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Energy transfer and dissipation in forced isotropic turbulence
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A model for the Reynolds-number dependence of the dimensionless dissipation rate Cε was derived from the
dimensionless Kármán-Howarth equation, resulting in Cε = Cε,∞ + C/RL + O(1/R2

L), where RL is the integral
scale Reynolds number. The coefficients C and Cε,∞ arise from asymptotic expansions of the dimensionless
second- and third-order structure functions. This theoretical work was supplemented by direct numerical
simulations (DNSs) of forced isotropic turbulence for integral scale Reynolds numbers up to RL = 5875
(Rλ = 435), which were used to establish that the decay of dimensionless dissipation with increasing Reynolds
number took the form of a power law Rn

L with exponent value n = −1.000 ± 0.009 and that this decay of Cε was
actually due to the increase in the Taylor surrogate U 3/L. The model equation was fitted to data from the DNS,
which resulted in the value C = 18.9 ± 1.3 and in an asymptotic value for Cε in the infinite Reynolds-number
limit of Cε,∞ = 0.468 ± 0.006.
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I. INTRODUCTION

In recent years there has been much interest in the
fundamentals of turbulent dissipation, as characterized by the
mean dissipation rate,

ε = ν0

2

3∑
α,β=1

〈(
∂uα

∂xβ

+ ∂uβ

∂xα

)2
〉

, (1)

where ν0 is the kinematic viscosity, uα ≡ uα(x,t) is one
component of the velocity field u, while angle brackets denote
an ensemble average. For isotropic turbulence, (1) reduces to

ε = ν0

3∑
α,β=1

〈(
∂uα

∂xβ

)2
〉

. (2)

This interest has centered on the approximate expression for
the dissipation rate ε, which was given by Taylor in 1935 [1]
as

ε = CεU
3/L, (3)

where U is the root-mean-square velocity and L is the integral
scale. Many workers in the field refer to Eq. (3) as the Taylor
dissipation surrogate. However, others rearrange it to define
the coefficient Cε as the nondimensional dissipation rate;
thus,

Cε = ε

U 3/L
. (4)

In 1953 Batchelor [2] (we refer to the first edition of this
work) presented evidence to suggest that the coefficient Cε

tended to a constant value with increasing Reynolds number.
In 1984 Sreenivasan [3] showed that in grid turbulence Cε

became constant for Taylor-Reynolds numbers greater than
about 50. He also found a 1/Rλ dependence at low Rλ and,
since at low Rλ the Taylor-Reynolds number and the integral
scale Reynolds number are proportional, Sreenivasan’s paper
had already, in effect, presented empirical evidence for 1/RL

scaling at low RL. We discuss this further, in relation to
our present work, in Sec. IV. Later, in 1998, Sreenivasan

presented a survey of investigations of both forced and
decaying turbulence [4], using direct numerical simulation
(DNS), which established the now characteristic curve of Cε

plotted against the Taylor-Reynolds number Rλ (e.g., see our
Fig. 1). More recently, the comprehensive review of dissipation
rate scaling by Vassilicos [5] has summarized the evidence for
1/RL scaling of Cε.

In his 1968 lecture notes [6], Saffman made two comments
about the expression that we have given here as Eq. (3).
These were as follows: “This result is fundamental to an
understanding of turbulence and yet still lacks theoretical
support” and “the possibility that A (i.e., our Cε) depends
weakly on the Reynolds number can by no means be
completely discounted.” More than 40 yr on, the question
implicit in his second comment has been comprehensively
answered by the survey papers of Sreenivasan [3,4], along
with a great deal of subsequent work by others, some of which
we have cited here. However, while some theoretical work has
indicated an inverse proportionality between Cε and Reynolds
number, this has been limited to low Reynolds numbers [3]
or based on a mean-field approximation [7] or restricted to
providing an upper bound [8]. Hence, his first comment is still
valid today; and this lack of theoretical support remains an
impediment to the development of turbulence phenomenology
and hence turbulence theory.

In this article we present two pieces of work. These are as
follows.

First we develop a theoretical model of the relationship
between the dimensionless dissipation rate and the integral
scale Reynolds number. We start from the driven Navier-Stokes
equation in wave-number space and specify the nature of the
input term to the energy balance equation in wave-number
space. Then we Fourier transform this in order to derive the
energy balance in scale space, that is, the Kármán-Howarth
equation with forcing. This provides a basis for the application
of our general theory for forced isotropic turbulence to the
specific case of our DNS driven by negative damping. It also
gives a basis for a later consideration of the universality of our
conclusions.
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FIG. 1. Variation of the dimensionless dissipation coefficient Cε

with Taylor-Reynolds number Rλ from our DNSs. Other investiga-
tions of forced turbulence are presented for comparison. The black
line is a fit of the expression (44) to our data only.

Second, we present the data obtained from DNS for a range
of integral scale Reynolds numbers up to RL = 5875. These
results are used to elucidate some aspects of the phenomenon
and then to test our theoretical model.

We begin with a short review of the relevant literature.

II. SOME RESULTS FROM BOTH NUMERICAL
AND EXPERIMENTAL INVESTIGATIONS

Unless otherwise stated, the cited DNSs used the standard
pseudospectral method simulating isotropic turbulence in
cubic boxes of length Lbox = 2π . We report on results for
forced isotropic turbulence only. Some of the numerical results
mentioned below are shown in Fig. 1 alongside our data.

Jiménez et al. [9] attained Taylor-scale Reynolds numbers
up to Rλ = 170, with their highest Rλ simulation extending to

0.3τ , where τ denotes the large-eddy turnover time. In view
of the short execution time this simulation might still be in
a transient state. They achieved dealiasing by a combination
of random grid shifts and spherical truncation. The system
was forced by using negative viscosity for wave numbers
k ≤ 2.5 maintaining kmaxη and hence ε constant, where
η denotes the Kolmogorov dissipation scale. The authors
reported an asymptotic value for the dimensionless dissipation
rate Cε,∞ � 0.7. The statistics were calculated from five to
ten realizations for a short execution time. That is, given the
sample rate and the run time, the realizations would have been
strongly correlated. Regarding resolution requirements, the
authors point out that kmaxη = 1 is the absolute minimum,
while kmaxη = 2 is desirable.

In the work of Wang et al. [10] the forcing was implemented
by maintaining the kinetic energy in the two lowest wave-
number shells constant with an energy spectrum following
k−5/3. The measured asymptote Cε,∞ lay in the region 0.42 ≤
Cε,∞ ≤ 0.49. Using the same method without dealiasing, Cao
et al. [11] focused mainly on the statistics of the pressure field,
but data is provided in their Table I from which Cε can be
calculated. The initial condition was similar to our DNS as
E(k,0) ∼ k4 exp(k/k0)2, with k0 � 5 and the system evolved
for ten large-eddy turnover times before measurements were
taken.

Yeung and Zhou [12] presented time-averaged results from
simulations using a partially dealiased code with stochastic
forcing, covering a Rλ range of 38 � Rλ � 240 for about four
large-eddy turnover times. The resolution was relatively high
as all runs satisfied kmaxη � 1.5.

A partially dealiased code with stochastic forcing was
also used by Donzis et al. [13], who simulated flows with
Taylor-scale Reynolds number up to Rλ = 390. The data points
for Cε at different Rλ were fitted to the expression Cε =
A[1 +

√
1 + (B/Rλ)2], with A � 0.2 and B � 92, leading to

an asymptote Cε,∞ � 0.4. We discuss this expression for Cε

in more detail in Sec. III D.

TABLE I. A summary of the main parameters for our numerical simulations. The values cited for the dissipation rate ε and its standard
deviation σ , the rms velocity U , and the integral scale L are ensemble- and shell-averaged mean values. The quantity tss/τ denotes the time
the simulations have been run in steady state in units of large-eddy turnover time τ .

RL Rλ ν0 N ε σ U L/Lbox kmaxη tss/τ

81.5 41.8 0.01 512 0.097 0.010 0.581 0.22 9.57 12.61
83.7 42.5 0.01 128 0.094 0.015 0.581 0.23 2.34 12.06
88.2 44.0 0.009 128 0.096 0.009 0.587 0.22 2.15 12.74
101.4 48.0 0.008 128 0.096 0.013 0.586 0.22 1.96 12.72
105.7 49.6 0.007 128 0.098 0.011 0.579 0.20 1.77 13.82
146.5 60.8 0.005 512 0.098 0.009 0.589 0.20 5.68 14.09
158.6 64.2 0.005 128 0.099 0.011 0.607 0.21 1.37 13.80
287.8 89.4 0.0025 512 0.101 0.006 0.605 0.19 3.35 15.20
360.1 101.3 0.002 256 0.099 0.009 0.607 0.19 1.41 15.25
432.6 113.3 0.0018 256 0.100 0.008 0.626 0.20 1.31 14.95
785.2 153.4 0.001 512 0.098 0.011 0.626 0.20 1.70 14.95
1026.3 176.9 0.000 72 512 0.102 0.009 0.626 0.19 1.31 15.73
1529.0 217.0 0.0005 1024 0.100 0.008 0.63 0.19 2.02 18.80
2414.6 276.2 0.0003 1024 0.100 0.009 0.626 0.18 1.38 16.61
3535.0 335.2 0.0002 1024 0.102 0.008 0.626 0.18 1.01 16.61
5875.5 435.2 0.000 11 2048 0.102 0.010 0.614 0.17 1.30 11.56
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The investigation by Bos et al. [14] reported results
from DNS, Large Eddy Simulation, and Eddy-Damped,
Quasi-Normal Markovian closure (EDQNM) calculations for
Reynolds numbers up to Rλ = 100 for DNS and Rλ = 2000
for EDQNM. The authors tested different initial conditions
such as Gaussian-shaped initial energy spectra and the von
Kármán spectrum and found no dependence on the choice of
initial spectrum once the system had reached a stationary state.
However, the transient to a steady state was found to be shorter
for a von Kármán spectrum than for Gaussian-shaped initial
spectra. They measured Cε,∞ � 0.5 for the asymptote of the
dimensionless dissipation rate.

Variations of the initial conditions were also studied by
Goto and Vassilicos [15], mainly by altering the low wave-
number behavior and the peak wave number of the initial
spectra. The results for Cε show a dependence on the different
low wave-number forms of the initial spectra. In contrast, the
location of the peak of the initial spectrum had no significant
influence on Cε. What is interpreted as a dependence on the
form of the initial spectra could actually be due to differences in
the forcing method. The system is kept statistically stationary
by fixing the magnitude of the velocity field modes for wave
numbers smaller than the peak wave number of the initial
spectra, which in some cases leads to a very large forcing
range. The low wave number form of the initial spectrum is
thus maintained during the evolution of the velocity field, such
that it is no longer purely a feature of the initial condition but
rather a permanent feature imposed by the forcing scheme.
The observed dependence of Cε on the choice of initial energy
spectrum could therefore be due to differences in the forcing
spectrum instead.

Kaneda et al. [16] conducted the largest DNS of forced
isotropic turbulence so far on grids of up to 40963 collocation
points reaching Rλ = 1201 in single precision and Rλ = 732
in double precision, both at minimum resolution of kmaxη = 1.
The system was maintained statistically stationary by using
negative viscosity for wave numbers k ≤ 2.5 in order to keep
the total energy constant. Data were collected from single
realizations only, resulting in an asymptotic value for Cε in
the range 0.4 ≤ Cε,∞ ≤ 0.5. The largest Rλ simulation was
only carried out for a short time; thus, this run might still be
transient.

The most recent high resolution DNS results for the
dimensionless dissipation rate were presented by Yeung et al.
[17]. Four simulations spanning a Taylor-scale Reynolds
number range of 140 ≤ Rλ ≤ 1000 on 20483 and 40963

collocation points were carried out, at resolutions between
1.3 ≤ kmaxη ≤ 11.2, resulting in 0.449 ≤ Cε ≤ 0.470. Due
to the computational cost incurred by simulations of this
size, the execution time in steady state was relatively short
and the simulation corresponding to Rλ = 1000 was stopped
after 3.59τ . During the steady state, 20 snapshots were
taken to populate the ensemble, so samples were taken every
0.18τ . Thus, the ensemble consisted of realizations that
are statistically correlated. The authors noted that a longer
run time would be preferable, but argued that since intense
fluctuations in ε are relatively short lived, ensemble averaging
over snapshots close in time will still improve statistics.

In contrast to the various pseudospectral DNSs of in-
compressible turbulent flows cited here, Pearson et al. [18]

used a sixth-order finite difference scheme with large-scale
δ(t)-correlated forcing for DNS of slightly compressible flows,
leading to Cε � 0.5.

Having summarized numerical results on the topic we
now briefly turn to experimental results. Pearson et al. [19]
measured Cε � 0.5 for a number of shear flows. Different flow
types were investigated by Burattini et al. [20], and Mazellier
et al. [21] studied turbulence in a wind tunnel generated from
a variety of different grid geometries including fractal grids.
In the fractal case they found a significantly lower asymptote
for Cε, namely, Cε,∞ � 0.065. However, we should note that
turbulence generated in this way differs in other quite profound
ways from conventional grid turbulence.

In all, we find that the asymptotic value Cε,∞ � 0.5
is a well-established numerical result which is broadly in
agreement with experimental work.

III. A MODEL FOR THE DEPENDENCE OF
DIMENSIONLESS DISSIPATION ON REYNOLDS NUMBER

The use of external random forcing with the Navier-
Stokes equations (NSEs) was pioneered in the development
of statistical theories in the late 1950s. This work was very
much influenced by problems in statistical physics, such as
Brownian motion, and the emphasis was on choosing forces
which could lead to turbulence that was characteristic of the
NSE, rather than the forcing. For this reason we begin with a
spectral formulation. However, it is also convenient in that it
allows us to make a connection with our DNS, which employs
the usual pseudospectral method. We obtain the energy balance
in wave-number space (the Lin equation) and then Fourier
transform this to obtain the energy balance in scale space. The
result is, of course, fully equivalent to the Kármán-Howarth
equation with forcing, as derived entirely by more conventional
means; see Chap. 4 in the book [22]. In obtaining our
theoretical model for the dimensionless dissipation rate, we
introduce the dimensionless Kármán-Howarth equation and
make asymptotic expansions of the structure functions in
inverse powers of the integral scale Reynolds number. We first
consider the idealized problem of isotropic turbulence with δ

function forcing in wave number and then apply the analysis
to the finite forcing used in the DNS.

A. Energy balance and the nature of the forcing

In Fourier space, the incompressible NSEs may be written
as

(∂t + ν0k
2)u(k,t) = ikP (k,t) +

∫
R3

d j [ik · u( j ,t)]

× u(k − j ,t) + f (k,t), (5)

ik · u(k,t) = 0,

where u(k,t) denotes the three-dimensional Fourier transform
of the velocity field u(x,t), P (k,t) the Fourier transform of
the pressure field, ν0 the kinematic viscosity, and f (k,t) the
Fourier transform of the stirring force f (x,t). In order to
avoid introducing unwanted correlations into the problem,
the stirring forces must be highly uncorrelated in time.
For this reason, they are normally taken to have δ-function
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autocorrelations in time; see [22–25]. In other statistical
problems, this input is often referred to as white noise.

The energy balance in wave-number space (the Lin equa-
tion) can readily be derived from the above NSE (see [22]) to
obtain the well known form

∂E(k,t)

∂t
= T (k,t) − 2ν0k

2E(k,t) + W (k,t), (6)

where E(k,t) and T (k,t) are the energy and transfer spectra,
respectively, and

W (k,t) = 4πk2〈u(−k,t) · f (k,t)〉 (7)

is the work spectrum of the stirring force. For conciseness we
do not explicitly show the time dependence from now on.

In order to avoid introducing a dependence on the forcing
in wave-number space, it was argued by Edwards in 1965 that
the forcing spectrum could take the form of a δ function at the
origin. In a modern notation [22], this may be written as

W (k) = εWδ(k), (8)

thus introducing the injection rate εW which, in more general
terms, is defined by

εW =
∫ ∞

0
W (k)dk. (9)

At this point we note that W (k) is integrable, which follows
from the well posed nature of the problem, as both f and
u should be square integrable in order to ensure that the
total energy remains finite (and to ensure the existence of
the respective Fourier transforms).

An alternative to the use of stirring forces exists in the
form of negative damping at low wave numbers. This was
introduced to theoretical work in 1966 by Herring [26] and
to numerical simulation by Machiels in 1997 [27]. It is now
quite widely used and, as in several of the investigations cited
herein, it was used in our present DNS. In this method, the
Fourier transform of the force is given by

f (k,t) = (εW/2Ef )u(k,t) for 0 < |k| < kf ,

= 0 otherwise, (10)

Ef being the total energy contained in the forcing band.
This ensures that the energy injection rate is εW = constant.
The highest forced wave number, kf , is usually taken to be
small. This form of energy input was used in our numerical
simulations, as discussed in Sec. IV.

B. The Kármán-Howarth equation for forced turbulence

Now we obtain the equivalent form of the Kármán-Howarth
equation (KHE), by Fourier transformation of the Lin equation
[28] as

−3

2

∂U 2

∂t
+ 3

4

∂S2(r)

∂t

= − 1

4r4

∂

∂r
[r4S3(r)] + 3ν0

2r4

∂

∂r

[
r4 ∂S2(r)

∂r

]
− I (r),

(11)

where the longitudinal structure functions are defined as

Sn(r) = 〈{[u(x + r) − u(x)] · r̂}n〉, (12)

and the input I (r) is given in terms of W (k) by

I (r) = 3
∫ ∞

0
dkW (k)

[
sin kr − kr cos kr

(kr)3

]
, (13)

where the convergence of this integral is a consequence of the
integrability of W (k) ensured by the well posed nature of this
problem as stated below (9) in the previous section. Here I (r)
is interpreted as the total energy injected into all scales >r .
Note that we may make the connection between W (k) and the
injection rate for the numerical simulations by

I (0) =
∫ ∞

0
dkW (k) = εW , (14)

where the energy injection rate εW is as specified for the DNS
by (10).

It is also helpful to introduce the energy decay rate εD =
−(3/2)∂U 2/∂t , and with some rearrangement (11) may be
written as

εD = −3

4

∂S2(r)

∂t
− 1

4r4

∂

∂r
[r4S3(r)]

+ 3ν0

2r4

∂

∂r

[
r4 ∂S2(r)

∂r

]
− I (r). (15)

At this stage we have a general form of the KHE, but it does
not contain the dissipation rate as such (irrespective of how the
KHE is derived). As it is the dissipation rate which interests us,
we may introduce it to the KHE by a simple identity. This can
be derived by integration of the Lin equation (6) with respect
to wave number. Hence, one obtains for the energy balance of
isotropic turbulence

−εD = 0 − ε + εW , (16)

as
∫

dk T (k) = 0, by conservation of energy; see [22].
For freely decaying turbulence, where εW = 0, this relation

becomes εD = ε. Hence, the rate of change of the total energy
is due to dissipation only, as expected.

For forced turbulence which has reached a stationary state,
there is no change in the total energy. That is, εD = 0, and
the dissipation rate must equal the rate of energy input; hence,
ε = εW .

If we substitute (16) into (15), we obtain the most general
form of the KHE,

ε − εW = −3

4

∂S2(r)

∂t
− 1

4r4

∂

∂r
[r4S3(r)]

+ 3ν0

2r4

∂

∂r

[
r4 ∂S2(r)

∂r

]
− I (r), (17)

which can be applied either to forced and/or to decaying
turbulence by setting the appropriate terms to zero.

That is, if we were to apply (17) to freely decaying
turbulence, we would set the input term I (r) equal to zero,
to give

εD ≡ ε = −3

4

∂S2

∂t
− 1

4r4

∂

∂r
(r4S3) + 3ν0

2r4

∂

∂r

(
r4 ∂S2

∂r

)
,

(18)

which is the form of the KHE familiar in the literature (e.g.,
see [22] or [29]).
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Here we are considering forced turbulence which has
reached a stationary state. So we must set the left-hand side
of (17) and any time derivatives that appear in this equation,
such as ∂S2/∂t , to zero. Whereupon (17) reduces (with some
rearrangement) to the appropriate KHE for forced turbulence,

I (r) = − 1

4r4

∂

∂r
[r4S3(r)] + 3ν0

2r4

∂

∂r

[
r4 ∂S2(r)

∂r

]
. (19)

After an integration with respect to r , this equation is further
rearranged to take the form

S3(r) = − 4

r4

∫ r

0
dyy4I (y) + 6ν0

∂S2

∂r
, (20)

where I (r) contains all the information of the forcing and is
calculated directly from the work spectrum. If we take the
limit r → 0 in Eq. (13) and invoke stationarity, then for small
scales we obtain limr→0 I (r) = εW = ε and so recover the
Kolmogorov form of the KHE [30] from (19),

ε = εW = − 1

4r4

∂

∂r
[r4S3(r)] + 3ν0

2r4

∂

∂r

[
r4 ∂S2(r)

∂r

]
, (21)

for small scales. Alternatively, at the other extreme, with the
Edwards δ function forcing (8), this relationship holds for all
scales. However, a middle ground can be found if, instead of
taking a limit, we restrict our attention to scales below the
forcing scale, where the energy input to scale r is independent
of the details of the forcing.

C. Dimensionless Kármán-Howarth equation
for stationary turbulence

Returning to our form of the forced KHE, Eq. (19), we now
introduce the dimensionless structure functions hn(ρ) which
are given by

Sn(r) = Unhn(ρ), (22)

where ρ = r/L. Substitution of these into (19) leads to

I (ρ) = − 1

4ρ4

∂

∂ρ
[ρ4h3(ρ)]

U 3

L
+ ν0U

2

L2

3

2ρ4

∂

∂ρ

[
ρ4 ∂h2(ρ)

∂ρ

]
.

(23)

Then, with some rearrangement, (19) takes the dimensionless
form

I (ρ)
L

U 3
= − 1

4ρ4

∂

∂ρ
[ρ4h3(ρ)] + 1

RL

3

2ρ4

∂

∂ρ

[
ρ4 ∂h2(ρ)

∂ρ

]
,

(24)

with RL = UL/ν0 the Reynolds number based on the integral
scale. For conciseness we introduce coefficients A3 and A2:

A3(ρ) = − 1

4ρ4

∂

∂ρ
[ρ4h3(ρ)] (25)

and

A2(ρ) = 3

2ρ4

∂

∂ρ

[
ρ4 ∂h2(ρ)

∂ρ

]
. (26)

Equation (24) expressed in terms of A2 and A3 then becomes

I (ρ)
L

U 3
= A3(ρ) + A2(ρ)

RL

. (27)

The input I (ρ) may be expressed in terms of an amplitude
εW and a dimensionless shape function φ(ρ); thus,

I (ρ) = εWφ(ρ), (28)

where φ(ρ) contains all of the scale-dependent information
and, as required by Eq. (14), satisfies φ(0) = 1. Using the
shape function φ, Eq. (27) reads

φ(ρ)
εWL

U 3
= A3(ρ) + A2(ρ)

RL

, (29)

where the left-hand side already looks similar in structure to
the dimensionless dissipation rate Cε = εL/U 3.

Now let us consider the dimensionless KHE for the case of
constant forcing at the small scales, where φ(ρ) = 1; hence,
I (ρ) = εW . Equation (27) becomes

εWL

U 3
= A3(ρ) + A2(ρ)

RL

, (30)

from which, since ε = εW from stationarity, and using Eq. (4),
we have

Cε = εWL

U 3
= A3(ρ) + A2(ρ)

RL

. (31)

This simple scaling analysis has extracted the integral scale as
the relevant length scale and RL as the appropriate Reynolds
number for studying the behavior of Cε, but it is not unique. If
we had used different scales, the coefficients A2 and A3 would
also be different. This particular scaling was advocated by
Batchelor [2], despite which it has become common practice
to study Cε = Cε(Rλ), as shown in Fig. 1.

From the well-known phenomenology associated with
Kolmogorov’s inertial-range theories [30], as the Reynolds
number tends to infinity, we know that we must have A2/RL →
0 and A3 → Cε,∞ = constant.

Equation (31) can also be rewritten as

ε = A3(ρ)
U 3

L
+ A2(ρ)

ν0U
2

L2
. (32)

The first term on the right-hand side is essentially the Taylor
surrogate, while the second term is a viscous correction. It
has been demonstrated [31] that, for the case of decaying
turbulence, the surrogate U 3/L represents the maximum
inertial transfer flux, εT , more accurately than the dissipation
rate. Here εT is given by the maximum of the transport power
�max,

εT = �max =
∫ ∞

k∗
dkT (k), (33)

where k∗ denotes the single zero crossing of the transfer
spectrum; for further details, see p. 88 in [22]. The same is
shown later for forced turbulence in Fig. 2, since the input rate
(and hence ε) is kept constant. Thus, the forced KHE expresses
the equivalence of the rates at which energy is transferred
and dissipated (or injected) as ν0 → 0. For finite viscosity,
there is a contribution to the dissipation rate which has not
passed through the cascade. In terms of our rearranged model
equation, we may write (32)

ε = Cε,∞
U 3

L
+ ν0

A2(ρ)U 2

L2
→ εT as ν0 → 0, (34)
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FIG. 2. Variation with Taylor-Reynolds number of the dissipation
rate ε, maximum inertial transfer rate εT , and Taylor surrogate U 3/L,
all scaled on the injection rate εW . The line corresponds to the fitted
line in Fig. 1.

where, from Eq. (25), the asymptotic value denoted by Cε,∞
is given by the expression

Cε,∞ = lim
ν0→0

A3(ρ) = − lim
ν0→0

1

4ρ4

∂

∂ρ
[ρ4h3(ρ)]. (35)

At this point we note that taking the limit ν0 → 0 in (35)
corresponds to the onset of Kolmogorov’s four-fifths law and
that therefore the existence of the constant Cε,∞ corresponds
to the same physical situation as the four-fifths law [32–34].

D. Asymptotic expansion of the structure functions
in inverse powers of RL

In order to examine the dependence of the dimensionless
dissipation rate on RL in detail, it is convenient to go back to
the form of energy balance [i.e., (24)] that we had before
we introduced the coefficients A2 and A3. Restricting our
attention to scales smaller than the energy injection scale,
we have I (ρ) = εW = ε; hence, the dimensionless KHE (24)
reads

Cε = − 1

4ρ4

∂

∂ρ
[ρ4h3(ρ)] + 1

RL

3

2ρ4

∂

∂ρ

[
ρ4 ∂h2(ρ)

∂ρ

]
. (36)

This expression already suggests a dependence of Cε on RL.
However, the structure functions, and hence their dimension-
less counterparts h2(ρ) and h3(ρ), also depend on Reynolds
number. In order to treat their Reynolds-number dependence,
we consider asymptotic expansions in inverse powers of RL.

We note that for large RL the term with the highest
derivative in (36) is multiplied by the small parameter R−1

L ;
hence, we are faced with a singular perturbation problem [35].
Therefore, we consider outer asymptotic expansions of the
structure functions in negative powers of RL, a technique
applied to singular perturbation problems (see, e.g., [36],
Chap. X). We study here only the outer expansions as we
have rescaled the KHE with respect to the integral scale L.

The outer expansions of the dimensionless structure func-
tions in powers of R−1

L are

h2(ρ) = h
(0)
2 (ρ) + 1

RL

h
(1)
2 (ρ) + O

(
1

R2
L

)
(37)

and

h3(ρ) = h
(0)
3 (ρ) + 1

RL

h
(1)
3 (ρ) + O

(
1

R2
L

)
. (38)

Substituting the expansions (37) and (38) into (36), we obtain
up to first order in R−1

L

Cε = − 1

4ρ4

∂

∂ρ

[
ρ4h

(0)
3 (ρ)

] + 1

RL

{
3

2ρ4

∂

∂ρ

[
ρ4 ∂h

(0)
2 (ρ)

∂ρ

]

− 1

4ρ4

∂

∂ρ

[
ρ4h

(1)
3 (ρ)

]} + O

(
1

R2
L

)
, (39)

where the terms h
(0)
2 , h(0)

3 , and h
(1)
3 do not depend on RL. We can

write this in terms of the coefficient Cε,∞ and a new coefficient
C, both of which are constant with respect to RL. Thus,

Cε,∞ = − 1

4ρ4

∂

∂ρ

[
ρ4h

(0)
3 (ρ)

]
(40)

and

C = 3

2ρ4

∂

∂ρ

[
ρ4 ∂h

(0)
2 (ρ)

∂ρ

]
− 1

4ρ4

∂

∂ρ

[
ρ4h

(1)
3 (ρ)

]
, (41)

where both coefficients are a priori scale dependent (i.e.,
dependent on a length scale), while Cε is not. Hence, the scale
dependencies of the different terms in the model equation must
cancel each other. In fact, since Cε,∞ is a constant with respect
to ρ by the four-fifths law, the scale dependence between the
two terms on the right-hand side of (41) must cancel out. This
leads us to the model equation

Cε = Cε,∞ + C

RL

, (42)

where Cε,∞ and C are constants with respect to RL and ρ.
In order to compare with results plotted against Taylor-

Reynolds number Rλ, we substitute the relation

RL = CεR
2
λ/15, (43)

into (42) and solve for Cε. This leads to an expression for the
dependence of Cε on Rλ,

Cε(Rλ) = A[1 +
√

1 + (B/Rλ)2], (44)

where A and B are constants with respect to Rλ. We note that
this particular step was first taken by Doering and Foias [8],
who derived an expression similar to (42) as an upper bound
on the dependence of Cε on RL.

IV. NUMERICAL SIMULATIONS

We used the standard pseudospectral method with full
dealiasing for our DNS; further details can be found in
Ref. [28]. The initial conditions were Gaussian-distributed
random velocity fields with a prescribed energy spectrum of
the form

E(k,0) ∼ k4 exp(k/k0)2, (45)
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FIG. 3. Dimensionless energy balance in the KHE, as expressed
by Eq. (27). Rλ = 276. The Taylor microscale is labeled for
comparison. Note that the energy input is constant for scales r < λ.

with k0 � 5. The system was forced at the large scales by
negative damping as in (10) with kf ≤ 2.5. This method has
also been used in other investigations [9,16,37,38], albeit not
necessarily such that εW is maintained constant.

For each Reynolds number studied, we used the same initial
spectrum and input rate εW . The only initial condition changed
was the value assigned to the (kinematic) viscosity ν0. Note that
increasing the Reynolds number by decreasing ν0 at constant
εW is the same as taking the infinite Reynolds number limit.

Measurements were taken after the simulations had reached
a stationary state, determined by the mean total energy
becoming constant; for a discussion of this criterion, see
[39], and in particular Fig. 3 of that reference. The velocity
field was sampled every half a large-eddy turnover time,
τ = L/U , where L denotes the average integral scale and U

the rms velocity. The ensemble populated with these sampled
realizations was used, in conjunction with the usual shell
averaging, to calculate statistics. Simulations were run using
lattices of size 1283 up to 20483, with corresponding Taylor-
Reynolds numbers ranging from Rλ = 41.8 up to 435.2. All
simulations were sufficiently resolved at the small scales; that
is, the maximum wave number satisfied kmaxη ≥ 1.30 for all
runs except one which satisfied kmaxη ≥ 1.01, where η is the
Kolmogorov dissipation length scale. Large-scale resolution
has only relatively recently received attention in the literature.
The integral scale, L, was found to lie between 0.23Lbox and
0.17Lbox; that is, the largest scales of the flow are smaller than
a quarter of the simulation box size. Details of the simulations
are summarized in Table I.

Our simulations have been well validated by means of
extensive and detailed comparison with the results of other
investigations [28,40]. Furthermore, it can be seen from Fig. 1
that our results reproduce the characteristic behavior for the
plot of Cε against Rλ, and agree well with other representative
results in the literature [10,11,13,16,41]. We note that the
data presented for comparison were obtained using negative
damping (with variable εW ) [16], stochastic noise [13,41],
or maintaining a k−5/3 energy spectrum within the forced
shells [10,11]. These methods for energy injection have been
discussed in Ref. [14].

A. Results for dimensionless dissipation

Like other workers in the field, we follow the example of
Sreenivasan in plotting values of Cε against Rλ for various
investigations. Figure 1 shows the values of Cε obtained
from our DNS alongside results from other investigations
of forced isotropic turbulence [10,11,13,16,17,41], plotted
against Taylor-Reynolds number. The black line is a fit of
the expression (44), which is equivalent to the model equation
(42), to our data only, where the fit was carried out using the
Marquardt-Levenberg least-squares method. The equivalence
of the two expressions has been explained in Sec. III D.
Recalling that (44) takes the form

Cε(Rλ) = A[1 +
√

1 + (B/Rλ)2], (46)

we found the values A = 0.234 ± 0.003 and B = 72 ± 3.
In Fig. 2 we show separately the behavior of the dissipation

rate ε, the maximum inertial flux εT , and the Taylor surrogate
U 3/L, where each of these quantities was scaled on the
constant injection rate εW . We see that the decrease of Cε,
with increasing Reynolds number, is caused by the increasing
value of the surrogate in the denominator, rather than by
decay of the dissipation rate in the numerator, as this remains
fixed at ε = εW . This is the exact opposite of the case
for freely decaying turbulence, where the actual dissipation
rate decreases with increasing Reynolds number, while the
surrogate remains fairly constant [31]. The figure also shows
how both εT /εW and U 3/(LεW ) increase at low Rλ, while
ε/εW is constant (as required by the energy balance in forced
isotropic turbulence). Therefore, U 3/L represents εT better
than ε. Furthermore, we observe that ε/εT = εW/εT → 1 from
above as the Reynolds number is increased, corresponding to
the onset of an inertial range [25].

Figure 3 shows the balance of energy represented by
the dimensionless equation given as (27). For small scales
(ρ < λ/L for the case Rλ = 276 shown) the input term satisfies
I (r) � εW = ε, as expected since such scales are not directly
influenced by the forcing. We note that the second- and
third-order structure functions may be obtained from the
energy and transfer spectra, respectively, using

S2(r) = 4
∫ ∞

0
dkE(k)

[
1

3
− sin kr − kr cos kr

(kr)3

]
(47)

and

S3(r)

= 12r

∫ ∞

0
dkT (k)

[
3 sin kr − 3kr cos kr − (kr)2 sin kr

(kr)5

]
.

(48)

This procedure was introduced by Qian [42,43] and more
recently used by Tchoufag et al. [44] and by McComb et al.
[28]: The underlying transforms may be found in the book by
Monin and Yaglom [29]; see their Eqs. (12.75) and (12.141′′′).
From these expressions, the nonlinear and viscous terms A3

and A2/RL given by Eqs. (25) and (26), are calculated using

A3(ρ) = −3L

U 3

∫ ∞

0
dkT (k)

[
sin kLρ − kLρ cos kLρ

(kLρ)3

]
(49)
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FIG. 4. Graph of the present DNS results for Cε against Reynolds
number, once the estimate of the asymptote is subtracted. The effect
of varying our estimate of the asymptote Cε,∞ is shown by the three
different symbols, where C ′

ε,∞ and C ′′
ε,∞ denote variations in the

asymptote within one standard error. The dashed lines represent fits
of the expression CRn

L to the data after subtracting the respective
values of the asymptote.

and

A2(ρ)

RL

= 6ν0L

U 3

∫ ∞

0
dkk2E(k)

[
sin kLρ − kLρ cos kLρ

(kLρ)3

]
.

(50)

Figures 4 and 5 show the measured power-law dependence
of Cε on RL on linear and logarithmic scales, respectively.
Noting that the standard procedure of using a log-log plot
to identify power-law behavior is unavailable in this case,
due to the constant asymptote, we subtracted the estimated
asymptotic value, which was obtained from a fit of (42) to DNS
data (presented in the next section), and plotted Cε − Cε,∞
against RL on linear and logarithmic scales. This allowed
us to identify power-law behavior consistent with R−1

L . We
also tested the effect of varying our estimate of the value

10−3

10−2

10−1

100

 100  1000  10000

C
ε −

 C
ε,

∞

RL

slope n = −1.000 ± 0.009 
Cε,∞ = 0.468 ± 0.006
C’ε,∞ = 0.467
C’’ε,∞ = 0.463

FIG. 5. The same data as in Fig. 4 plotted on logarithmic scales.
The solid line represents a slope of n = −1.000 ± 0.009, obtained
from a one-parameter fit of the expression CRn

L to the data points,
after subtracting the asymptote Cε,∞ = 0.468.

 0
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Fit: Cε,∞ + C/RL
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FIG. 6. The expression given in Eq. (42) fitted to present DNS
data resulting in Cε,∞ = 0.468 and C = 18.9.

of the asymptote Cε,∞. It can be seen that the results were
insensitive to this at the lower Reynolds numbers, where the
R−1

L dependence is being tested. At higher RL, the viscous
contribution represented by C/RL becomes negligible and
instead the result becomes dependent on the actual value of
Cε,∞.

As can be seen in Fig. 4, the value of the exponent n depends
weakly on the variation of the asymptote. The different values
of n shown in the figure were obtained by performing two-
parameter fits of the expression CRn

L to the data points after
subtracting the respective values of the asymptote. The fits
using the asymptotes Cε,∞, C ′

ε,∞, and C ′′
ε,∞ result in exponents

consistent with a 1/RL dependence of Cε on RL, namely,
n = −1.0 ± 0.1. The quality of the fit can be improved by
fixing the coefficient C to take the value C = 18.9 obtained
from the fit of (42) to data, which is presented in the following
section.

B. Assessment of the model

In order to test our model for the dimensionless dissipation
rate, we fitted an expression of the form (42) to data obtained
with the present DNS, and it was found to agree very well,
as shown in Fig. 6. Measuring the exponent separately, as
explained in the previous section and shown in Fig. 4, resulted
in n = −1.0 ± 0.1 and so supports the model equation, with
the constants given by Cε,∞ = 0.468 ± 0.006 and C = 18.9 ±
1.3. Fixing the value of the coefficient C to be C = 18.9,
as obtained by the fit of (42) to data, and by performing a
one-parameter fit, varying only the exponent, results in n =
−1.000 ± 0.009, as shown in Fig. 5.

As shown in Fig. 6 (and in Fig. 1), it may be seen that our
model (42) is in good agreement with both our own data and
that of others, where we note that the expression fitted to our
data in Fig. 1 is equivalent to our model (42).

V. DISCUSSION

Our model, as given by either Eq. (42) (for dependence on
RL) or Eq. (44) (for dependence on Rλ), may be compared to
other work in the literature. As mentioned in the Introduction,
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Sreenivasan [3] compared experimental results for free decay
to the expression for very low Reynolds numbers,

Cε = 15

Rλ

√
π

2
. (51)

This used the isotropic relation ε = 15ν0U
2/λ2 (where λ is the

Taylor microscale) and the approximation L/λ � (π/2)1/2 [2].
Note that, while 15

√
π/2 = 18.8, compared to C = 18.9 ±

1.3 found in the present analysis, this expression involves
Rλ rather than RL. At low RL, however, RL ∼ Rλ; thus, by
combination of the two asymptotic results in Sreenivasan’s
paper [3], one obtains the result for the scaling of the
dimensionless dissipation rate reported here. Furthermore,
the values of the coefficient C obtained by Sreenivasan and
measured numerically by us agree within one standard error.

Later, Lohse [7] used “variable range mean-field theory” to
find an expression for the dimensionless dissipation coefficient
by matching small r and inertial range forms for the second-
order structure function and obtained

Cε = Cε,∞

√
1 + 5b3

4R2
λ

, (52)

where b = S2(r)/(εr)2/3, such that Cε,∞ = [h2(1)/b]3/2. At
low Reynolds numbers, this author reported Cε = 18/RL. The
asymptotic value was calculated by Pearson, Krogstad, and
van der Water [19], who used h2(1) � 1.25 and b � 2.05, to
be Cε,∞ � 0.48, which agrees with our result, Cε,∞ = 0.468 ±
0.006, nearly within one standard error.

In an alternative approach, Doering and Foias [8] used the
longest length scale affected by forcing, l, to derive upper and
lower bounds on Cε,

4π2

α2Re
� Cε �

( a

Re
+ b

)
, (53)

for constants a,b, where Re = Ul/ν0 and α = Lbox/l. While
the upper bound resembles the present model, it is important
to note that where these authors have obtained an inequality,
we have an equality. Inspired by the results of [8], Eq. (44),
which is equivalent to the model equation (42) and thus to
the expression in the upper bound (53), was fitted to data
by Donzis, Sreenivasan, and Yeung [13], with A � 0.2 and
B � 92 giving reasonable agreement, such that Cε,∞ � 0.4.

Later still, Bos, Shao, and Bertoglio [14] employed the
idea of a finite cascade time to relate the expressions for Cε

in forced and decaying turbulence. Using a model spectrum,
they then derived a form for Cε and found the asymptotic
value Cε,∞ = 0.53 with the Kolmogorov constant CK = 1.5.
Note that when we used their formula, with the value CK =
1.625 instead (which is probably more representative [22]),
this led to Cε,∞ = 0.47, as found in the present work. With a
simplified model spectrum, the authors then showed how their
expression reduced to Cε = 19/RL for low Reynolds numbers
[when E(k) ∼ k4 at low k] in agreement with C = 18.9 ± 1.3
found here (within one standard error).

We finish with a brief consideration of the universality of
these results. In general, this would mean that the Cε versus
Rλ curve would take the same form for all flow configurations,
such as pipe flow, free jets, isotropic turbulence, and so
on. Evidently, as our present work is restricted to stationary

isotropic turbulence, this rather restricts what we can say about
the matter. Indeed, we basically can only consider the effects
of the initial conditions such as the form of the forcing and
the shape of the initial spectrum, and insofar as these have
been tested, our brief literature survey would indicate that they
probably only affect the duration of transient behavior, but not
the steady-state results. This is, of course, in line with what one
expects from universality of isotropic turbulence in general.
That is, forcing should be confined to low wave numbers in
order to set up an asymptotic state which is representative
of the equations of motion, rather than the arbitrarily chosen
forcing. Similarly, the arbitrary initial energy spectrum should
quickly die away to be replaced by the true spectrum. So it is
important to recognize that the universality of the Cε curve
should be considered in conjunction with the universality
of the turbulence that we are producing. Our present work
suggests that the model based on δ-function forcing is in good
agreement with the DNSs based on finite (in wave-number
space) forcing and that the values of the constants C and Cε,∞
agree quite well with those obtained in other investigations.
This might be seen as evidence for universality within the
confines of this particular flow. Certainly one should observe
that the scatter of points from various investigations in Fig. 1
is not evidence of nonuniversality, unless one has eliminated
other possible explanations for this scatter, such as differences
in run time or resolution.

We made a systematic investigation into the effect of run
time on the measured value of Cε for our highest RL data
point. In total, this run was carried out for about 12 large-eddy
turnover times in steady state, resulting in the measured value
of Cε = 0.466 ± 0.021. If we restrict the time interval that
we average results over to, say, 3 large-eddy turnover times,
we measure Cε = 0.442 ± 0.030, which is significantly lower
than the measured value averaged over the full run. Note that
the value obtained from the shorter time interval is closer to
some of the values measured by other groups shown in Fig. 1.

Then, by extending the time interval systematically towards
the actual run time in steady state, we found that the results
converged to the value obtained by averaging over the full time
interval. Work on this aspect continues as part of our program
on DNS and will be reported in due course.

VI. CONCLUSIONS

Our theoretical model predicts an inverse dependence of the
dimensionless dissipation rate on the integral scale Reynolds
number, with asymptotic validity in the limit of large Reynolds
numbers. A question then arises: Do we have to include
higher-order terms at lower Reynolds numbers? It is in order
to answer this question that we resort to direct numerical
simulation.

The answer to our question is reassuring. We find that
analysis of the data from our DNS supports a dependence
on R−1

L at all values of the Reynolds number. Also, the
law given by Eq. (42) is found to give a good fit to the
data from the DNS, with values for the constants which are
in generally good agreement with those obtained in other
investigations.

It may be of interest to note that when we apply the same
theoretical approach to magnetohydrodynamics (MHD), we
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find that it is necessary to take the term in R−2
L into account,

in addition to the leading-order term, although the effect
was not large [45]. We also plan to extend the analysis to
inhomogeneous flows, in order to examine further the question
of universality, as discussed at the end of the preceding section.

Last, we note that our analysis shows that the behavior of
the dimensionless dissipation rate, as found experimentally,
is entirely in accord with the Kolmogorov (K41) picture of
turbulence and, in particular, with Kolmogorov’s derivation of

his four-fifths law [30], the one universally accepted result in
turbulence.
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and P. Å. Krogstad, Phys. Rev. E 70, 056301 (2004).
[19] B. R. Pearson, P. A. Krogstad, and W. van de Water, Phys. Fluids

14, 1288 (2002).
[20] P. Burattini, P. Lavoie, and R. Antonia, Phys. Fluids 17, 98103

(2005).
[21] N. Mazellier and J. C. Vassilicos, Phys. Fluids 20, 15101 (2008).
[22] W. D. McComb, Homogeneous, Isotropic Turbulence: Phe-

nomenology, Renormalization and Statistical Closures (Oxford
University Press, Oxford, UK, 2014).

[23] R. H. Kraichnan, Phys. Rev. 113, 1181 (1959).

[24] S. F. Edwards, J. Fluid Mech. 18, 239 (1964).
[25] W. D. McComb, The Physics of Fluid Turbulence (Oxford

University Press, Oxford, UK, 1990).
[26] J. R. Herring, Phys. Fluids 9, 2106 (1966).
[27] L. Machiels, Phys. Rev. Lett. 79, 3411 (1997).
[28] W. D. McComb, S. R. Yoffe, M. F. Linkmann, and A. Berera,

Phys. Rev. E 90, 053010 (2014).
[29] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics

(MIT Press, Cambridge, MA, 1975).
[30] A. N. Kolmogorov, C. R. Acad. Sci. USSR, 32, 16 (1941).
[31] W. D. McComb, A. Berera, M. Salewski, and S. R. Yoffe, Phys.

Fluids 22, 61704 (2010).
[32] G. K. Batchelor, The Theory of Homogeneous Turbulence,

1st ed. (Cambridge University Press, Cambridge, UK, 1953).
[33] H. Tennekes and J. L. Lumley, A First Course in Turbulence

(MIT Press, Cambridge, MA, 1972).
[34] S. B. Pope, Turbulent Flows (Cambridge University Press,

Cambridge, UK, 2000).
[35] T. S. Lundgren, Phys. Fluids 14, 638 (2002).
[36] W. Wasow, Asymptotic Expansions for Ordinary Differential

Equations (Wiley & Sons, New York, 1965).
[37] Y. Yamazaki, T. Ishihara, and Y. Kaneda, J. Phys. Soc. Jpn. 71,

777 (2002).
[38] Y. Kaneda and T. Ishihara, J. Turbul. 7, 1 (2006).
[39] W. D. McComb, A. Hunter, and C. Johnston, Phys. Fluids 13,

2030 (2001).
[40] S. R. Yoffe, Investigation of the transfer and dissipation of energy

in isotropic turbulence, Ph.D. thesis, University of Edinburgh,
2012.

[41] T. Gotoh, D. Fukayama, and T. Nakano, Phys. Fluids 14, 1065
(2002).

[42] J. Qian, Phys. Rev. E 55, 337 (1997).
[43] J. Qian, Phys. Rev. E 60, 3409 (1999).
[44] J. Tchoufag, P. Sagaut, and C. Cambon, Phys. Fluids 24, 015107

(2012).
[45] M. F. Linkmann, A. Berera, W. D. McComb, and M. E. McKay

(unpublished).

043013-10

http://www.hector.ac.uk/
http://www.ecdf.ed.ac.uk/
http://dx.doi.org/10.1098/rspa.1935.0158
http://dx.doi.org/10.1098/rspa.1935.0158
http://dx.doi.org/10.1098/rspa.1935.0158
http://dx.doi.org/10.1098/rspa.1935.0158
http://dx.doi.org/10.1063/1.864731
http://dx.doi.org/10.1063/1.864731
http://dx.doi.org/10.1063/1.864731
http://dx.doi.org/10.1063/1.864731
http://dx.doi.org/10.1063/1.869575
http://dx.doi.org/10.1063/1.869575
http://dx.doi.org/10.1063/1.869575
http://dx.doi.org/10.1063/1.869575
http://dx.doi.org/10.1146/annurev-fluid-010814-014637
http://dx.doi.org/10.1146/annurev-fluid-010814-014637
http://dx.doi.org/10.1146/annurev-fluid-010814-014637
http://dx.doi.org/10.1146/annurev-fluid-010814-014637
http://dx.doi.org/10.1103/PhysRevLett.73.3223
http://dx.doi.org/10.1103/PhysRevLett.73.3223
http://dx.doi.org/10.1103/PhysRevLett.73.3223
http://dx.doi.org/10.1103/PhysRevLett.73.3223
http://dx.doi.org/10.1017/S0022112002001386
http://dx.doi.org/10.1017/S0022112002001386
http://dx.doi.org/10.1017/S0022112002001386
http://dx.doi.org/10.1017/S0022112002001386
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112093002393
http://dx.doi.org/10.1017/S0022112096001589
http://dx.doi.org/10.1017/S0022112096001589
http://dx.doi.org/10.1017/S0022112096001589
http://dx.doi.org/10.1017/S0022112096001589
http://dx.doi.org/10.1063/1.870085
http://dx.doi.org/10.1063/1.870085
http://dx.doi.org/10.1063/1.870085
http://dx.doi.org/10.1063/1.870085
http://dx.doi.org/10.1103/PhysRevE.56.1746
http://dx.doi.org/10.1103/PhysRevE.56.1746
http://dx.doi.org/10.1103/PhysRevE.56.1746
http://dx.doi.org/10.1103/PhysRevE.56.1746
http://dx.doi.org/10.1017/S0022112005004039
http://dx.doi.org/10.1017/S0022112005004039
http://dx.doi.org/10.1017/S0022112005004039
http://dx.doi.org/10.1017/S0022112005004039
http://dx.doi.org/10.1063/1.2714079
http://dx.doi.org/10.1063/1.2714079
http://dx.doi.org/10.1063/1.2714079
http://dx.doi.org/10.1063/1.2714079
http://dx.doi.org/10.1063/1.3085721
http://dx.doi.org/10.1063/1.3085721
http://dx.doi.org/10.1063/1.3085721
http://dx.doi.org/10.1063/1.3085721
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/10.1063/1.1539855
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1017/jfm.2012.5
http://dx.doi.org/10.1103/PhysRevE.70.056301
http://dx.doi.org/10.1103/PhysRevE.70.056301
http://dx.doi.org/10.1103/PhysRevE.70.056301
http://dx.doi.org/10.1103/PhysRevE.70.056301
http://dx.doi.org/10.1063/1.1445422
http://dx.doi.org/10.1063/1.1445422
http://dx.doi.org/10.1063/1.1445422
http://dx.doi.org/10.1063/1.1445422
http://dx.doi.org/10.1063/1.2055529
http://dx.doi.org/10.1063/1.2055529
http://dx.doi.org/10.1063/1.2055529
http://dx.doi.org/10.1063/1.2055529
http://dx.doi.org/10.1063/1.2832778
http://dx.doi.org/10.1063/1.2832778
http://dx.doi.org/10.1063/1.2832778
http://dx.doi.org/10.1063/1.2832778
http://dx.doi.org/10.1103/PhysRev.113.1181
http://dx.doi.org/10.1103/PhysRev.113.1181
http://dx.doi.org/10.1103/PhysRev.113.1181
http://dx.doi.org/10.1103/PhysRev.113.1181
http://dx.doi.org/10.1017/S0022112064000180
http://dx.doi.org/10.1017/S0022112064000180
http://dx.doi.org/10.1017/S0022112064000180
http://dx.doi.org/10.1017/S0022112064000180
http://dx.doi.org/10.1063/1.1761579
http://dx.doi.org/10.1063/1.1761579
http://dx.doi.org/10.1063/1.1761579
http://dx.doi.org/10.1063/1.1761579
http://dx.doi.org/10.1103/PhysRevLett.79.3411
http://dx.doi.org/10.1103/PhysRevLett.79.3411
http://dx.doi.org/10.1103/PhysRevLett.79.3411
http://dx.doi.org/10.1103/PhysRevLett.79.3411
http://dx.doi.org/10.1103/PhysRevE.90.053010
http://dx.doi.org/10.1103/PhysRevE.90.053010
http://dx.doi.org/10.1103/PhysRevE.90.053010
http://dx.doi.org/10.1103/PhysRevE.90.053010
http://dx.doi.org/10.1063/1.3450299
http://dx.doi.org/10.1063/1.3450299
http://dx.doi.org/10.1063/1.3450299
http://dx.doi.org/10.1063/1.3450299
http://dx.doi.org/10.1063/1.1429965
http://dx.doi.org/10.1063/1.1429965
http://dx.doi.org/10.1063/1.1429965
http://dx.doi.org/10.1063/1.1429965
http://dx.doi.org/10.1143/JPSJ.71.777
http://dx.doi.org/10.1143/JPSJ.71.777
http://dx.doi.org/10.1143/JPSJ.71.777
http://dx.doi.org/10.1143/JPSJ.71.777
http://dx.doi.org/10.1080/14685240500256099
http://dx.doi.org/10.1080/14685240500256099
http://dx.doi.org/10.1080/14685240500256099
http://dx.doi.org/10.1080/14685240500256099
http://dx.doi.org/10.1063/1.1375800
http://dx.doi.org/10.1063/1.1375800
http://dx.doi.org/10.1063/1.1375800
http://dx.doi.org/10.1063/1.1375800
http://dx.doi.org/10.1063/1.1448296
http://dx.doi.org/10.1063/1.1448296
http://dx.doi.org/10.1063/1.1448296
http://dx.doi.org/10.1063/1.1448296
http://dx.doi.org/10.1103/PhysRevE.55.337
http://dx.doi.org/10.1103/PhysRevE.55.337
http://dx.doi.org/10.1103/PhysRevE.55.337
http://dx.doi.org/10.1103/PhysRevE.55.337
http://dx.doi.org/10.1103/PhysRevE.60.3409
http://dx.doi.org/10.1103/PhysRevE.60.3409
http://dx.doi.org/10.1103/PhysRevE.60.3409
http://dx.doi.org/10.1103/PhysRevE.60.3409
http://dx.doi.org/10.1063/1.3678334
http://dx.doi.org/10.1063/1.3678334
http://dx.doi.org/10.1063/1.3678334
http://dx.doi.org/10.1063/1.3678334



