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Multirelaxation-time lattice Boltzmann model for droplet heating
and evaporation under forced convection
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We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between
phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass,
momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a
nonideal equation of state. First, numerical simulations are compared to the D2 law for a vaporizing static droplet
and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated
vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial
forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation
rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can
be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake
interaction and local mass flux are discussed in detail.
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I. INTRODUCTION

Droplet evaporation is of extensive importance to many
scientific and technical applications. Examples can be found
in natural processes (e.g., the dynamics of raindrops and fog) or
in industry such as spray drying, fuel injection in combustion
engines, and gas turbines. Evaporation involves phase change
where coupling of heat and mass transport is required.
Therefore, the complexity in interfacial dynamics is challeng-
ing when it comes to numerical simulations. The classical
numerical schemes for computing interface motion are the
tracking method and the capturing approach. The first was used
by Renksizbulut and Yuen [1] with the moving mesh method
to simulate droplet evaporation, where variable properties on
evaporation were also investigated [2]. Haywood et al. [3] used
a similar model where deformed droplets are considered.

Regarding the interface-capturing approach, different meth-
ods have been applied to investigate droplet evaporation.
Tanguy et al. [4] developed a level-set method associated with
the ghost fluid method to enable higher-order discretization
schemes at the interface. Zhang [5] and Balaji et al. [6] used a
finite-volume method where the droplet maintains a spherical
shape. A volume of fluid method (VOF) was used by Hase
and Weigand [7,8] where strong deformations are captured.
Schlottke and Weigand [9] improved the same VOF code to
perform direct numerical simulations of droplet evaporation.
VOF was also used by Strotos et al. [10] and Banerjee [11]
where a multicomponent droplet was considered.

Although each method has a different approach, it is
necessary to impose accurate jump conditions across the
interface to satisfy energy, momentum, and mass conservation.
In order to do so, conservations conditions must be satisfied
and a local vaporizing mass flow rate is explicitly defined. An
evaporation model often introduces different simplifications,
e.g., nondeformable droplet (axisymmetric evaporation) or the
assumption of constant gas physical properties (quasisteady).
The authors recommend reviews by Sazhin [12] and Erbil [13]
for detailed description of droplet evaporation models.
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Molecular dynamics and the lattice Boltzmann method
(LBM) are two methods where no tracking method is needed
for generating an interface. The first has been focused on
studying evaporation of a nanometer-size droplet into its
own vapor [14–19]. However, only a static droplet case
was investigated due to limitations of the method. The
LBM presents a wider range of applications as it is based
on mesoscopic kinetic equations, where the macroscopic
dynamics of a fluid is the result of the collective behavior
of many microscopic particles [20]. The LBM is especially
convenient for simulating multiphase flows since a diffuse
interface can be obtained.

A common multiphase model used in the LBM was
proposed by Shan and Chen [21], where phase separation is
induced by imposing short-range intermolecular interaction
based on a potential function. The original model has some
drawbacks such as large spurious currents for significant
density ratio and the stability problem. Different approaches
have been used to solve these issues. In particular, Kupershtokh
et al. [22] developed the exact difference method (EDM) as a
new way to incorporate the pseudopotential force into LBM
multiphase simulations. The spurious currents produced at the
vapor-liquid interface are substantially reduced and the method
is more stable, where the unphysical phenomenon of relaxation
time dependence is avoided [23]. The Bhatnagar-Gross-Krook
(BGK) [24] model is a widely used collision operator due
to its simplicity, with a single relaxation time. However, for
higher Reynolds number (achieved for low values of fluid
viscosity), the model is numerically unstable. A remedy is to
use a multiple relaxation time (MRT) model [25,26] where the
growth of numerical instabilities is reduced.

Thermodynamic effects with phase change have been
considered in the LBM perspective by different schemes
[27–31]. Droplet evaporation was first investigated by Palmer
and Rector [32] with a free-energy model. However, their
algorithm could not be used for thermally driven phase changes
as pointed out later by the authors [33]. Safari et al. [34] used
a phase-field method to simulate a static droplet evaporation
with large density ratio. Similarly to the VOF method, the
liquid and gas are considered immiscible and incompressible
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where the mass transfer rate through the interface is given
by a source term. The energy equation is solved only for the
gas phase where a cutoff is needed at the interface, which
noticeably influences the evaporative mass flux. Recently,
Ledesma-Aguilar et al. [35] studied droplet evaporation driven
by a concentration gradient but considering a sessile droplet
and planar film.

In the present work, we consider a MRT-EDM scheme
to simulate the heating and vaporization of a droplet into
its own vapor under forced convection. Despite different
multiphase models with MRT having been suggested [36,37],
the EDM forcing scheme has the advantage of coupling with
the MRT model independently, as the forcing scheme shows
no dependence with the relaxation times [38]. To the best of
our knowledge the thermal phase change for the MRT-EDM is
a subject still unexplored in the LBM context. Among the ther-
mal LBM categories [31], we employ the double distribution
function (DDF) approach [39], which exhibits good numerical
stability and adjustable Prandtl number. The DDF uses one
distribution function to represent the density and velocity
fields and another for the temperature field, which is advected
passively by the fluid flow. Therefore, the coupling between
energy and momentum is done at the macroscopic level.

This paper is organized as follows. In Sec. II the model
formulation is introduced. Results and discussion are presented
in Sec. III. We first validate the method for a static droplet
and proceed with numerical results for a droplet under forced
convection. The wake-droplet interaction and evaporation
dependence on convection and temperature gradient are pre-
sented. Local mass flux and liquid circulation driven by surface
shear are also analyzed. Finally, brief conclusive remarks will
be given in Sec. IV.

II. LATTICE BOLTZMANN METHOD

In this section, a two-dimensional nine-velocity (D2Q9)
thermal LBM is presented. The MRT collision operator and
EDM pseudopotential force are described. We then introduce
the energy equation, based on a passive scalar approach.

A. The MRT model

The equation for the flow field is provided in terms of a
discrete Boltzmann equation, given by

fi(x + ciδt ,t + δt ) = f (x,t) + δt�i + δtF
′
i , (1)

where fi is the density distribution function, t is time, and δt is
the time step. The lattice velocity is given by ci , x is the spatial
position, and F ′ is the external forcing term in the velocity
space. The change of fi due to collisions is represented by �i .
The discrete velocity vectors are written as

ci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0,0),
i = 0
(cos[(i − 1)π/2], sin[(i − 1)π/2])c,
i = 1 − 4
(cos[(2i − 9)π/4], sin[(2i − 9)π/4])c,
i = 5 − 8,

where cref = δx/δt , δx being the lattice spacing. The length
is scaled using δx and time is made dimensionless using the

time step δt , where cref = 1 and the speed of sound is defined
as cs = 1/

√
3. The collision operator for the MRT model is

defined as

�i = (M−1SM)ij
[
fj (x,t) − f

eq
j (x,t)

]
, (2)

where M is the orthogonal transformation matrix [25], f
eq
j is

the equilibrium distribution function, and S is a non-negative
diagonal relaxation matrix, given by

S = diag(sρ,se,sε,sj ,sq,sj ,sq,sν,sν), (3)

where 0 < si < 2 and sν = 1/τf , τf being the relaxation
time related to the kinematic viscosity ν = c2

s (τf − 1/2). The
distribution fj can be linearly mapped in the moment space as
m = Mf. The equilibrium f

eq
j assumes

meq = Mfeq = ρ
(
1, − 2 + 3|ueq|2,1 − 3|ueq|2,

ueq
x , − ueq

x ,ueq
y , − ueq

y ,
(
ueq

x

)2 − (
ueq

y

)2
,ueq

x ueq
y

)T
. (4)

The density ρ and equilibrium velocity ueq are calculated by

ρ =
∑

i

fi , ueq = 1

ρ

∑
i

cifi . (5)

B. EDM forcing scheme

Kupershtokh and Medvedev [22] derived the EDM for LBM
in the form

F ′
i = f

eq
i (ρ,ueq + 	ueq) − f

eq
i (ρ,ueq), (6)

where 	ueq = F/ρ, with F = (Fx,Fy) being the interparticle
interaction force. The EDM forcing scheme can be rewritten
as [40]

F ′
i = ωi

[
ci · F
c2
s

+ (ci · v)(ci · F)

c4
s

− v · F
c2
s

]
. (7)

Here ω0 = 4/9, ω1−4 = 1/9, and ω5−8 = 1/36. The actual
fluid velocity is denoted by v, given as

v = ueq + F
2ρ

, (8)

where v is taken at half time step, i.e., averaging the
momentum before and after collision. It is important to note
that Eq. (7) shows no dependence with the relaxation time
τf . Lycett-Brown and Luo [38] recently showed that the error
associated with the EDM force term truncated at second order
is independent of τf . Therefore, unlike other methods (e.g.,
Shan-Chen model), the EDM does not influence the collision
operator and can be implemented independently of MRT, i.e.,
Eq. (7) is kept in the velocity space.

Interparticle force methods present spurious currents
around the interface that may introduce significant errors
which limit the density ratio [41,42]. In order to improve this,
Kupershtokh et al. [43] suggested a numerical approximation
for the local force based on a linear combination of the local
and the mean value gradient approximations, calculated by

F = A

8∑
i=1

λi�
2(x + ci)ci

+ (1 − 2A)�(x)
8∑

i=1

λi�(x + ci)ci , (9)
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where coefficients λi are λ1−4 = 4/12 and λ5−8 = 1/12 and A

is a correlative fitting parameter defined by Kupershtokh et al.,
where a better fit with the coexistence curve can be obtained
and a significant decrease in the magnitude of the spurious
currents is observed. The special function � is written in the
form

� =
√

ρc2
s − κp, (10)

where κ sets the thickness of the interface, li , which is
evaluated following Jacqmin [44]. The surface tension is
denoted as σ . The pressure is written as p, given by an
equation of state (EOS). The Peng-Robinson (PR) EOS is
suitable to investigate hydrocarbon droplets evaporating under
a high-pressure and -temperature environment [6] and is
expressed as

p = ρRT

1 − bρ
− aρ2α′(T )

1 + 2bρ − b2ρ2
, (11)

with a = 0.45724R2T 2
c /pc and b = 0.0778RTc/pc, where

the subscript c denotes the evaluation at the critical
point. The parameter α′(T ) = [1 + (0.37464 + 1.54226w −
0.26992w2)(1 − √

T/Tc)]2 is defined according to the acentric
factor w and the actual temperature T . For the PR EOS,
a value of A = −0.07 has been shown to yield an accurate
reproduction of the coexistence curves in comparison to pure
local or pure mean value approximations.

C. Energy equation

A second distribution function is used for solving the energy
equation through a passive scalar temperature and is given by

gi(x + ciδt ,t + δt ) = gi(x,t) − 1

τg

(
gi − g

eq
i

) + Gi, (12)

where Gi is a correction term and g
eq
i denotes the equilibrium

distribution function. A D2Q9 lattice is also used for solving
Eq. (12). The collision operator is based on a single relaxation
time τg , i.e., BGK type [24]. Here the temperature is evaluated
by

T =
∑

i

gi . (13)

The equilibrium function is written as

g
eq
i = ωiT (1 + 3ci · v). (14)

The correction term Gi for Eq. (12) in dimensionless form
is proposed as

Gi = ωi

[∇ · (K∇Tr )

ρrcp,r

− αLB∇2Tr

]

+ωiTr

[
1 − γ

ρrcp,r

(
∂pr

∂Tr

)
ρr

]
∇ · v. (15)

The subscript r denotes the reduced variables, i.e., actual
quantity normalized by the critical value (subscript c). The
reference length, time, and velocity are the lattice units
(l.u.) δx , δt , and cref , as used in Sec. II A. Some authors
have suggested similar approaches for the correction term
Gi [23,28]; however, we employ different considerations

for the thermal conductivity. The dimensionless thermal
conductivity is denoted as K with the reference value given
by ρccp,cδ

2
x/δt [45], where cp is the specific heat at constant

pressure. The thermal diffusivity is therefore defined as α =
K/(ρrcp,r ), while αLB = (τg − 1/2)/3 is the lattice thermal
diffusivity. Reduced variables are used for the remaining
quantities. The dimensionless number γ is

γ = pc

ρccp,cTc

. (16)

Through the Chapman-Enskog expansion, the macroscopic
energy equation obtained from Eq. (12) assumes [28]

∂tTr + v · ∇Tr = ∇ · (K∇Tr )

ρrcp,r

− Trγ

ρrcp,r

(
∂pr

∂Tr

)
ρr

∇ · v.

(17)

In order to simplify the text, the subscript r will be omitted
and all the variables are considered by their respective reduced
quantities unless otherwise stated. The thermal conductivity
changes according to the density and can be written as

K = K�

ρ − ρv

ρ� − ρv

+ Kv

ρ� − ρ

ρ� − ρv

, (18)

where � denotes the liquid phase and v the vapor phase. The
remaining terms introduced by the correction force need a
finite-difference scheme in order to calculate the gradient and
Laplacian of a quantity ζ , given respectively by

∇ζ (x) =
∑

i

λiζ (x + ci)ci , (19)

∇2ζ (x) = 1

6

[
4

4∑
i=1

ζ (x + ci) +
8∑

i=5

ζ (x + ci) − 20ζ (x)

]
,

(20)

where a D2Q9 lattice is still required to maintain higher
accuracy and isotropy up to leading order error [46]. Some
further considerations can be made for the present model.
It is known that the discontinuous phase transition between
liquid and vapor can be described with the Clausius-Clapeyron
relation, given by

dP

dT
= 	s

	v
, (21)

where 	s and 	v are the change in specific entropy and
specific volume, respectively. The specific latent heat L can
be explicitly reconciled by combining the definition L = T 	s

with Eq. (21), obtaining

L = T
dP

dT
(vv − v�), (22)

where vv and v� are the specific volume for the vapor and
liquid. Using the EOS in Eq. (11) and for a certain temperature,
the latent heat in our model can be evaluated through the
right-hand side of Eq. (22). The latent heat is also normalized
by its critical value, Lc. One should also note that the resulting
diffusive term in Eq. (15) has to be positive for stability reasons.
This can be achieved when τg → 0.5, which is a convection-
dominant energy problem, where the use of the simplified
collision operator BGK is preferable [47].
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The MRT model has also been applied to the energy
equation (e.g., Ref. [48]); however, it was not necessary to
the present case. An alternative way of solving the energy
equation is by means of a finite-difference scheme, known
as a hybrid approach [49]. The main difference between the
DDF and hybrid approaches is that while the first is solved
by an auxiliary LB model, the second is solved directly in the
macroscopic level. We choose the DDF due to its simplicity.

III. RESULTS AND DISCUSSION

A. Static droplet

In order to validate the proposed model, we simulate a static
droplet suspended in vapor. First, an equilibrium condition is
used, where there is no occurrence of evaporation. A 300 × 300
lattice with periodic boundary conditions is implemented. A
droplet of initial radius R0(xc) = 40 is positioned at the center
xc of the domain. The density field is initialized according to

ρ(x) = ρ� + ρv

2
− ρ� − ρv

2
tanh

[
2(r|x − xc| − R0)

W

]
, (23)

where W is a initial interface thickness to facilitate equilibrium
and r is the distance to the center. We observe that the
parameter W establishes the initial density distribution around
the interface and only influence the time taken for the droplet to
reach an equilibrium condition. The parameter κ is responsible
for defining the interface thickness and is independent of W .
In our simulations, we set W = 7.

Hexane is the fluid considered, which has an acentric factor
w = 0.30075. The parameter γ = 0.0094 is kept constant as it
depends only on critical properties. The fixed relaxation times
are chosen as sρ = sj = 1, se = sε = 0.8, and sq = 1.1. For
the energy equation, τg = 0.53.

Figure 1 shows the coexistence curve obtained in the nu-
merical simulations as a function of the saturated temperature
Tsat. A comparison is made with the Maxwell construction rule
for the PR EOS, using hexane, and good agreement is observed

0 0.5 1 1.5 2 2.5
0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

T

Maxwell

numerical

FIG. 1. Comparison of saturated vapor and liquid branches
between the Maxwell construction and results obtained from our
numerical model. A hexane hydrocarbon is considered for the PR
EOS. For simulations, the parameters are A = −0.07, τf = 0.5208,
and κ = 0.010.

TABLE I. Physical properties according to the reduced tempera-
ture Tsat, relaxation time τf , and κ .

Case Tsat τf κ σ li (l.u.) vmax ρ�/ρv

1 0.80 0.5813 0.010 0.1030 5 4.9e − 4 36.5
2 0.85 0.5813 0.005 0.1208 11 1.1e − 4 19.4
3 0.85 0.5813 0.010 0.0852 6 3.8e − 4 19.6
4 0.85 0.5208 0.010 0.0850 6 2.1e − 3 19.6
5 0.90 0.5813 0.010 0.0468 8 1.3e − 4 9.9

when A = −0.07. Here, the interface is considered when
ρi = (ρ� + ρv)/2, where the subscript i refers to quantities
evaluated at the interface.

The influence of the parameters Tsat, τf , and κ are listed
in Table I. Surface tension is obtained by Laplace’s law
(detailed validation can be found in Albernaz et al. [50]). The
increase of κ produces a thinner interface thickness li where
surface tension is weaker. The maximum velocity vmax, which
represents the spurious currents in the equilibrium condition,
is enhanced either by a thinner interface or by reducing the
relaxation time τf .

We observe that the density ratio ρ�/ρv is independent of
τf for the same T and κ . Furthermore, for lower values of
τf the computational time needed to achieve equilibrium is
raised. When Tsat increases, for the same κ , the interface is
thicker, which is expected as it gets closer to the critical point.
It is important to mention that if a BGK model is employed to
simulate the same static droplet with the relaxation times used
in Table I, the computations become unstable.

The dynamics of phase change had also to be validated,
which is done by means of a static radial droplet evaporation
only due to diffusion. An analytical solution for the droplet
evaporation rate can be obtained and compared to the numer-
ical results. The one-component equation of transport of heat
in cylindrical coordinates is given by:

rρcpvr

∂T

∂r
= ∂

∂r

(
rk

∂T

∂r

)
. (24)

The energy balance at the interface is given by the boundary
condition [51]

kv

dT

dr

∣∣∣∣
i,v

= k�

dT

dr

∣∣∣∣
i,�

+ ρiviLhv = ρiviLeff . (25)

The latent heat of vaporization is denoted by Lhv , whereas
the effective latent heat of vaporization is Leff . The temperature
of the droplet is generally considered constant, as the transport
of heat inside the droplet is negligible, i.e., Leff = Lhv , which
is also assumed in order to obtain the analytical solution. Using
the continuity equation rρv = riρivi and Eq. (25) we integrate
Eq. (24) with respect to r , which gives

riρivicp

(
T − Ti + Lhv

cp

)
= rk

dT

dr
. (26)

After separating the variables we integrate Eq. (26) within
the intervals [ri,r∞] and [Ti,T∞], obtaining

rivi ln(r∞/ri) = αi ln(1 + B), (27)
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where B = cp(T∞ − Ti)/Lhv is the nondimensional Spalding
number. Using the mass continuity at the droplet surface
−ρ�dri/dt = ρivi and now integrating for r and t , for an
initial diameter D0, we have the diameter D evolution in time
as

D2

[
1

2
+ ln

D∞
D

]
= c′D2

0 − 8αiρi

ρ�

ln(1 + B)t, (28)

where c′ = 1/2 + ln(D∞/D0) is a constant. The same deriva-
tion in spherical coordinates is known in the literature as the
D2 law [52].

In order to simulate a static droplet evaporation, the droplet
is first equilibrated with the vapor at the saturated temperature
in a periodic domain. Then outflow boundaries are used,
where the Neumman boundary condition (NBC) is applied
to the velocity. The temperature is then gently raised at the
boundaries, set by a Dirichlet boundary condition (DBC). To
keep the pressure p(ρ,T ) constant, density is also set as DBC,
calculated by the PR EOS for a given initial pressure and
current temperature.

The heat-up of the surrounding vapor, i.e., the conduction
of heat through the boundaries to the vapor phase toward
the droplet interface, takes t ∼ 5 × 104. After this heat-up
phase, the droplet evaporation is analyzed. We observe that a
symmetric radial flow is obtained, where no artificial heating
occurs. Consistent droplet evaporation was seen even for
relatively high density ratio, ρ�/ρv

∼= 130, for Ts = 0.7.
Figure 2 compares the solution of the D2 law, Eq. (28),

and the numerical results from the present model, where
D0 = 60, D∞ = 300, αi = 0.0223, and B = 0.431. We make
use of the parameters defined for cases 2 and 3 in Table I,
where only the thickness of the interface is changed. The
spurious currents for case 2 is almost 4 times smaller than 3.
Nevertheless, we observe that our model is able to produce the
correct evaporation rate for both interface thicknesses. Since
the static droplet evaporation occurs only due to diffusion,
the results indicate that the spurious currents do not influence

0 2 4 6 8 10
x 10

4

0.5

0.6

0.7

0.8

0.9

1

1.1

t

D
2 (t

)/
D

02

κ=0.01  (case 3)

κ=0.005 (case 2)

D2 law

FIG. 2. Normalized square diameter evolution in time, where the
D2 law solution [Eq. (28)] and simulation results are shown for two
different interface thicknesses.
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0.95

1
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2 /D
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 = 0.51

L
hv

 = 0.45

L
hv

 = 0.38

numerical

FIG. 3. Comparison between the numerical results and D2 law of
the normalized squared diameter for different latent heat.

the evaporation rate. As the droplet shrinks, case 2 shows
slight deviation from the D2 law. This is expected since the
interface thickness is of the order of the droplet size, where an
overestimation of diffusion occurs. Therefore, it is important
to be aware of the accuracy of the results based on the relation
between the droplet size and interface thickness.

It is also important to show that the mass transfer rate in
the simulations are consistent with the latent heat, given by
the jump condition in Eq. (25) and included in the analytical
solution through the Spalding number B. The latent heat Lhv is
obtained from hexane properties [53], being Lhv(T = 0.8) =
0.51, Lhv(T = 0.85) = 0.45, and Lhv(T = 0.9) = 0.38. First,
it was verified that the same Lhv is obtained from the Clausius-
Clapeyron relation in Eq. (22), with the current Peng-Robinson
EOS.

We then compare the square diameter evolution between
the numerical results and the D2 law for different latent
heat, shown in Fig. 3. Here the temperature difference is
kept the same for all cases, T∞ − Ti = 0.1. The numerical
results correspond to cases 1, 3, and 5 and are in accordance
with the analytical solutions. It is seen that an increase of
Lhv is responsible for a slower evaporation. Such behavior
is expected as more energy is needed to generate the phase
change.

Figure 4 shows the relative error ε between the D2 law
and numerical results as a function of the normalized square
diameter. The error is evaluated at the same time step. Different
droplet sizes are tested, where the parameters used correspond
to case 3 in Table I. We note that good agreement with the
D2 law is obtained, where the smaller droplet D0 = 50 gives
ε ∼= 1% when D2/D2

0 = 0.5.

B. Evaporation under convective effects

In this section we study the evaporation of a droplet with
forced convection. The numerical setup and corresponding
boundary conditions are shown in Fig. 5. The top boundary
has DBC for the temperature T∞ and an inlet velocity U .
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FIG. 4. Error between D2 law and simulation results for different
droplet sizes.

The boundary at the bottom is described with an outflow
condition. However, differing from that for pure diffusion, here
the pressure assumes ∂p/∂n = 0, n being the normal direction
to the boundary. Therefore, NBC are applied for the density
and temperature. Periodic condition is used in the x direction.

In the convective case, it is desired that the droplet is
kept in the same initial position, as a Lagrangian reference.

FIG. 5. (Color online) Representation of the computational do-
main and boundary conditions.

Experimentally, the droplet is held by a rod while an inflow
is set. Numerically, one approach is to estimate the droplet
displacement due to the external flow and apply a force on
the droplet on the opposite direction of the displacement (e.g.,
Ref. [54]). We consider a force Fd(i), added in Eq. (1) as an
external force in the velocity space, similar to the EDM forcing.
It is defined based on a spring-damp system and assumes

Fd(i) = λici · [c1xδ + c2∂txd ] × [ρ(x) − ρ∞], (29)

where the constants c1 and c2 represent control parameters.
The term xδ denotes the droplet displacement from the current
position xd (t) to its initial position x0, i.e., xδ = xd (t) − x0.
The position xd (t) is calculated according to the droplet center
of mass, where linear interpolation is used at the interface.
It is important to note that by using a diffuse interface
method, density variation occurs at the interface. Therefore
we estimate the counteracting force by relating the droplet
displacement with a local density dependence. Therefore, the
density difference ρ(x) − ρ∞ is included to the force Fd(i),
which acts only at the droplet.

The control parameters are also evaluated. We observed
numerical instabilities when c1 > 0.3. Due to the strong
damping, a rigid force is obtained and stronger spurious
currents arise. Therefore, c1 works only for the range 0 �
c1 � 0.3. The constant c2 is related to the spring behavior,
where satisfactory results are seen when 0.15 < c2 < 1.05. We
verified that for c1 = 0.09 and c2 = 0.21 the force is optimal
as it does not influence the evaporation rate nor the magnitude
of the spurious currents for a wide range of the inflow velocity.

The Reynolds number is defined as Re = UD/ν, based on
the inlet velocity and droplet diameter. The kinematic viscosity
is the same for both phases, which means that the dynamic
viscosity ratio μ�/μv is equivalent to the density ratio ρ�/ρv .

A domain by 500 × 500 lattice nodes is considered.
The droplet with D0 = 60 is set at the position (250,300)
with initial equilibrium temperature Tsat = 0.85 and κ = 0.01.
According to the hexane fluid properties for T = 0.85 [53],
the Prandtl numbers are Prv = 0.8085 and Pr� = 2.44 for the
vapor and liquid phases, respectively. The relaxation time used
is τf = 0.5813, which gives ν = 0.027. For achieving the
correct Prandtl numbers, we set αv = 0.034 and α� = 0.011.
No significant change of cp between different phases is seen
when T = 0.85, therefore the cp ratio is assumed to be
unity [53].

Numerical simulations are carried out for Re = 60. The
corresponding Peclet number is Pe = RePrv ∼= 48.5 for the
vapor phase. We observe that the inlet condition generates a
pressure wave that is responsible for increasing the droplet
size due to a pressure balance between the droplet and
surrounding vapor. The phenomena of a swelling droplet
exposed to a higher-pressure environment is well understood
in the literature (e.g., Ref. [5]) where evaporation may follow,
depending on the ambient temperature. However, our focus is
to trigger evaporation only by means of temperature difference
instead of variations in pressure.

The direct effect of the flow is the increase of pressure
in the entire domain, which corresponds to a shift in the
saturated pressure. Therefore, the temperature at the inlet
has to be slightly raised to establish an equilibrium condition
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FIG. 6. Droplet size behavior for Re = 60 and different inlet
temperature T∞.

before evaporation is analyzed. Figure 6 shows the normalized
square diameter evolution in time for different T∞. When
T∞ = 0.853, the droplet size is nearly constant, i.e., close
to a thermodynamic equilibrium. If T∞ < 0.853, then the
swelling is observed, where condensation occurs, as seen
for T∞ = 0.852. Whereas an increase of temperature (T∞ =
0.854) induces the droplet evaporation.

From this point onward, a superheated vapor is imposed at
the inlet, where evaporation is controlled by the temperature
difference 	T = T∞ − T ∗

sat, with T ∗
sat = 0.853, according to

Fig. 6. The droplet shrinkage for different 	T is illustrated
in Fig. 7. The vapor generated from phase change convects
and diffuses away from the droplet surface. As temperature is
increased, stronger vaporization occurs and the droplet shrinks
faster, where the lifetime is reduced.
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0
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FIG. 7. Normalized square diameter as function of time for Re =
60 and different 	T , where an increase of 	T has an outcome of
decreasing the droplet lifetime.

The grid convergence under convective effects is also inves-
tigated. In order to do so, the evaporation of an initial droplet
size D0(2) = 80 is compared to the reference D0(1) = 60. A dif-
ferent inlet velocity is set according to U(2) = U(1)D0(1)/D0(2)

to achieve the same Re. The interface thickness change is
proportional to the diameter ratio, i.e., li(2) = li(1)D0(2)/D0(1),
where κ = 0.0075 for D0(2) = 80. Assuming the reference
time scale as t(1) = D0(1)/U(1), t(2) is rescaled following
t(2) = D0(2)U(1)/[D0(1)U(2)]. The temperature difference is set
as 	T = 0.07 and results are also shown in Fig. 7. Excellent
agreement is seen between both droplet resolutions.

C. Oscillatory evaporation

In this section we employ a stronger flow to investigate the
droplet evaporation dynamics. The Reynolds number is raised
to Re = 130, where the Peclet number is Pe = 105. Again, a
careful observation of the equilibrium condition is needed once
the flow is imposed, where we must first find an appropriate
T ∗

sat. From this point onward the evaporation is described in
terms of the normalized area A/A0, since the droplet may
exhibit slight deviations from a circular shape. Figure 8 shows
A/A0 evolution in time for different inlet temperatures. It is
seen that the droplet has an oscillatory behavior. The droplet
oscillates around its initial area for the plot T∞ = 0.86, which
is taken as T ∗

sat. Larger values induce droplet evaporation while
lower cause droplet swelling, as seen in the latter section, for
lower Re.

It is important to understand the characteristics and mech-
anism of the droplet oscillations. Jangi and Kobayashi [55]
studied the droplet evaporation for oscillatory flow, where
a sinusoidal wave was established for the surrounding air.
However, in the present case, the flow is uniform and
oscillations are due to the wake-droplet interactions.

Figure 9 shows the streamlines for a region of the
domain where there is wake formation, when T∞ = 0.86
(	T = 0). One period of oscillation is observed and the
shape deformation δD = (Dx − Dy)/(Dx + Dy) × 100 is also
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FIG. 8. Area as a function of time for different T∞, where Re =
130 and oscillatory behavior is observed.
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FIG. 9. Streamlines for Re = 130 and 	T = 0, as for the plot
in Fig. 8. (a) t = 3.12 × 104 (δD = 4.5%); (b) t = 3.61 × 104 (δD =
1.8%); (c) t = 4.15 × 104 (δD = 1.1%); (d) t = 4.55 × 104 (δD =
1.8%).

considered, where Dx and Dy are the droplet width and
breadth, respectively. In Fig. 9(a) it is seen that the flow
separates at the droplet rear, where two symmetric eddies are
formed. The evaporation rate, given as dA/dt is positive (i.e.,
condensation occurs) and maximum, where the deformation
is δD = 4.5%. As it evolves in time, there is blowing at the
bottom of the surface which induces the detachment of the
vortices. These are convected along with the vapor flow, as seen
in Fig. 9(b), where dA/dt ∼= 0. Further on, the net blowing
counteracts the condensation and evaporation is obtained (i.e.,
dA/dt < 0). The vortices develop and grow in size [Fig. 9(c)].
The evaporation rate dA/dt is at its minimum, where the
deformation is lower δD = 1.1%. In Fig. 9(d) the vortices
reach a maximum size and separation again starts taking
place at the rear region of the droplet. The evaporation rate
again assumes dA/dt = 0, where condensation is initiated.
The cycle is completed with a similar configuration as in
Fig. 9(a) where new vortices are again created while the ones
blown away from the droplet are still leaving the domain

at the outflow boundary. One should note that the larger
vortices generate a backflow that causes a decrease of the
blowing at the rear droplet which will reduce the pressure
and assist the condensation at the bottom region. We also
observed that at the crest and trough of the period [Figs. 9(b)
and 9(d)] the same deformation is found, δD = 1.8%, where
dA/dt = 0.

Smooth evaporation can be analyzed to show the difference
between the evaporation and condensation scenarios. Figure 10
illustrates the isotherms along with velocity vectors normal to
the droplet surface vn for different times in Fig. 8, for the curve
T∞ = 0.862, which corresponds to 	T = 0.002. We choose
the time in Fig. 10(a) as t = 3.1 × 104 and (b) t = 4.2 × 104,
which correspond to the maximum and minimum evaporation
rate of an oscillatory period, i.e., dA/dt = 0. A vector pointing
outwards means that local evaporation occurs while if pointing
inwards condensation takes place. It is seen in Fig. 10(a) that
vapor enters at the top-bottom regions of the droplet, i.e.,
condensation takes place.

In Fig. 10(a) we observe an elongation in the x direction,
where the deformation is δD = 3.1%. On the other hand,
Fig. 10(b) shows condensation only at the rear part of the
droplet and deformation δD = 0.9% decreases. It is important
to note that the droplet is still at an early stage of evaporation,
i.e., near the equilibrium condition. One should also note that
as 	T is small, the internal heat-up is not significant. The
increase of 	T induces evaporation also at the front region,
where the stagnation point may shift from droplet surface to
the droplet forefront. In such a case, deformation is negligible,
where δD → 0.

The isotherms exhibit a parabolic shape in Fig. 10(a),
whereas in Fig. 10(b) a stronger effect of internal circulation
is observed. We should point out that this difference is also
related to the wake. In Figure 10(a) vortices are located around
the droplet rear [as seen in Fig. 9(a)]. These are responsible
for the occurrence of condensation and changes in pressure
and therefore temperature. On the other hand, Fig. 10(b)
exhibits a wake as seen in Fig. 9(c) where vortices are
already detached and no separation is found along the droplet
surface.

Local mass flow rate Jm = ρivn is quantified in Fig. 11,
plotted along the surface, between 0 (top of the droplet) and
π (bottom of the droplet), in radians. While condensation is
dominant for t = 3.1 × 104 at the top region (along 0 to 1
radians) and Jm(0.2) = −4 × 10−3, a stronger evaporation is
identified when t = 4.2 × 104, which takes place between 0.75
and π with a maximum Jm(1.7) ∼= 3 × 10−3.

Figure 12 illustrates the tangential velocities vt along the
droplet surface. We observe a higher vt when t = 3.1 × 104,
located at 1.2 rad. The boundary layer (BL) thickness in this
case is 4.9 (l.u.), whereas for t = 4.2 × 104 the thickness is
6.6 (l.u.). The widening of the BL when t = 4.2 × 104 is due
to the normal velocity component which is responsible for the
blowing along the droplet surface. Therefore, one should note
that if 	T is raised and stronger evaporation is obtained, shear
stresses are lowered due to the blowing effect and the BL is
thicker.

Figure 13 illustrates the evaporation for Re = 130 and dif-
ferent 	T . As 	T increases the droplet lifetime is shortened,
as expected. We note that both 	T = 0.03 and 	T = 0.07
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FIG. 10. (Color online) Isotherms and velocity vectors normal to the droplet surface, for Re = 130 and 	T = 0.002, where (a)
t = 3.1 × 104 (condensation) and (b) t = 4.2 × 104 (evaporation).

show droplet oscillations that are attenuated. Once the heat
exchange is enhanced, the blowing at the rear of the droplet
is stronger and inhibits separation, i.e., further formation of
eddies. Moreover, the influence of the backflow is lessened,
once the blowing contributes to a faster convection of the
vortices and the time scale for their development is reduced. It
is also seen from Fig. 13 that for A/A0 < 0.8 the evaporation
rate is nearly constant where Re is reduced since it is linearly
proportional to the droplet diameter.

A direct effect of increasing Re can be seen by comparing
Fig. 13 to Fig. 7. For the same 	T = 0.07, we observe that
the time taken for reaching D2/D2

0 = 0.4 is t = 8.5 × 104

for Re = 60 and t = 4.8 × 104 for Re = 130. The stronger
convection is responsible for increasing the droplet internal
circulation. Therefore, the exchange of heat between the
droplet surface and the interior is enhanced due to the internal
circulation.

0 0.5 1 1.5 2 2.5 3
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−2

−1
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1
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3x 10
−3

Drop surface (rad)

J m

t = 3.1 x 104

t = 4.2 x 104

FIG. 11. Local mass flow rate in normal direction along the
droplet surface for Re = 130 and 	T = 0.002.

IV. CONCLUSIONS

We have performed numerical simulations of droplet
evaporation with forced convection using a lattice Boltzmann
method. The phase change is set by a nonideal EOS which is
incorporated in the interparticle potential force. The flow is
solved using an MRT collision operator with the EDM forcing
scheme implemented in the velocity space. Our approach
makes use of double distribution functions, where the energy
equation is solved as a separate distribution function and
temperature is taken as a passive scalar.

Numerical simulations of a static droplet are used for
validation. It is found that the method shows good agreement
with the well-known D2 law that prescribes the evaporation
rate. The inclusion of convection alters the equilibrium
conditions and the saturation point is adjusted according to
the value of the Reynolds number. The evaporation rate is
seen to increase when convection is stronger, as the internal
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v t
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FIG. 12. Velocity in tangential direction along the droplet surface
for Re = 130 and 	T = 0.002.
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FIG. 13. Droplet evaporation for Re = 130 and different 	T .

circulation enhances heat transfer. Raising the superheated
vapor temperature decreases the droplet lifetime, as expected.

For higher Reynolds and Peclet numbers, the droplet
exhibits an oscillatory behavior, where condensation and
evaporation alternate. The wake-droplet interaction is the

mechanism responsible for such oscillations and is investigated
in detail. First, two symmetric eddies are formed at the droplet
bottom region due to the flow separation, where the droplet de-
formation is maximum. The blowing along the droplet surface
induces the detachment of these vortices, which are convected
along with the vapor flow. At this point the droplet deformation
is minimum. As the vortices grow in size, a backflow is
generated which assists the formation of new eddies close
to the droplet rear region, completing an oscillatory cycle.
When the temperature difference increases and diffusion plays
a major role we observe that the blowing inhibits further
formation of eddies and droplet deformation is negligible.
Therefore, the oscillations are attenuated and the evaporation
rate is nearly constant for A/A0 < 0.8. In addition, the local
mass flow rate along the surface is also quantified and it is
shown that a wider boundary layer is obtained when blowing
occurs as shear stresses are decreased. In a future work, we
will extend the method to three-dimensional and investigate
different droplet breakups with evaporation.
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