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Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis

Julien Lombard, Thierry Biben, and Samy Merabia
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We describe the dynamics of vapor nanobubbles in water, on the basis of simulations of a hydrodynamics
phase-field model. This situation is relevant to recent experiments, where a water nanobubble is generated around
a nanoparticle immersed in water, and heated by an intense laser pulse. We emphasize the importance of nanoscale
effects in the dynamics of the nanobubble. We first analyze the evolution of the temperature inside the bubble. We
show that the temperature drops by hundredths of kelvins in a few picoseconds, just after nanobubble formation.
This is the result of the huge drop of the thermal boundary conductance between the nanoparticle and the fluid
accompanying vaporization. Subsequently, the temperature inside the vapor is almost homogeneous and the
temperature gradient is concentrated in the liquid, whose thermodynamic state locally follows the saturation line.
We discuss also the evolution of the pressure inside the vapor nanobubble. We show that nanobubble generation
is accompanied by a pressure wave propagating in the liquid at a velocity close to the liquid speed of sound. The
internal pressure inside the vapor just after its formation largely exceeds Laplace pressure and quickly relaxes as a
result of the damping generated by the viscous forces. All these considerations shed light on the thermodynamics
of the nanobubbles generated experimentally.
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I. INTRODUCTION

Although the behavior of equilibrium inhomogeneous fluid
systems has been rationalized within the framework of the
density functional theory, the description of out-of-equilibrium
situations as for instance created by an external temperature
gradient has been poorly explored [1]. This latter physical sit-
uation is relevant to experiment where a metallic nanoparticle
surrounded by liquid water is heated up by a laser source, thus
creating a very large local temperature gradient ∼1 K/nm
in the fluid. The possibility to generate such gradients open
the way to plethora of applications. Among others, we can
mention the design of self-propellers using colloids that move
in the temperature gradient they create [2,3], the possibility to
measure heat currents flowing across a molecule [4] or on a
more fundamental side the generalization of Einstein law for
the diffusion of a Brownian particle [5,6].

Another unique situation may be offered when the laser
heating is strong enough to drive liquid phase change in the
vicinity of the hot nanoparticle. The so-called boiling under
very large temperature gradient is commonly related to the
crossing of the spinodal line, which occurs at a temperature
just below the critical fluid temperature. After the crossing
of the relevant transition line, a thin vapor layer may be
allowed to form a “nanobubble” which further expands in
the liquid. The production of nanobubbles has been recently
evidenced experimentally, based on x-ray scattering [7] or
direct optical measurements [8,9], and it has been confirmed
by simulations [10,12]. Depending on the size of the bubbles
produced, different applications have been developed so far.
Gold nanoparticles exposed to short laser radiation allow for
the generation of short-lived nanobubbles of vapor which can
be used as a tool for diagnosis and treatment of tumors [13].
At the other extreme, continuous irradiation of nanoparticles
by focused solar light leads to the production of steam at
temperatures higher than the saturation temperature at ambient
pressure, which can be used for sterilization and solar energy
recovery among other interesting applications [8].

While the crossing of the liquid spinodal seems to be the
criterion driving nanobubble generation [7,10], the thermody-
namics of the nanobubble once formed remain elusive. In fact,
liquid phase change in a temperature gradient is a problem not
amenable to simple analytical treatment. Here the description
is still harder because of the strong curvature of the nanobub-
ble. This amounts to the following simple questions: What is
the temperature inside the bubble? The pressure? How can we
describe the thermodynamic state of the vapor bubble during
the growth and collapse? How does the nanobubble support
very large Laplace pressures? The different physical mecha-
nisms at play in the energy exchange between the hot nanopar-
ticle and the bubble have been sketched in Ref. [11], showing
the difficulty in building up a simple theoretical treatment.

In previous work [12] we analyzed theoretically the
nanobubble dynamics using hydrodynamics phase field sim-
ulations. We focused on the nanobubble radius and showed
that it can be well described by a “Rayleigh-Plesset” equation,
classically used to analyze cavitation phenomena. This analy-
sis allowed us to conclude that the growth of the nanobubble
is best described by an adiabatic evolution, while the collapse
is isothermal. This analysis was confirmed by a molecular
dynamics (MD) study in Ref. [10], and the good behavior of
the macroscopic Rayleigh-Plesset theory opens the question
of a thermodynamic macroscopic-like description of the
nanobubble. MD is a very valuable approach because it allows
a molecular-scale description of the phenomena with simple
assumptions on the molecular interactions. Unfortunately, due
to the transient nature of the bubbles, and the very low
density of the vapor phase, a quantitative analysis of the
thermodynamic states inside the bubble is very difficult. Our
thermodynamic approach is a good complement of MD in this
case, since we directly have information on the thermodynamic
states and the energy fluxes. Furthermore, the present analysis
is not restricted to nanometerscale systems, which is a key
point for any investigation of the propagation of the pressure
wave induced by the formation of the bubble. In this article we
focus on the temperature and the pressure in the nanobubble,
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after its formation. In particular, we show that the initial very
large temperature gradient under which the nanobubble is
formed quickly relaxes, as the energy flow from the nanopar-
ticle switches from conductive to ballistic. This enables a
“bulk”–like treatment of the vapor bubble thermodynamics.
Subsequently the temperature inside the vapor is found to be
homogeneous while any temperature gradient is localized in
the liquid in the vicinity of the nanobubble. This is the result of
the ballistic nature of the heat flux inside the vapor nanobubble,
owing to its submicronic thickness. We also discuss the evolu-
tion of the pressure inside the vapor nanobubble. We show that
a pressure wave is first emitted from the hot nanoparticle, and
then viscous forces relax the internal vapor pressure, which
reaches Laplace pressure when the nanobubble has stopped
growing.

The article is structured as follows: We first depict the
physical situation that we address theoretically in Sec. II.
In Sec. III we describe the hydrodynamic phase field model
used to probe the nanobubble dynamics. The relaxation of
the temperature gradient during boiling is first discussed
in Sec. IV, before concentrating on the internal pressure
relaxation inside the vapor bubble in Sec. V.

II. MOTIVATIONS: SKETCH OF THE SYSTEM STUDIED

We briefly depict in this section the physical situation that
we will address theoretically. A nanoparticle having a radius
Rnp > 2 nm is surrounded by liquid water, and the whole
system is initially at thermal equilibrium at room temperature.
We break this equilibrium by heating up the particle during a
very short time at a temperature Tp through the interaction
with a laser pulse of short duration. The article aims at
describing the state of the fluid, subsequent to the heating
of the particle as represented in Fig. 1. A quantity of prime
importance at the nanoscale is the thermal boundary resistance
between the particle and the fluid, the latter being defined from
the thermal flux flowing across the solid-water interface and
the temperature jump:

R = Tp − Ts

j
, (1)

where Tp is the nanoparticle temperature, Ts is the fluid
temperature at the nanoparticle surface, and j is the heat flux
density. For a gold-water interface, the interfacial conductance
1/R is typically between 50 and 150 MW/m2/K, depending

on the presence of a self-assembled monolayer of surfactants
between gold and water [14–17].

The three points that we aim at investigating in this article
are the following: (1) How does the nanobubble grow in
the steep temperature gradient? (2) What is the temperature
inside the bubble? The pressure? (3) How does the nanobubble
formed accomodate the very large Laplace pressures induced
by its strong curvature?

III. MODEL

Modeling the nucleation and growth of transient vapor bub-
bles around GNPs is a formidable challenge for a theoretician,
because of the highly out-of-equilibrium nature of the problem,
the large capillary effects present at the nanoscale, and the
occurrence of phase change under very large temperature
gradients. In addition, energy transport inside the bubble
is no longer diffusive but ballistic, because the dimensions
of the nanobubbles are smaller than the vapor molecules’
mean free path. Molecular dynamics simulations, although
offering the flexibility to model the relevant situations, become
prohibitive to simulate the dynamics of the nanobubbles,
because of the long-range effects involved [10,18].

Alternatively, a hydrodynamic model based on a free energy
density has been successfully applied to address interfacial
heat transport and boiling at nanoscale [19,20]. We have
extended basically this model to account for a finite thermal
boundary resistance between the GNPs and the surrounding
fluid, and also the possibility of ballistic energy transport inside
the bubble. Since the model was already presented in Ref. [12],
we shall not give all the details, but focus on the main physical
ingredients concerning the fluid dynamics and the different
energy fluxes.

A. Fluid model

We solve the hydrodynamic equations to describe the
dynamics of the fluid around the nanoparticle:

∂ρ

∂t
+ ∇ · (ρv) = 0,

mρ

(
∂v
∂t

+ v · ∇v
)

= −∇ · (P − D) , (2)

mρcv

(
∂T

∂t
+ v · ∇T

)
= −l∇ · v + ∇ · (λ∇T ) + D : ∇v,

FIG. 1. (Color online) Sketch of the system considered: a gold nanoparticle in water, initially heated by a strong laser pulse of short
duration, as represented by the green line in the left panel. The transient radial temperature profile across the particle is shown with blue lines
in the left panel, emphasizing the effect of a finite thermal resistance at the interface. The GNP/laser interaction may result in the formation of
a vapor nanobubble surrounding the GNP, as illustrated in the right panel.
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TABLE I. Thermophysical parameters in the liquid (top row) and
in the vapor (bottom row) at 297 K in SI units unless specified.

Densitya Cv
b λ η l γ

997× 10 4.13 0.606 8.98 × 10−4 5.4 ×108 72.0 ×10−3

2.22 ×10−2 1.44 0.019 9.9 × 10−6 6881

akg/m3.
bkJ/kgK.

where ρ, v, T stand, respectively, for the number density, the
velocity field, and the temperature field; m is the mass of a
fluid molecule. cv , l, λ, are the fluid specific heat, Clapeyron
coefficient l = T ( ∂P

∂T
)ρ , and thermal conductivity. D and P

stand for the dissipative stress tensor and pressure tensor. The
symbol “:” represents a dyadic product.

The dissipative stress tensor writes

Dαβ = η
(
∂αvβ + ∂βvα − 2

3 ∇ · v δαβ

) + μ ∇ · v δαβ. (3)

The bulk viscosity μ is related to the shear viscosity η through
μ � 5η/3, a reasonable approximation for hard spheres liquids
[21]. The thermophysical and transport coefficients of liquid
water and vapor at 297 K and atmospheric pressure are sum-
marized in Table I, together with the water surface tension γ .
Since the density ρ in (2) is a field with large spatial variations,
we need to account for the variation of the thermophysical and
transport coefficients with the local density. We choose a linear
relationship between those parameters and the density. As an
example, the local shear viscosity is given by

η(r) = ηvap + ρ(r) − ρvap

ρliq − ρvap
(ηliq − ηvap), (4)

where the subscripts vap and liq refer to the bulk values from
Table I at 297 K.

The pressure tensor and the Clapeyron coefficient are
related to the local thermodynamic pressure, and the density
gradient according to

Pαβ =
[
PVdW − wρ�ρ + w

2
(∇ρ)2

]
δαβ + w∂αρ∂βρ,

l = T

(
∂PVdW

∂T

)
ρ

. (5)

These latter expressions are dependent on the local state of
the fluid, through a free energy density f consisting of a
bulk van der Waals free energy density fVdW and a capillary
term. This free energy density fVdW and the corresponding
thermodynamic pressure write

f = fVdW + w

2
|∇ρ|2, (6)

fVdW = ρkBT

[
ln

(
ρ
3

1 − ρb

)
− 1

]
− aρ2, (7)

PVdW = ρkBT

1 − ρb
− aρ2. (8)

The parameters a, b, and the De Broglie wavelength 
 in
Eqs. (7) and (8) are set so as to represent the density of
liquid water at 297 K and atmospheric pressure and its critical

parameters. The relation between the parameters in Eq. (7) and
the critical parameters are given by

Pc = a

27b2
= 22 MPa,

ρc = 1

3b
= 322 kg/m3, (9)

Tc = 8a

27bkB

= 647.3 K.

The parameter w appearing in the square gradient term in
the pressure tensor P quantifies the strength of the surface
tension forces in the fluid since it prevents the fluid from
developing steep gradients. Its magnitude was set so as to
match the surface tension γ of water at T = 297 K:

γ =
√

2w

∫ ρliq

ρvap

√
fVdW(ρ) − μeq(T )ρ + Peq(T ) dρ, (10)

where ρvap and ρliq are the coexistence vapor and liquid
densities on each side of a liquid-vapor interface at temperature
T . μeq(T ) and Peq(T ) are the chemical potential and pressure
of both the liquid and vapor bulk phases at equilibrium at
temperature T , as given by the van der Waals equation of
state.

The treatment of the Clapeyron coefficient l was done
separately, and for this coefficient we considered a dependence
in temperature in addition to the dependence in density. Indeed,
unlike the other parameters, l displays important variations
with the temperature:

l(ρ,T ) = lvap(T ) + ρ(r) − ρvap

ρliq − ρvap
[lliq(T ) − lvap(T )], (11)

where lliq(T ) and lvap(T ) are the temperature-dependent values
of the Clapeyron coefficient at a given temperature T , as
depicted in Fig. 2. The values of lvap(T ) and lliq(T ) have
been extracted from the experimental data as provided by the
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5

 P
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Liquid at density ρliq

Vapor at density ρvap

FIG. 2. (Color online) Evolution of the Clapeyron coefficient
with temperature in a liquid of density ρliq (blue solid line) and in
a vapor of density ρvap (red dashed line). The coefficients have been
obtained from experimental data [22].
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NIST [22]. The reference ρliq and ρvap have been taken to be
the saturation density at room temperature.

B. Nanoparticle

We now discuss the interaction of the fluid with the
nanoparticle. We account for the wettability of the fluid, the
interface resistance for thermal conduction, the continuity of
pressure, and the no-slip conditions. This gives the following
boundary conditions at the fluid-GNP interface:

(∇ρ)r=Rnp
= �

w
, (12)

(∇T )r=Rnp
= −G

λ
(Tnp − Ts), (13)

v(r = Rnp) = 0, (14)

[∇ · P(r = Rnp)] · n = 0. (15)

The potential � in (12) quantifies the wetting of the fluid
[19,23]. It can be directly related to the contact angle of the
fluid with a given solid, as expressed by Eq. (16), and illustrated
in Fig. 3. In all the following, we choose the value for �

corresponding to a contact angle of 50◦ at 297 K:

cos θ = 1 − 1

γ

∫ ρs
l

ρs
v

[
√

2w(fVdW(ρ) − μcoexρ + Pcoex) + φ]dρ.

(16)

The interface conductance G in (13) will be discussed
later in the description of the nanoparticle temperature.
Equation (15) stands for the continuity of pressure at the
particle surface, n being the unit vector perpendicular to the
GNP surface pointing outwards.

For the metal nanoparticle, the temperature Tnp is assumed
to be uniform, a reasonable hypothesis owing to the large
conductivity of the metal. This assumption was confirmed
in a simulation work for quasi-instantaneous heating of the
nanoparticle, and for continuous illumination in the limit of
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FIG. 3. Equilibrium contact angle as a function of the solid-wall
parameter � appearing in Eq. (12).

small GNP radii Rnp < 50 nm, by Ref. [24]. The temporal
evolution of the nanoparticle temperature is described by

VnpCnp
dTnp

dt
= Fσnp

�(t/tp)

tp
− Snp φ, (17)

φ = φc + φb, φc = G(Tnp − Ts), (18)

φb = αρs

√
2k3

B

m

(
T 3/2

np − T
3/2
G

)
, (19)

where Snp, Vnp are the nanoparticle surface and volume,
respectively, and Cnp = 2500 kJ/m3K is the gold specific heat.
The laser interaction is described by the size-dependent GNP
absorption cross section σnp as given in Ref. [7], the fluence
of the laser pulse F , and the gate function �(t/tp) = 1 if
0 < t < tp and 0 otherwise, where tp stands for the duration
of the GNP heating.

The parameter tp = 7 ps used here is larger than the pulse
duration. Since we consider femtosecond pulses, the relevant
time for our study is the electron-phonon coupling time as de-
scribed by Ref. [25], which determines the GNP phonon equi-
libration time: for t � tp, the GNP lattice has received all the
energy initially provided to its electron gas by the laser pulse.
The electron interaction with the pulse prior to that coupling
is not accounted for, as its characteristic time is much smaller
than tp. Other phenomena such as particle melting are not mod-
eled in (17), but we discussed their importance in Ref. [12].

The last term in (17) describes the energy flux flowing away
from the nanoparticle. It is decomposed here, in a conductive
term φc and a ballistic heat flux φb which is nonvanishing
when the fluid locally vaporizes. The conductive flux is φ =
φc = G(Tnp − Ts) [14,18,26–28] where the thermal boundary
conductance G characterizing the gold-fluid interface writes
G = G0[1 + cos(θ )] and depends on the contact angle θ

[15,16]. The constant G0 has been taken to depend on the fluid
surface density ρs , so as to account for the drop of the conduc-
tance when the fluid locally vaporizes. We have considered
G0 = 1

2 {(GL − GV) tanh[(ρs − ρc)/δρ] + GL + GV}, where
GL and Gv denote the conductance when the fluid is in the
liquid state and vapor state. respectively, δρ = 0.025/b allows
us to describe the sharp transition between the two limiting
behaviors: liquid or vapor. The value of GL = 90 MW m2 K−1

has been extracted from available experimental and simulation
results for a gold-water interface. As for the value of GV, we

have assumed GV = 3
2ρv

√
2k3

B

m
T∞, a form which is inspired by

the kinetic theory of gas, and which yields a value in agree-
ment with available experimental and simulation data [29].
Importantly, this value is typically 20 times lower than GL.

The ballistic heat flux φb takes nonnegligible values when
the fluid locally vaporizes. The conductive heat flux from
the nanoparticle to the fluid is small, and the GNP energy is
transferred to the fluid through ballistic transport in the vapor
nanobubble. This energy flux depends on the temperature
of the particle and that of the fluid at the position of the
liquid-vapor interface. The expression of the ballistic flux is
given in Eq. (19), where α is a dimensionless accommodation
coefficient here set to 0.1 [29,30], ρs is the fluid density at the
particle surface, and TG is the temperature of the fluid at the
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Gibbs position of the liquid-vapor interface. The expression
of the ballistic flux in (19) is inspired by the theory of energy
transport in a Knudsen layer [30]. This ballistic transport is
relevant only for bubbles thickness eb small enough so that
the vapor can be considered as a Knudsen gas. This criterion
is obeyed for Knudsen number Kn = λmfp/eb < 1, where
λmfp � 100 nm [31] is the mean free path of water molecules
inside the bubble.

We choose to define the radius of the bubble Rb as the
location of the Gibbs surface where the average density lies:
ρ(Rb) = (ρmin + ρmax)/2. ρmin and ρmax stand, respectively,
for the minimum and maximum densities in the fluid. It
should be finally mentioned that when a bubble appears,
energy conservation is ensured through the addition of a flux
φ′

b = φbR
2
np/R

2
b localized at the liquid-vapor interface, and

which represents the amount of energy per unit of time that is
received by the liquid stemming from the ballistic flux φb.

C. Boundary conditions

In our simulations we implemented damping conditions at
the boundaries to avoid any reflection of the pressure wave
that may induce a premature collapse of the bubble. The
method we use is inspired by the perfectly match layers (PML)
[32,33] used in finite element methods. To do so, we artificially
damped the gradient of any field so that the boundaries do not
generate reflected waves that may perturb the dynamics in the
simulation cell. As an example, for the density gradient, we
used

∇ρ(r) = 1

1 + ε(r)

∂ρ

∂r
, (20)

where ε(r) is a function linearly increasing with the radius
if r > rPML and ε(r) = 0 otherwise. As will be discussed
later, the generation of nanobubbles implies the emission of a
pressure wave to relax the excess pressure at the nanoparticle
surface. This pressure wave flows away from the particle,
and we need to ensure that the system boundaries will not
artificially reflect them toward the GNP. After several tests,
we chose a slope 0.1 for the evolution of ε(r) versus radius
so ε(r) = 0.1(r − rPML). A smaller value of this slope leads
to waves flowing through the damping region and creates a
depletion zone after the passage of the wave. A higher value
blocks the pressure wave and locally creates an area of excess
pressure at the PMLs that act as a solid wall and reflects the
wave towards the nanoparticle.

We study particles of radii varying from 2 to 50 nm. We
consider a spherical symmetry that allows us to focus only on
the radial component of the fields. All the spatial derivatives
appearing in the conservation equations (2) and the boundary
conditions (12)–(15) are calculated using spherical geometry.

The size of the simulation cell, centered at the position of the
GNP center, is L = 260 nm for Rnp < 50 nm and L = 390 nm
for Rnp = 50 nm. The size of the damping area L− Rnp − rPML

is 65 nm. With these values, the region where the fluid
dynamics is undamped has a spatial extension L − Rnp, which
is more than 140 nm large. We use a time step of 0.2 fs and
a lattice step of 0.07 nm. The velocity field is calculated on a
staggered grid, shifted from the main grid by half a lattice step.

16 18
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T c

Density
Temperature
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Temperature drop
at the GNP surface

xspin

ΔT=Tnp-Ts

FIG. 4. (Color online) Density and temperature profiles in the
fluid surrounding a nanoparticle when a bubble forms. Here the
particle radius is Rnp = 15 nm and the laser fluence F = 101.25 J/m2.
The dotted lines show, from top to bottom, the position of the spinodal
temperature Tspin, the average density, and the critical density ρc.
The red dashed arrow on the left emphasizes the temperature drop
at the surface of the nanoparticle. On this figure we indicate the
instantaneous position of the spinodal crossing, at a distance xspin from
the GNP surface. This corresponds to the crossing of the spinodal line,
at the temperature Tspin.

IV. THERMODYNAMIC ANALYSIS

In this section we aim at providing a thermodynamic
description of the vapor nanobubble, after its formation. In
all the following, we consider that a bubble is formed if
there is at least one point in the fluid where the density
is below the water critical density ρc = 322 kg/m3. We
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FIG. 5. (Color online) Temporal evolution of the nanobubble
radius Rb around a 10 nm GNP for different pulse fluences (the
higher fluence giving the larger bubbles). A secondary bubble is
observed for strong pulses. The arrows indicate the appearance
time for each simulation. The inset displays the nanobubble radius
observed experimentally around a 9 nm diameter nanoparticle [7].
The solid line is a guide to the eye.
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FIG. 6. (Color online) Temperature of the particle (Tnp) and the fluid at the surface (Ts), 1 nm from the surface, and 2 nm from the surface
as a function of time. Here Rnp = 10 nm, F = 92 J/m2 (top left), F = 108 J/m2 (top right), F = 162 J/m2 (bottom left), and F = 271 J/m2

(bottom right).

already showed [12] that nanobubble formation coincides with
spinodal crossing in the fluid, at a distance xspin between 1 and
2 nm from the GNP surface, in liquid water. This occurs at a
temperature Tspin � 0.9Tc � 550 K for liquid water. Spinodal
crossing corresponds to a fluence-energy per unit of GNP
cross section, larger than a size-dependent threshold, and we
assume that we are working under these condition. Here we
are mostly interested in the dynamics of the nanobubble after
the vaporization process.

Figure 4 displays an example of density profile, at the
moment when a bubble forms. In this figure, the gradient
of density at the particle surface is due to the wettability
of the fluid as described by (12). The red dashed arrow on
the left emphasizes the temperature drop at the surface of
the nanoparticle due to the interfacial thermal resistance that
delays the energy transfer from the GNP to the fluid.

Figure 5 displays the temporal evolution of the bubble
radius, for different fluences beyond the threshold. This figure
is quite similar to Fig. 2 in our previous article [12]. The radius
of the nanobubble is determined based on the instantaneous
location of the Gibbs dividing surface.

For fluences just above the threshold (F = 92 J/m2 in
Fig. 5), we do observe a short-lived thin vapor layer. On
increasing the laser fluence, mature bubbles are generated

which first expand in the liquid and reach a maximal size
before collapsing. A second bubble may be produced, if
the fluence is high enough (F � 162 J/m2 in Fig. 5).
The production of this second nanobubble is explained by
the compression of the vapor bubble at the ultimate stage of
the collapse, leading to nanoparticle heating. For strong pulses
the dynamics of the nanobubble is found to be asymmetrical,
the growth being faster than the collapse. This asymmetry is
also observed experimentally (and numerically in Ref. [10])
as evidenced by the inset of Fig. 5, and it was explained in
Ref. [12] by the adiabatic nature of the bubble expansion,
followed by the isothermal bubble collapse. We will revisit
this scenario in this article on the basis of the thermodynamic
analysis.

We analyze now the temperature of the nanoparticle before
and after boiling, as represented in Fig. 6. On these figures,
we have also displayed the temperature of the fluid at different
distances from the GNP. We choose to focus on distances
1 nm and 2 nm from the nanoparticle, which for a 10 nm GNP
corresponds to the typical value of the characteristic distance
xspin where the spinodal line is locally crossed. Figure 6 shows
that the nanoparticle is rapidly heated by the pulse, while due
to the interface resistance there is a delay in the heat transfer to
the fluid. This results in an important temperature jump at the
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FIG. 7. (Color online) Radial temperature �T/Tc=(T −T∞)/Tc

(left panels) and density profiles ρ/ρc (right panels), taken at different
times during the growth or collapse of the bubble. Here Rnp = 10 nm
and F = 271 J/m2. From top to bottom, the corresponding times
are t = 17.5 ps (bubble formation), t = 64 ps (growth), t = 134
ps (maximal radius), and t = 322 ps (collapse). The corresponding
evolution of the radius is given in the bottom panel, where the
black squares indicate the different times when the temperature and
density profiles have been calculated. On the temperature profiles: the
vertical solid lines show the instantaneous position of the liquid-vapor
interface. On the density profiles: the black dashed lines show the
local temperature-dependent values of the saturation limits. The
dashed-dotted black lines show the local temperature-dependent
values of the spinodal limits. On the top of the figure we also identified
the thermodynamic domains delimited by these curves: on the left,
close to the GNP, the temperature of the fluid is higher than the
critical temperature and the fluid is supercritical (5). For r � 1.17 nm
the temperature in water is below Tc, and the saturation and spinodal
curves delimit the stable liquid region (1) on the top, the metastable
liquid region (2), the unstable region at the center, and the metastable
(3) and stable (4) vapor regions.

GNP surface, represented by a dashed arrow on the left figure
of Fig. 6.

Before vaporization, we observe a temperature decrease
that can be described by an exponential evolution Tnp − T∞ ∼
e−t/τ where τ = RCnp/3G = 60 ps for a 10 nm particle. In

this regime, the nanoparticle cooling is controlled entirely by
the interface thermal conductance G. Note that for the lowest
fluence analyzed, this exponential regime persists all over the
time window, as only a short-lived thin vapor layer is produced
and the density at the nanoparticle surface stays above the
critical value due to the wettability of the fluid; see the top left
panel of Fig. 6.

When the fluence is larger, and after vaporization occurs
the nanoparticle cools down very slowly, as seen in Fig. 6.
In this regime the energy transfer between the nanoparticle
and the fluid switches from conductive to ballistic, and the
nanoparticle cooling is controlled by the ballistic flux φb of
Eq. (19). The transition between conductive and ballistic is
accompanied by an enhanced temperature drop. This drop
is explained by the large increase of the interface thermal
resistance when vaporization occurs. As a result, the fluid in
the vicinity of the nanoparticle cools down sharply and sees
its temperature decreasing by hundredths of kelvins in a few
picoseconds. After this drop, the temperature and density in
the fluid close to the particle reach a steady value during more
than 200 ps, as visible in the bottom panels of Fig. 6. Also
importantly, the temperature in the vapor seems to become
rapidly homogeneous, and the temperature gradient initially
present before vaporization has relaxed significantly. The
temperature gradient relaxation is best visualized in Fig. 7,
which present the simultaneous evolutions of the tempera-
ture and density profiles across the vapor bubble and the
liquid.

When a nanobubble forms, the temperature gradient is first
very large on the order of several kelvins per angstroms as
evidenced in the top panels of Fig. 7. At this moment, there
is a region of limited spatial extension where the density
is below ρc and the liquid-vapor interface is diffuse. Just
after the nanobubble generation, the temperature gradient has
relaxed and the liquid-vapor interface becomes sharp. The
relaxation of the temperature gradient is clearly seen in Fig. 8
for different laser fluences. Here we plotted the maximal
temperature gradient in the fluid. The corresponding position
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FIG. 8. (Color online) Relaxation of the maximal temperature
gradient in the fluid for the different fluences considered in Fig. 6.
Here Rnp = 10 nm.
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FIG. 9. (Color online) Position where the maximal temperature
gradient occurs; see Fig. 8. The dashed lines show the instantaneous
position of the nanobubbles for the different fluences analyzed.

where the maximum occurs is shown in Fig. 9. For the three
highest fluences, the maximal temperature gradient is shown
to relax quickly in a few picoseconds. This fast relaxation is
explained by the huge drop of the thermal resistance from
1/GL to 1/Gv, when the bubble appears. This relaxation is
accompanied by rapid cooling of the vapor in the bubble as
testified by Fig. 7. Note that the temperature in the nanobubble
is almost homogeneous. Some spatial variations may be seen
during the early growth, which are certainly attributed to
sound waves propagating in the vapor. The uniformity of the
temperature in the vapor is due to the drop of the thermal
boundary conductance from GL to Gv subsequent to the switch
from conductive to ballistic heat transfer in the vicinity of
the nanoparticle. This fast drop yields an almost vanishing
temperature gradient in the vapor, according to the boundary
condition [Eq. (13)]. On the other hand, because the liquid
collects the ballistic heat flux φb the local temperature gradient
in the liquid ∂T

∂r
� −φ′

b/λliq may take appreciable values as
shown in Fig. 7.

The localization of the temperature gradient is clearly
confirmed by Fig. 9, which shows that the position where
the maximal gradient occurs remains in the vicinity of the
nanobubble interface. From a thermodynamic point of view,
Fig. 7 shows that the liquid in the vicinity of the nanobubble
follows the saturation line. Hence, we can conclude that
just after the temperature relaxation step, the thermodynamic
state of the liquid corresponds to saturation conditions. Also,
importantly, we conclude from the inspection of the profiles
that beyond a distance x � 2 nm from the GNP surface the
density and temperature in the vapor are almost homogeneous.
Hence, determining the thermodynamic path followed by the
fluid at a fixed distance x � 2 nm from the GNP surface should
provide information regarding the thermodynamic evolution of
the vapor nanobubble.

We have performed such an analysis in Fig. 10, which
represents the local thermodynamic state of the fluid at a given
time, in a temperature-density diagram.

0.1 1
ρ/ρc

1T/
T c

18 ps
64 ps
134 ps
322 ps

FIG. 10. (Color online) Local thermodynamic state of the fluid
on a T -ρ diagram, taken at different times. The corresponding times
are the same as Fig. 7: t = 17.5 ps (bubble formation), t = 64 ps
(growth), t = 134 ps (maximal radius), and t = 322 ps (collapse).
The fluence is here F = 271 J/m2 and Rnp = 10 nm. The solid red
line stands for the saturation curve, which delimits the stable and
metastable phases for the vapor (on the left) and for the liquid (on
the right). The dashed-dotted blue line stands for the spinodal curve,
which represents the limit between the metastable phases and the
unstable liquid-vapor zone (at the center).

The generation of the nanobubble leads to an important
elevation of the temperature and pressure close to the particle,
which generates a local supercritical region of small spatial
extension. This sudden pressure increase induces a pressure
wave, as we will analyze in Sec. V. This wave moves into
the liquid and propagates quickly towards the boundaries
of the system and does not interfere with the thermodynamics
of the vapor nanobubble, which we discuss now.

Figure 10 confirms that the temperature inside the vapor
nanobubble is almost homogeneous. Also, it is clear that
the temperature gradient is localized in the liquid whose
thermodynamic state follows the saturation line. The relative
homogeneity of the temperature inside the bubble allows us
to probe the thermodynamics of the vapor during the growth
and collapse. To this end, we have plotted the evolution of the
thermodynamic state of the fluid after the bubble formation
in Fig. 11. We focused on two distances, at contact and at a
distance x = 2 nm from the particle surface.

Even for the fluences considered, which are far from the
generation threshold, the density at the GNP surface stays
at best in the unstable region. The global behavior that is
highlighted by Fig. 11 is the following: the liquid at 2 nm
from the GNP surface is first heated and follows the saturation
line. Then cooling proceeds and is accompanied by local
vaporization and subsequent dilation of the vapor. Cooling
stops when the nanobubble reaches its maximal radius, and
the further thermodynamic evolution of the vapor is clearly
isothermal, as seen in Fig. 11. It is immediately visible on
Fig. 11 that the temperature during the collapse is constant and
slightly above T∞. Any temperature gradient is then localized
in the liquid.

043007-8



NANOBUBBLES AROUND PLASMONIC NANOPARTICLES: . . . PHYSICAL REVIEW E 91, 043007 (2015)

11.0
ρ/ρc

0.5

1

T/
T c

Surface
Rnp+2 nm

Bubble growth

Bubble collapse

Heating
of the fluid

11.0
ρ/ρc

0.5

1

2

T/
T c

Surface
Rnp+2 nm

Bubble growth

Bubble collapse

Heating
of the fluid

FIG. 11. (Color online) Temporal evolution of the system on a T -ρ diagram from the beginning of the pulse to the collapse of the first
bubble, at the GNP surface (black circles) and 2 nm from the GNP surface (purple triangles). Here Rnp = 10 nm, F = 162 J/m2 (left), and
F = 271 J/m2 (right). The solid red line stands for the saturation curve, which delimits the stable and metastable phases for the vapor (on
the left) and for the liquid (on the right). The dashed-dotted blue line stands for the spinodal curve, which represents the limit between the
metastable phases and the unstable liquid-vapor zone (at the center). The black square on the right indicates the thermodynamic state of the
system prior to heating (ρ∞,T∞).

In conclusion, we saw that the thermodynamic evolution of
the vapor phase may be described by a bulklike treatment, at
least as soon as locally the fluid has cooled down below the
critical temperature Tc. This is mostly related to the change of
the nature of the energy flux at the GNP surface when the fluid
vaporizes, which concentrates the temperature gradient in the
liquid, which locally follows the saturation line consistent with
this gradient. These considerations shed light on the evolution
of the pressure inside the nanobubble, which we analyze in the
next section.

V. PRESSURE

As we briefly mentioned, the pressure in the fluid first
increases drastically when a first vapor layer surrounds the
GNP.

A. Pressure wave

This sudden increase is accompanied by the propagation
of a pressure wave, as best seen in Fig. 12. Here we plot the
thermodynamic pressure PVdW profiles in the fluid for different
times after vaporization sets in. Remarkably the pressure in
the liquid close to the particle can reach very large values,
well above the critical pressure. This is reasonable since
the formation and further growth of a nanobubble requires
a typical pressure on the order of the Laplace pressure
�PLaplace = 2γ /Rnp � 10 MPa for a nanoparticle of radius
Rnp = 15 nm. This value compares well with our simulation
results when a bubble is generated: in the inset of Fig. 12 the
pressure in the fluid close to the particle at 21.75 ps is more
than 40 MPa, which is well above the Laplace pressure.

While the bubble forms, a part of the excess pressure is
released through a pressure wave that flows away from the
particle. It is important to remark that the generation of a
pressure wave is due to the sudden dilation of the liquid, and it
is emitted before the nanobubble appears. In the case depicted

in Fig. 12, the nanobubble forms at 50 ps, and the pressure wave
has already moved over approximately 70 nm. The pressure
wave moves into the liquid, with a velocity which is found
to be close to the speed of sound in the unheated liquid. The
mean value of the wave velocity has been determined based
on the distance traveled by the maximum of the wave, as
schematically represented in Fig. 12. The generation of this
pressure wave is of great interest and is considered as one
of the phenomena that lead to cell destruction in medical
applications [13]. Our simulations confirm that though it is
generated locally at the nanoparticle surface it moves over large
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FIG. 12. (Color online) Pressure wave PVdW profiles in the fluid
surrounding a nanoparticle at different times. Here Rnp = 15 nm and
F = 101.25 J/m2. The dashed lines stand for the pressure P∞ far from
the GNP. The inset is a closer view of the GNP surface. The arrows
on the main figure indicate the relative displacement of the pressure
maximum between two times used to calculate the corresponding
average velocity of the pressure wave.
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FIG. 13. (Color online) Evolution of the local pressure P in the
vapor bubble as a function of the nanobubble instantaneous volume
Vb. The pressure is estimated at a distance 1 and 2 nm from the
GNP surface. The dashed lines show the behavior P ∼ V γ , with
γ = −2.6, −5/3, and −0.4. The inset shows the evolution of the
internal pressure with time. Here Rnp=10 nm and F = 271 J/m2.

distances and could therefore interact with the cell components
far from the particle [34,35].

After the bubble generation (total time elapsed t � 50 ps
in the case presented in Fig. 12) the pressure within the
vapor becomes rapidly homogeneous and decreases during
the bubble growth. On the inset of Fig. 12 we see that in the
liquid close to the vapor (r � 17 nm) the pressure is negative,
consistent with the local metastable nature of the liquid state.

B. Internal nanobubble pressure

To further elucidate the thermodynamic nature of the
growth of the bubble, we plotted the evolution of the pressure
inside the vapor as a function of the instantaneous bubble
volume Vb in Fig. 13. The simulation results are compared
to power law behaviors: P ∼ V

−γ

b . γ = 1 classically corre-
sponds to an isothermal evolution, and γ = 5/3 refers to an
adiabatic evolution.

Based on Fig. 13 we conclude that indeed neither behavior
is observed. The growth of the nanobubble is rather consistent
with an exponent γ = 2.6, while the collapse corresponds
to γ = 0.4. Indeed, these discrepancies may be explained,
given the evolution of the number of vapor molecules during
the lifetime of the nanobubble, as represented in Fig. 14.
Clearly, the number of vapor molecules inside the nanobubble
is not constant and is decreasing during both the bubble
growth and collapse. Hence, condensation becomes operative
as soon as a nanobubble is formed. This conclusion enables
us to appraise the different sources of energy exchange in the
nanobubble. Figure 15 summarizes the different contributions
to the energy rate in the nanobubble and in the liquid. During
the growth, dilation of the vapor occurs and is concomitant with
condensation as evidenced by the strong local compression
of the interface. Also, thermal conduction turns out to be
negligible in the vapor bubble, while it is significant in the
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FIG. 14. (Color online) Evolution of the number of vapor
molecules in the bubble, for different fluences (empty symbols). The
corresponding volume bubbles are displayed with filled symbols.
Here Rnp = 10 nm.

liquid due to the finite temperature gradient. Viscous heating
is small as compared with the other sources of heating, in
the vapor and in the liquid as well. The behavior of the vapor
phase is thus compatible with an adiabatic expansion since very
little heat is exchanged, but the number of molecules in the
vapor phase is not constant. During the collapse, compression
in the vapor competes with thermal conduction to maintain
the vapor temperature constant. Again, condensation sets in
as represented by the peak of the compression term at the
interface. Viscous heating contributes only slightly to heat the
interface. However, if viscosity has little effect on thermal
transport, we shall see below that it still plays an important
role in momentum transport.

Alternately, the role of the viscous forces may be inferred
from a mechanical analysis. We already showed that the
evolution of the nanobubble radius may be described in terms
of the Rayleigh-Plesset equation, which is classically used to
describe cavitation dynamics [12]:

mρliq

(
RbR̈b + 3

2
Ṙb

2
)

= Pi(t) − Pe(t) − 2
γ

Rb

− 4η
Ṙb

Rb

,

(21)

Pi(t) = P max
i

[
Vb,max

Vb(t)

]ζ

, (22)

where Rb is the bubble radius, Pi and Pe are the internal
and external pressures, Vb(t) and Vb,max are the nanobubble
volumes at time t and when the bubble radius is maximal, and
γ is the fluid surface tension. mρliq is the mass density of the
liquid far from the nanoparticle given in Table I. The viscosity
η used here is the shear viscosity of water [36].

We have compared in Fig. 16 the relative contribution
of the different mechanical driving forces contained in the
Rayleigh-Plesset equation (21). Of particular interest here is
the relaxation of the internal pressure, which turns out to be
very large during the bubble growth. At the early stage of
the growth, the difference in pressure between the internal
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FIG. 15. (Color online) Spatial profiles of energy rates (per unit of volume) during bubble growth (left) and collapse (right) (compression
−l∇ · v; conduction −∇ · Jth with Jth = −λ∇T ; and viscous heating). The inset shows the corresponding density and temperature profiles.
Here Rnp = 10 nm, the fluence is 271 J/m2, and the ballistic flux is set at zero.

and the external pressure overcomes the Laplace pressure.
The mechanical analysis allows us to understand how the
nanobubble may accommodate very large internal pressures.

We can evaluate the relative importance of the different
terms through the computation of the associated energy during
the growth. The results are given in Table II. When the
bubble reaches its maximum radius, the energy provided by the
difference in pressure between the vapor and the surrounding
liquid is balanced by the work of the Laplace pressure. More
importantly, the viscous forces dissipate energy in a more
important way than any other contribution. This importance of
the viscosity can be appreciated by the estimation of the
Reynolds number during the bubble growth:

Re = mρliqvgrowth(Rmax − Rnp)

η

= mρliq(Rmax − Rnp)2

η�tgrowth
, (23)
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FIG. 16. (Color online) Temporal evolution of the terms driving
the bubble dynamics in the Rayleigh-Plesset equation (21). vb stands
for the liquid-vapor interface velocity.

where vgrowth is the average velocity of the bubble during
its growth. An evaluation of this Reynolds number gives
0.15 for the case F = 162 J/m2 and 0.2 for F = 271 J/m2,
which confirms the importance of the viscous processes.
The same calculation for the collapse gives 0.07 and 0.1,
respectively, which highlights the effect of viscosity on
momentum transport.

VI. CONCLUSION

In summary, we presented a thermodynamic analysis of the
dynamics of vapor nanobubbles in water, based on a phase-
field hydrodynamics model. This situation is relevant to recent
experiments, where the vapor nanobubbles have been gener-
ated by metallic nanoparticles heated by a strong laser pulse.

We emphasize that the nanobubble is generated under a
very large temperature gradient, and locally exceeding the
spinodal temperature. In a few picoseconds after its generation
however, the temperature inside the bubble sharply drops off by
hundredths of kelvins. This fast relaxation is attributed to the
sudden increase of the interfacial thermal resistance, present
at the nanoparticle-water interface. After its generation, the
temperature inside the bubble becomes homogeneous, while a
finite temperature gradient is maintained in the liquid due to the
ballistic heat flux flowing across the bubble. The description of
the nanobubble as a quasihomogeneous medium allows us to
unambiguously identify the thermodynamic path followed by
the vapor. The thermodynamics analysis confirms our previous
finding [12]: the bubble expansion is found to be adiabatic,
although the number of molecules in the vapor phase is not
constant and corresponds to fast vapor cooling, while the

TABLE II. Energy (10−2 fJ) associated with the different terms
driving the bubble growth in Eq. (21) for F = 271 J/m2.

Vapor pressure External pressure Pressure jump Laplace Viscosity
Pi Pe Pi-Pe 2γ /Rb 4ηṘb/Rb

5.25 −2.81 8.06 −8.29 −9.68
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bubble collapse is rather found to be isothermal. This relative
asymmetry also found experimentally is interpreted by the
role played by viscous forces in the nanobubble dynamics. At
the early stage, the pressure inside the bubble is larger than
the Laplace pressure, which is huge at the scale considered.

The excess pressure is relaxed by the viscous stress developed
by the liquid until the bubble becomes mature and collapse
proceeds.

In the future, we plan to study how the nanobubble maximal
size may be optimized.
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