of
the solution (12) since there is no characteristic length scale
in the problem. This also suggests that Marangoni-driven
singularities can be physically realized on different length
scales (as long as the flow near the singularity is in the Stokes
regime). In the context of the cases β0 = {2,3}, it must be noted
that existence of a genuine two-dimensional (2D) cusp with
vanishing surface tension at the cuspidal point was predicted
by Antanovskii [6] in the particular case of the flow driven
externally by two counter-rotating cylinders [27]. Also, the
mesoscale theory of Pismen [48], which aimed to resolve
the singularity in the same problem with constant nonzero
surface tension [27], showed that the cusp is formed due to a
decrease of surface tension, caused by mesoscopic physical
phenomena, i.e., different from the result established here
within the framework of the continuum theory (NSEs).

As for the case β0 = 1, it corresponds to ejection of fluid as
in the tip-streaming mode (v ∼ const; cf. Fig. 4) and gives the
variation of surface tension σ ∼ xα−1 at the next order thanks

(a) (b)

FIG. 3. Flow fields – streamline patterns – in (a) 2D cusp and 3D
cuspidal edge and (b) 3D cusp – cross section at y = 0.

to the contribution of ψ1, while pressure scales as p ∼ x−α;
thus both surface tension and pressure are singular in this case
[49] and the flow (recirculation) direction in Fig. 3(a) is the
opposite to that in the cases β0 = {2,3}.

Concluding the discussion of the 2D case, we can verify
that the constructed solutions indeed correspond to the Stokes
flow approximation at the leading order despite their singular
behavior [50]. Noting that since |x| � 1 and 0 < α < 1 in
the fluid domain we have x � xα � y, so that differentiation
with respect to x dominates that with respect to y and hence
the leading order part of (1) is

−ψ0x �ψ1y = ν�2ψ0. (14)

Plugging (9) in (14) and evaluating nonlinear inertia and
viscous terms and normalizing with respect to the latter leads
to

xβ0

(
y

xα

)γ1
(

y

x

)−1

; xβ0

(
y

xα

)γ1
(

y

x

)−3

; 1. (15)

Since the first two terms representing the order of magnitude
of nonlinear inertia are asymptotically small compared to
the last (Stokes) term for each of the three possible cases,
β0 = {1,2,3}, one concludes that inertia does not contribute at
leading order.

In three dimensions, while it is tempting to perform the
analysis of cusps in the Cartesian system of coordinates as
was done in the 2D case above, the interface representation
y = h(x,z) = c xαx zαz does not correspond to a cusp. Since
the goal is to establish existence of cusps in three dimensions,
it is sufficient to consider the axisymmetric case, cf. Fig. 1(a),

θ = h(r) = c rα, α > 0 s.t. θ → 0 as r → 0. (16)

In the mathematical formulation we choose to work with
spherical coordinates centered at the apex of the cusp;
cf. Fig. 1(a): x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ ,
where z is directed along the axis of symmetry, θ ∈ [0,π ],
φ ∈ [0,2π ]. Defining the interface in terms of (r,θ ) vari-
ables, θ = h(r), the interfacial curvature is calculated via
∇ · n � (r h)−1.

Representing the solution for the axisymmetric stream
function ψ(r,θ ) = rn f (θ ) and taking into account that the
cusp shape is given by (16) we will look for solutions
in the narrow sector of angle |θ | � 1, i.e., f (θ ) = d θm, so
that the corresponding axisymmetric biharmonic problem in
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spherical coordinates

E2ψ = 0, where E = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
, (17)

produces

m(m − 4)(m − 2)2

+ 2
3m(m − 2)[8 + 3(n − 3)n + m]θ2 + O(θ4) = 0, (18)

that is for any n the leading order solution corresponds to
m = {0,2,4}.

It is natural to expect the solution for the stream function
ψ(r,θ ) in the form analogous to (6), but the first term cannot
be ψ0(θ ) simply because it would produce v = 0 and u ∼ r−2

so that the kinematic boundary condition (3) would imply that
h = const, i.e., a cone-type interface, which contradicts the
assumption of a cusp (16). Thus, one needs to assume

ψ(r,θ ) = ψ0(r,θ ) + ψ1(r,θ ) + · · · , (19)

which, of course, implies that the leading order term gives
both r- and θ -velocity components to be nonvanishing u,v �=
0 – this is the key difference from the 2D case. However, the θ

component of velocity has lower singularity compared to the
r component; namely, if at any order

ψ(r,θ ) = d rn θm, (20)

then

u = d m rn−2θm−2, v = −n d rn−2θm−1. (21)

Given the allowed values {0,2,4} of m, one concludes that
m = 0 is not relevant, while m = 4 lets u → 0 as θ → 0
provided n � 2.

The kinematic boundary condition (3) at θ = h(r) gives

m α = −n, i.e., ψ(r,θ ) = d r−mαθm, (22)

and at each order ψ0, ψ1, . . . are balanced individually as
opposed to the 2D case. As it should be, according to (22),
the stream function at the interface assumes a constant value
ψ = d cm. Also, the condition (22) suggests that since m = 2,4
and α > 0, there should be n < 0, which implies that the fluid
velocity is unbounded at the cusp apex.

Balancing the capillary, viscous, and Marangoni effects in
the dynamic conditions (2) leads to the following scalings for
the surface tension and pressure:

σ ∼ rn−2+α(m−1) = r−2−α, (23a)

p ∼ rn−3+α(m−3) = r−3−2α, (23b)

where the restriction (22) imposed by the kinematic boundary
condition was used. Clearly, both surface tension and pressure
are divergent at the cusp apex, which distinguishes the 3D case
from the results in the 2D case. As for vorticity, it proves to be
singular as well:

ω = − 1

r sin θ
Eψ ∼ r−mα−3θm−3. (24)

Thus, the key distinction between the constructed solutions
(12) in two dimensions and (23) in three dimensions is that
the former admits a singular interface shape with nonsingular
surface tension, velocity, and pressure fields. This entails the

difference in the flow patterns between the 2D and 3D cases;
cf. Figs. 3(a) and 3(b), respectively. From the mathematical
point of view, a singularity of the velocity field at the apex of
a cusp or cuspidal edge can be understood in two ways: (a)
abstractly, as the condition for the existence of a singularity
in the fluid dynamics equations, and (b) practically, as an
approximation of reality in the same way as, for example,
the self-similar solution in the chemical-reaction driven tip
streaming [5,19] is singular at the apex of the cone, but real
physical effects may limit the existence of (smoothen out) the
actual singularity at the submacroscopic level, cf. Fig. 2(b).
Resolution of interfacial singularities should be performed
at the mesoscopic level as was done, for example, in the
context of the vortex dipole flow [27] by Pismen [48] through
nanoscale molecular interactions. In general, such an effort
would require the use of a microscale theory of interfaces [51]
to be generalized onto the case of surface tension varying due
to interfacial chemistry (surfactants and/or chemical reactions)
and due to curvature [52–54].

The key fact established here is that the existence of cusp or
cuspidal edge singularities accompanied by diverging curva-
ture requires a variation of surface tension (and thus Marangoni
flow) along the interface both in two and three dimensions with
either surface tension vanishing or diverging at the singularity
apex. In the former case (σ → 0), vanishing surface tension
occurs, e.g., due to very high concentration of surfactants,
which is called ultralow surface tension and achievable in
practice [55]. In the latter case (σ → ∞), this implies that the
interface either becomes clean (free of surfactant) or rigid as
surface energy increases significantly compared to that of the
liquid and in practice means relatively large values of σ . One
must note that there are several physical mechanisms due to
which surface tension varies substantially along the interface
in nature and applications – this can be due to the presence
of surface active substances (soap molecules, i.e., so-called
surfactants) [56], temperature gradients along the interface
[57], or a nonuniform electric field [58] – and believed to
assume even negative values [59,60]. In the case of chemically
driven surface tension variations, they range from 0.1 [55] to
600 mN/m for liquid gallium; in the case of water interface,
surface tension may vary from 72 mN/m for clean interface
down to below 0.1 mN/m when the surfactant is produced
by a chemical reaction. Such variations of several orders of
magnitude warrant the existence of macroscopic singularities
at interfaces both in the case when the mathematical analysis
presented in this paper requires either vanishing or diverging
surface tension at the point of singularity. The divergence of
surface tension is understood in the same asymptotic sense
as the singularity itself, i.e., surface tension having much
higher value at the singularity compared to that away from the
singularity (a similar argument applies to the case of surface
tension vanishing at the singular point). Depending on the
actual range of surface tension values, the singularity may
propagate down to the length scales at which the continuum
assumption built into the NSEs is no longer valid.

While the above theoretical arguments suggest existence
of both types of generic geometric singularities, i.e., cusps
and cuspidal edges, the observability of these singularities
depends on a few factors. Gravity, for example, limits the
existence of these singularities to small scales when the
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gravity effects can be neglected [5]. Also, the realistic limited
range of surface tension values and dynamic stability of
singularities to time-dependent perturbations may affect their
observability as well, which, in fact, is suggested by the
observations in Fig. 2 – while the singularities appear to
be at the macroscopic scale, they are smoothed out at the
microscopic level, e.g., by tip streaming which is an unsteady
phenomenon. To the author’s knowledge, only one study was
done on time-dependent stability of singular solutions, namely
by Constantin and Kadanoff [7]. However, while these authors
[7] established formation of singularities in finite time, using
a model problem in a Hele-Shaw cell based on Darcy’s law,
there was no surface tension variation in their problem and
thus, given the results of the present study, formation of such
singularities in the framework of the original (not simplified)
fluid dynamics description (1) is not possible. Observability of
the determined cusp (23) and cuspidal edge (12) solutions can
be conjectured based on the existence of the cone solutions
shown in Fig. 2(b) – the cusp should be generic too as any
topological perturbation of a cone preserving the interfacial
singularity either leaves it a cone or deforms it to a cusp [61].
And, last, the exact power-law form of the equation of state
σ (x) is not crucial for the existence of a self-similar solution
as long as (a) the problem defined by (1–3) is well posed
in Hadamard’s sense [62] and thus not very sensitive to a
variation of the coefficients (e.g., in the equation of state) in
the governing equations and boundary conditions, and (b) σ (x)
is close to the power-law form for some range of x’s in the
sense of intermediate asymptotics [63].

In conclusion, one may ask the question: “Why is it
important to study interfacial singularities?” Besides the
fundamental reasons which motivated this study, from a
practical point of view the interfacial instabilities often lead to
singularities at a macroscopic level [19,38], which are crucial
for self-sustained motions such as, for example, singularity
formation is instrumental in the chemical-reaction driven tip
streaming shown in Fig. 4. If one can identify other geometries
relevant for the useful conversion of chemical energy into me-
chanical energy, they can be exploited to perform a number of
functions such as pumping, propulsion, and mixing currently
accomplished with complex machinery and active control. The
nontrivial feature of the direct chemical-to-mechanical energy
conversion is its isothermality as opposed to all heat engines,
the efficiency of which is limited by the Carnot cycle, and is
analogous to how all motors in living organisms, known for
their efficiency, operate. On the experimental side, the fact
that Marangoni effects can transfer chemical into mechanical
energy directly has been known for a long time, e.g., in the
context of camphor scrapings [64,65]. Indeed, as known from
experimental observations, among the regimes of interfacial
mechanical motion are violent and erratic pulsations [66–69],
all of which indicate intermittent formation of singularities.

Γ>  Γ

Γ

Γ

Γ<  Γ

H O2

(iii) (i)

(ii)

oil

FIG. 4. A motor driven by Marangoni effects at the water-oil
interface and the role of singularities: when interfacial surfactant
concentration � reaches a critical value �c, its magnitude is suddenly
reduced by ��, which implies that most of the surfactant is removed
in the process of tip streaming. Once triggered, the following sequence
of events takes place: (i) sweeping surfactant towards the tip of a
new pendant drop, which facilitates the tearing up of the interface;
(ii) tip streaming, which removes surfactant from the drop and thus
increases interfacial tension, so that the surfactant concentration
gradient between the top and the tip of the drop drives Marangoni
flow; (iii) drop relaxation back to a round shape due to the increased
interfacial tension at its tip.

Since formation of singularities is relevant to Marangoni-
driven motors, cf. Fig. 4, understanding of the emergence
of such singularities in unsteady solutions as well as their
thermodynamics will be a crucial future step. The latter is
important since the fluid kinetic energy Ekin dissipation rate
due to viscosity is infinite in two dimensions for β0 = 1 and
in three dimensions in general:

Ėkin ∼
{

x2β0+α−3 in two dimensions;

r−4−3α in three dimensions,
(25)

due to substantial stresses applied to infinitesimally small
fluid elements. This means that thermodynamics should come
into play to regularize the infinite dissipation rate [70] at the
microscopic level. And, in the general context, establishing
a connection between singularities of solutions of fluid
dynamics equations and that of real fluid interfaces might be
relevant in the ongoing research on the existence of solution
in three dimensions [71], when realistic boundary conditions
are taken into account.
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