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Stokesian spherical swimmers and active particles

B. U. Felderhof*

Institut für Theorie der Statistischen Physik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
(Received 1 February 2015; published 27 April 2015)

The net steady state flow pattern of a distorting sphere is studied in the framework of the bilinear theory of
swimming at low Reynolds number. It is argued that the starting point of a theory of interacting active particles
should be based on such a calculation, since any arbitrarily chosen steady state flow pattern is not necessarily
the result of a swimming motion. Furthermore, it is stressed that as a rule the phase of stroke is relevant in
hydrodynamic interactions, so that the net flow pattern must be used with caution.
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I. INTRODUCTION

The dynamics of swarms of active particles has been studied
intensively in recent years [1–5]. Much of the work is based
on the assumption that each particle of the swarm moves with
a velocity determined by its own activity and by the local fluid
flow velocity arising from the flow patterns of surrounding
particles. The flow pattern of each particle is centered on that
particle and is carried along with the particle velocity. Due
to the perpetual change of particle positions this leads to an
interesting many-body problem with complicated dynamics.

The assumptions in the theory, as used in practice, can
be questioned on two counts. First, it is usually assumed
that at each point in time the net steady state flow pattern
of each particle is all that needs to be considered. In fact
the net flow pattern must be regarded as the time average
over a period of the swimming or flying motion. On the fast
time scale of the period there is an additional oscillating flow
pattern. The phase of the oscillating pattern is important and
affects the hydrodynamic interaction and hence the swimming
velocities [6–8]. Second, a net steady state flow pattern is often
assumed without derivation from a swimming motion on the
fast time scale.

In the following we study the second assumption on the
basis of low Reynolds number hydrodynamics [9]. Therefore
the fluid equations of motion are Stokes equations for a
viscous incompressible fluid, and inertia effects are neglected.
In Stokes hydrodynamics the flow at each point in space is
determined instantaneously by the no-slip boundary condition
on the surface of each of the particles.

We study a single distorting sphere and calculate the
resulting net flow pattern to second order in the amplitude
of stroke. It turns out that a commonly assumed active particle
flow pattern, of so-called B1B2 type, cannot be realized as
the result of the swimming motion of a distorting sphere.
In particular this calls into question the calculation of the
hydrodynamic interaction of two swimming micro-organisms
for which the B1B2 model was first proposed [10].

We conclude that instead of assuming a particular net
steady state flow pattern for an active particle it is preferable
to consider a swimmer characterized by a combination of
low order oscillating multipole moments and to calculate
the corresponding net flow pattern. Several examples of such
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explicit calculations are presented. Each of the resulting net
flow patterns can be used in the dynamics of swarms of active
particles, though with the caveat that the phase of stroke may
be relevant in hydrodynamic interactions.

In Sec. II we summarize earlier work [11] on flow about
a swimming sphere and compare with the formulation of
Lighthill [12] and Blake [13]. In Sec. III we discuss the
calculation of the net time-averaged flow pattern. In Sec. IV
we consider some simple swimmers as active particles. The
article is concluded with a discussion in Sec. V.

II. SWIMMING SPHERE

We consider a sphere of radius a immersed in a viscous
incompressible fluid of shear viscosity η. The fluid is of
infinite extent and at rest at infinity. It is made to move as
a result of shape deformations of the sphere, which change
the undeformed sphere with surface S0 into a body with
surface S(t) at time t . The fluid flow equations are formulated
conveniently in the instantaneous rest frame of the body. It
is assumed that in this frame the flow velocity v(r,t) and the
pressure p(r,t) satisfy the Stokes equations of low Reynolds
number hydrodynamics [9]

η∇2v − ∇p = 0, ∇ · v = 0. (2.1)

The flow velocity is assumed to satisfy the no-slip condition at
the surface S(t). A point on the surface S0 of the undeformed
sphere is denoted by s, and the corresponding point on the
surface S(t) is denoted by s + ξ (s,t), with displacement vector
ξ (s,t). The no-slip condition reads [14]

v(s + ξ (s,t)) = ∂ξ (s,t)
∂t

. (2.2)

We place the origin of a Cartesian system of coordinates at
the center of the sphere S0. By definition∫

S0

ξ dS = 0. (2.3)

We also exclude the radial displacement corresponding to
uniform expansion of the sphere. We assume for simplicity
that the displacement is axially symmetric and choose the axis
of symmetry as the z axis. As a consequence the flow velocity
and pressure are also axially symmetric, and the body acquires
a translational velocity U(t) = U (t)ez in the direction of the z

axis, but no rotational velocity.
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In spherical coordinates (r,θ,ϕ) the flow velocity can be
expanded in terms of a set of fundamental solutions of the
Stokes equations (2.1),

v(r,t) = −U (t)ez +
∞∑
l=1

ml(t)ul(r,θ ) +
∞∑
l=2

kl(t)vl(r,θ ),

(2.4)
with [11]

ul(r,θ ) =
(

a

r

)l+2[
(l + 1)Pl(cos θ )er + P 1

l (cos θ )eθ

]
,

vl(r,θ ) =
(

a

r

)l[
(l + 1)Pl(cos θ )er + l − 2

l
P 1

l (cos θ )eθ

]
,

(2.5)

with Legendre polynomials Pl(cos θ ) and associated Legendre
functions P 1

l (cos θ ) in the notation of Edmonds [15]. In the
second sum in Eq. (2.4) the term v1(r,θ ) is missing on account
of the requirement that the body exert no net force on the fluid.
It follows from the expansion Eq. (2.4) that the translational
velocity U (t) may be calculated from the identity

U(t) = − 1

4πb2

∫
r=b

v(r,t) dS, (2.6)

where the integral is over any large sphere of radius b centered
at the origin and enclosing the body completely. The pressure
corresponding to Eq. (2.4) is

p(r,t) = p0 + 2η

∞∑
l=2

(2l − 1)kl(t)
al

rl+1
Pl(cos θ ), (2.7)

where p0 is the ambient pressure at infinity.
Provided the sums in Eq. (2.4) converge we can use the

expression also for r = a and write

v(r,t)|r=a =
∞∑
l=1

Al(t)Pl(cos θ )er

+
∞∑
l=1

Bl(t)
2

l(l + 1)
P 1

l (cos θ )eθ , (2.8)

which defines the coefficients {Al,Bl} of Lighthill [12] and
Blake [13]. By comparing Eq. (2.8) with Eq. (2.4) we find the
relations

A1 = 2m1 − U, B1 = m1 + U,

Al = (l + 1)ml + (l + 1)kl, (2.9)

Bl = 1
2 l(l + 1)ml + 1

2 (l − 2)(l + 1)kl, (l > 1).

The displacement may be written analogously to Eq. (2.4) as

ξ (s,t) =
∞∑
l=1

Ml(t)ul(a,θ ) +
∞∑
l=2

Kl(t)vl(a,θ ), (2.10)

where the term with v1(a,θ ) is missing on account of
Eq. (2.3). The displacement has both radial and tangential
components and describes an arbitrary axisymmetric distortion
of the spherical surface with vanishing average and vanishing
azimuthal component.

We note in particular

u1(r,θ ) =
(

a

r

)3

[2 cos θ er + sin θ eθ ]

= a3

r3
(−I + 3er er ) · ez,

v1(r,θ ) = a

r
[2 cos θ er − sin θ eθ ] = a

r
(I + er er ) · ez,

u2(r,θ ) = 3a4

4r4
[(1 + 3 cos 2θ ) er + 2 sin 2θ eθ ],

v2(r,θ ) = 3a2

4r2
(1 + 3 cos 2θ )er , (2.11)

where I is the unit tensor. The field u1 is identical to an
electrostatic dipole field, the field v1 is an Oseen monopole
flow, the field u2 is identical to an electrostatic quadrupole
field, and the field v2 is a hydrodynamic stresslet or Oseen
dipole flow.

It is convenient to expand the flow velocity v and the
pressure p in powers of the displacement ξ as [14]

v = v(1) + v(2) + · · · , p = p(1) + p(2) + · · · . (2.12)

By expanding the no-slip boundary condition Eq. (2.2) we find
that the velocity at the undisplaced surface is given by [14]

u(1)
S = v(1)|r=a = ∂ξ

∂t
, u(2)

S = v(2)|r=a = −ξ · ∇v(1)|r=a.

(2.13)
The translational velocity U(t) has the corresponding expan-
sion

U = U (2) + U (3) + · · · . (2.14)

Here the first order term is missing on account of Eq. (2.3).
From Eq. (2.9) this implies A

(1)
1 = 2m

(1)
1 and B

(1)
1 = m

(1)
1 . The

second order term in the velocity is given by

U (2) = − 1

4πa2

∫
S0

u(2)
S dS. (2.15)

For periodic displacements with period T = 2π/ω we put

Ml(t) = a(μls cos ωt − μlc sin ωt),
(2.16)

Kl(t) = a(κls cos ωt − κlc sin ωt),

with dimensionless coefficients μls,μlc,κls,κlc. Then we have
from Eq. (2.13) for the first order flow velocity

v(1)(r,t) = −aω

[ ∞∑
l=1

μl(t)ul(r,θ ) +
∞∑
l=2

κl(t)vl(r,θ )

]
,

(2.17)
with multipole coefficients

μl(t) = μlc cos ωt + μls sin ωt,
(2.18)

κl(t) = κlc cos ωt + κls sin ωt,

in the notation of Felderhof and Jones [11]. The velocity
U (2)(t) and the rate of dissipation D(2)(t) to second order in the
displacement can be expressed as bilinear expressions [11] in
terms of the coefficients {μls,μlc,κls,κlc}.
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From Eqs. (2.4) and (2.17) we find for the first order
moments

m
(1)
l (t) = −aωμl(t), k

(1)
l (t) = −aωκl(t). (2.19)

In particular, from Eq. (2.9)

A
(1)
1 (t) = −2aωμ1(t), B

(1)
1 (t) = −aωμ1(t), (2.20)

since U (1)(t) = 0.

III. NET FLOW PATTERN

In this section we consider a periodic swimmer with first
order flow velocity given by Eq. (2.17), and calculate the mean
second order flow pattern. The mean is calculated as the time
average over a single period T = 2π/ω. Thus we consider

v(2)(r) = 1

T

∫ T

0
v(2)(r,t) dt, (3.1)

corresponding to some stroke or displacement ξ (s,t). Here the
flow pattern v(2)(r,t) is defined in the instantaneous rest frame
at time t and is the solution of the Stokes equations (2.1) which
tends to −U (2)(t)ez at infinity and has boundary value at r = a

given by Eq. (2.13).
The second order time-averaged flow pattern may be

expanded as

v(2)(r) = −U (2)ez +
∞∑
l=1

m
(2)
l ul(r,θ ) +

∞∑
l=2

k
(2)
l vl(r,θ ), (3.2)

corresponding to Eq. (2.4). At the surface the mean second
order flow pattern is given by

v(2)(r)|r=a = u(2)
S (s) = −ξ · ∇v(1)|r=a. (3.3)

The right hand side can be calculated for a given stroke ξ (s,t).
The flow pattern v(2)(r) in Eq. (3.2) tends to −U (2)ez at infinity
with value given by Eq. (2.15). We denote the corresponding
coefficients given by the analog of Eq. (2.8) as {A′

l ,B
′
l } =

{A(2)
l ,B

(2)
l }. These may be calculated from u(2)

S (s) by using the
orthonormality relations of the Legendre functions [15]. It may
be checked that A′

1 and B ′
1 satisfy the relation

U (2) = 1
3 (2B ′

1 − A′
1). (3.4)

We define the corresponding net flow pattern as

v′(r) = v(2)(r) + U (2)ez. (3.5)

This tends to zero at infinity at least as fast as 1/r2 and can be
identified with the flow pattern of an active particle. Conversely
the question arises as to whether a chosen steady state flow
pattern can be identified with the net flow v′(r) of a periodic
swimmer. For example, can we find a stroke ξ (s,t) for which
all coefficients {A′

l} vanish and only B ′
1,B

′
2 differ from zero?

IV. SIMPLE SWIMMERS AS ACTIVE PARTICLES

In this section we consider some simple swimmers with
strokes characterized by combinations of low order multipole
moments. The analysis suggests the flow pattern of corre-
sponding active particles.

The calculation of the time-average u(2)
S (s) in Eq. (3.3) is

performed most easily by using complex notation

μc
l = μlc + iμls, μl(t) = μc

l e
−iωt ,

(4.1)
κc

l = κlc + iκls, κl(t) = κc
l e

−iωt ,

with the identity

u(2)
S (s) = − 1

2 Re ξ ∗ · ∇v(1)|r=a, (4.2)

with complex v(1) given by Eq. (2.17) with complex coeffi-
cients {μl(t),κl(t)}, and complex ξ given by

ξ = −ia

[ ∞∑
l=1

μc
l ul(a,θ ) +

∞∑
l=2

κc
l vl(a,θ )

]
e−iωt . (4.3)

We have checked the expressions for the {A′
l ,B

′
l } coefficients

given below by a separate calculation of the coefficients
{A(2)

l (t),B(2)
l (t)} and a subsequent time average.

A. Potential swimmer

We consider first a simple swimmer with only μc
1,κ

c
2 ,μ

c
2

different from zero, corresponding to the superposition of
a potential dipole field, an Oseen dipole, and a potential
quadrupole field. The mean swimming velocity is derived from
Eq. (2.15) as

U (2) = 3
5 aω(μ1cκ2s − μ1sκ2c + 5μ1cμ2s − 5μ1sμ2c), (4.4)

in agreement with Eq. (7.8) of Ref. [11]. From Eq. (3.5) we
find for the A′,B ′ coefficients

A′
1 = 3

5 aω(μ1cκ2s − μ1sκ2c + 3μ1cμ2s − 3μ1sμ2c),

B ′
1 = 3

2U (2) + 1
2A′

1,

A′
2 = 2

5B ′
2 = − 9

7 aω(μ2cκ2s − μ2sκ2c), (4.5)

A′
3 = 10U (2) − 16A′

1, B ′
3 = 21U (2) − 33A′

1,

A′
4 = 2

5B ′
4 = 6A′

2.

The coefficients for l > 4 vanish. The corresponding multipole
moments {m′

l , k′
l} are calculated from the inverse of Eq. (2.9).

The lowest order moments are

m′
1 = 1

2 (U (2) + A′
1), k′

2 = −1
5 B ′

2, m′
2 = 1

3B ′
2. (4.6)

Squirming at l = 2 with μc
2 = −κc

2 implies A′
2 = 0, B ′

2 = 0,
and A′

1 = 1
2U (2). In the notation of Drescher et al. [16] the

source doublet strength is Asd = 3m′
1a

3 and the stresslet
strength is Astr = 3

2k′
2a

2. These authors measured the values
for swimming Volvox, but they did not find a contribution from
the quadrupole m′

2, or higher order multipoles.
For the mean rate of dissipation or power we find from

Eq. (7.15) of Ref. [11]

D(2) = 8πηω2a3 3
20

[
10

(
μ2

1c + μ2
1s

) + 9
(
κ2

2c + κ2
2s

)
+ 20

(
μ2

2c + μ2
2s

) + 24(κ2cμ2c + κ2sμ2s)
]
. (4.7)

The calculations in Eqs. (4.4) and (4.7) are performed most
easily by using the expressions given in Eqs. (7.11) and (7.17)
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of Ref. [11]. From Eqs. (4.4) and (4.7) we derive an expression
for the swimming efficiency defined by [11]

ET = 4ηωa2 |U2|
D2

. (4.8)

Without loss of generality we can choose the phase such that
μ1s = 0. We then find that the efficiency is maximal for

κ2c = 0, μ2c = 0, κ2s = −4

3

√
2 μ1c, μ2s = 11

5
√

2
μ1c,

(4.9)
with value ET = 5/(6π

√
2) = 0.188. The net flow pattern

v′(r) can be calculated from the multipole coefficients {m′
l , k′

l}
by using Eqs. (3.2) and (3.5). We note that the particular coef-
ficients A′

2 and B ′
2, as well as A′

4 and B ′
4, vanish when Eq. (4.9)

holds. It follows from Eq. (2.9) that then m′
2, k′

2 and m′
4, k′

4
also vanish. The net flow corresponds to a potential dipole of
strength m′

1 = (59
√

2/75)μ2
1caω and equal multipoles at l = 3

with k′
3 = m′

3 = (459/472)m′
1. The measurements of Drescher

et al. [16] for Volvox do not correspond to the pattern for
optimal swimming in the above sense, since they find Astr to
be different from zero.

In order to visualize the axisymmetric flow pattern it
is useful to introduce a Stokes stream function ψ via the
relations [17]

vr = 1

r2 sin θ

∂ψ

∂θ
, vθ = −1

r sin θ

∂ψ

∂r
. (4.10)

The uniform flow ez corresponds to the stream function

ψz(r) = 1
2 r2 sin2 θ, (4.11)

and the flow patterns in Eq. (2.5) correspond to

ψul(r,θ ) = al+2

lr l
sin θP 1

l (cos θ ),
(4.12)

ψvl(r,θ ) = alr2

lr l
sin θP 1

l (cos θ ).

FIG. 1. Streamlines of the net flow v′(r) for μ1c = 1, μ1s = 0,
other moments given by Eq. (4.9), and vanishing higher order
moments.

FIG. 2. Plot of the components v′
r /U

(2) (drawn curve) and v′
θ /U

(2)

(dashed curve) of the net flow at r = a as functions of θ for moments
corresponding to Fig. 1.

The streamlines of the flow are given by lines of constant
ψ . In Fig. 1 we show the streamlines of the net flow v′(r)
calculated from U (2) and the optimal moments of Eq. (4.9). In
Fig. 2 we show the values of v′

r/U
(2) and v′

θ /U
(2) at r = a as

functions of the polar angle θ . In Fig. 3 we show the values of
v′2/U (2) 2 at r = a, r = 1.25a, and r = 1.5a as functions of
the polar angle θ .

B. Squirming swimmer

As a second example we consider a squirming swimmer
characterized by coefficients μc

1 = 0, κc
2 = −μc

2, κc
3 = −μc

3
with all higher order moments vanishing. The mean swimming
velocity is derived from Eq. (2.15), or from the expression in
Eq. (7.11) of Ref. [11], as

U (2) = 48
35 aω(μ2cμ3s − μ2sμ3c). (4.13)

For the mean rate of dissipation we find

D(2) = 8πηω2a3 1
12

[
9
(
μ2

2c + μ2
2s

) + 8
(
μ2

3c + μ2
3s

)]
. (4.14)

The calculation based on the analog of Eq. (2.8) for the

boundary value u(2)
S (s) of the flow pattern v(2)(r) shows that

FIG. 3. Plot of v′2/U (2) 2 at r = a (drawn curve), r = 1.25a (long
dashes), and r = 1.5a (short dashes) as functions of the polar angle
θ for moments corresponding to Fig. 1.
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FIG. 4. Streamlines of the net flow v′(r) for μ1c = 0, μ1s =
0, μ2c = −κ2c = 1, μ2s = κ2s = 0, μ3c = κ3c = 0, μ3s = −κ3s =√

9/8, and vanishing higher order moments.

all A′ coefficients vanish and it yields for the B ′ coefficients

B ′
1 = 3

2 U (2), B ′
2 = 0,

(4.15)
B ′

3 = 7
12 U (2), B ′

4 = 0, B ′
5 = − 25

12 U (2).

The corresponding multipole moments are found from
Eq. (2.9) as

m′
1 = 1

2 U (2), m′
2 = k′

2 = 0,

m′
3 = −k′

3 = 7
48 U (2), m′

4 = k′
4 = 0, (4.16)

m′
5 = −k′

5 = − 25
72 U (2).

The moments for l > 5 vanish. The net flow pattern v′(r) can
be calculated from the multipole moments by using Eqs. (3.2)
and (3.5).

Without loss of generality we can choose the phase such
that μ2s = 0. We then find that the efficiency ET is maximal for
μ3c = 0, μ3s = √

9/8μ2c with value ET = 12
√

2/(35π ) =
0.154. In Fig. 4 we show the streamlines of the net flow v′(r)
calculated from U (2) and the set of coefficients {A′

l ,B
′
l } given

by Eq. (4.15) for the optimal moments. The net flow pattern at
the surface r = a is given by

v′|r=a = u(2)
S (s) + U (2)ez

= {
cos θ er + [ − sin θ

+ 35
64 (7 + 5 cos 2θ ) sin3 θ

]
eθ

}
U (2). (4.17)

The radial component arises from the second term in the first
line. In Fig. 5 we show the values of v′

r/U
(2) and v′

θ /U
(2) at

r = a as functions of the polar angle θ . In Fig. 6 we show
the values of v′2/U (2) 2 at r = a, r = 1.25a, and r = 1.5a as
functions of the polar angle θ . It follows from Eq. (4.15) that
the squirmer can be identified with a B1B3B5-active particle
with particular ratios of the coefficients.

FIG. 5. Plot of the components v′
r/U

(2) (drawn curve) and v′
θ /U

(2)

(dashed curve) of the net flow at r = a as functions of θ for moments
corresponding to Fig. 4.

C. Combined stroke

As a third example we consider a swimmer characterized
by coefficients μc

1, κc
2 , κc

3 , with all other moments vanishing.
The mean swimming velocity is derived from Eq. (2.15), or
from the expression in Eq. (7.11) of Ref. [11], as

U (2) = 3
35 aω(7μ1cκ2s − 7μ1sκ2c + 6κ2cκ3s − 6κ2sκ3c).

(4.18)

For the mean rate of dissipation we find

D(2) = 8πηω2a3 1
420

[
630

(
μ2

1c + μ2
1s

) + 567
(
κ2

2c + κ2
2s

)
+ 1180

(
κ2

3c + κ2
3s

)]
. (4.19)

The calculation based on the analog of Eq. (2.8) for the

boundary value u(2)
S (s) of the flow pattern v(2)(r) yields for the

nonvanishing A′ and B ′ coefficients

A′
1 = 1

2B ′
1 = U (2), A′

2 = 2
5B ′

2 = 20
7 aω(μ1cκ3s − μ1sκ3c),

A′
3 = 1

2B ′
3 = 6

5 aω(−3μ1cκ2s + 3μ1sκ2c + κ2cκ3s − κ2sκ3c),

A′
4 = 2

5B ′
4 = −A′

2,

A′
5 = 1

2B ′
5 = 30

7 aω(κ2cκ3s − κ2sκ3c). (4.20)

FIG. 6. Plot of v′2/U (2) 2 at r = a (drawn curve), r = 1.25a (long
dashes), and r = 1.5a (short dashes) as functions of the polar angle
θ for moments corresponding to Fig. 4.
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Without loss of generality we can choose the phase such that
μ1s = 0. We then find that the efficiency is maximal for

κ2c = 0, κ2s = 5

3

√
230

413
μ1c, κ3c = −27

59
μ1c, κ3s = 0,

(4.21)
with value ET = √

115/826/(3π ) = 0.040, showing that this
type of swimming is rather less effective than for the first
two examples. For the optimal swimmer the coefficients
A′

2, B ′
2, A′

4, B ′
4 vanish.

Ghose and Adhikari [18] have considered a similar swim-
mer with added potential flows with mc

2 = − 3
5kc

2 and mc
3 =

− 5
7kc

3. In our analysis [12] the {ml} and {kl} multipoles can
have independent values. We recall that the above expressions
are calculated from integrals bilinear in the first order flow
velocity. The work of Ghose and Adhikari [18] suggests that
the time-dependent swimming velocity and flow pattern must
be calculated to third order in the displacement ξ in order
to agree with experimental observations of the swimming of
Chlamydomonas [19]. Delmotte et al. [20] have studied the
same swimmer in computer simulation.

We note that it follows from Eq. (2.7) that in all three
examples the net flow velocity pattern v′(r) is associated
with a steady pressure pattern p′(r). In the first and third
examples the coefficients A′

2 and B ′
2 are related by A′

2 = 2
5B ′

2,
and in the second example both coefficients vanish. It is not
possible to design a swimmer with surface displacement (4.3)
for which the steady state net second order flow pattern v′(r)
has all coefficients {A′

l} vanishing and only B ′
1,B

′
2 of the {B ′

l }
coefficients nonvanishing. The nature of the theory is such that

the number of multipole moments of the first order stroke gets
doubled in the net flow pattern, as is evident from Eq. (3.3)
together with Eqs. (2.17) and (4.3). There is no way in which
this mechanism can lead to the simple B1B2 net flow pattern.

V. DISCUSSION

The net steady state flow pattern of a periodically distorting
sphere can be calculated for a chosen set of oscillating
multipolar flow patterns determined by the stroke. As we
have shown, such a calculation yields a net flow pattern
characterized by a set of steady state multipole moments,
as exemplified in Eqs. (4.6) and (4.16). In the study of
hydrodynamic interactions between swimmers it is preferable
to start from a particular set of oscillating multipole moments,
rather than from a chosen steady state flow pattern. The net
flow pattern must be used with caution since the hydrodynamic
interactions may be affected by the relative phase of swimming
strokes.

The explicit calculations of Sec. IV provide examples of
simple multipolar swimmers. We suggest that the correspond-
ing flow patterns be used in the study of the dynamics of
swarms of active particles. It may be preferable to use the
stroke of optimum swimming efficiency within the chosen
class of strokes.

As we have shown, the commonly used B1B2 flow pattern
of an active particle cannot be realized as the result of the
swimming motion of a distorting sphere. It would be preferable
to use one of the simple flow patterns derived here.
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