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Instability in stratified accretion flows under primary and secondary perturbations

S. Nasraoui,1 A. Salhi,1 and T. Lehner2
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We consider horizontal linear shear flow (shear rate denoted by �) under vertical uniform rotation (ambient
rotation rate denoted by �0) and vertical stratification (buoyancy frequency denoted by N ) in unbounded domain.
We show that, under a primary vertical velocity perturbation and a radial density perturbation consisting of a
one-dimensional standing wave with frequency N and amplitude proportional to w0 sin(εNx/w0) ≈ εNx( � 1),
where x denotes the radial coordinate and ε a small parameter, a parametric instability can develop in the flow,
provided N 2 > 8�0(2�0 − �). For astrophysical accretion flows and under the shearing sheet approximation,
this implies N2 > 8�2

0 (2 − q), where q = �/�0 is the local shear gradient. In the case of a stratified constant
angular momentum disk, q = 2, there is a parametric instability with the maximal growth rate (σm/ε) = 3

√
3/16

for any positive value of the buoyancy frequency N. In contrast, for a stratified Keplerian disk, q = 1.5, the
parametric instability appears only for N > 2�0 with a maximal growth rate that depends on the ratio �0/N and
approaches (3

√
3/16)ε for large values of N.
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I. INTRODUCTION

The combination of horizontal plane shear, rotation, and
vertical density stratification characterizes the dynamics of
several astrophysical flows (e.g., cold accretion disks [1]) and
geophysical flows (e.g., zonal geostrophic shear flows [2] and
interaction of internal gravity waves with horizontally oceanic
currents [3]). In the present paper, we consider stratified
unbounded horizontal linear shear flow (shear rate denoted
by �) in a frame rotating uniformly (ambient rotation rate
denoted by �0) about the vertical axis,

U = −�xey, b = N2z, �0 = �0ez, (1)

where b is the basic buoyancy scalar related to the basic
density � as b = −(g/�0)(� − �0) and �0 is a reference
density and g is the vertical gravity component. The vertical
Brunt-Väisälä frequency, N, such that N2 = (∂b/∂z), is
assumed to be constant. Here (x,y,z) denotes the Cartesian
coordinates system. We will show that the flow (1) can
develop parametric instability under primary and secondary
perturbations.

The simple flow (1) allows one to include the shearing
sheet (or box) approximation (e.g., see Ref. [4]) used by
many authors to study local instabilities in accretion disks
such as the magnetorotational instability (MRI [5], see also
the recent studies in Refs. [6,7]). For the accretion flows, the
shear rate � is related to the rotation rate as � = q�0, where
q is the local shear gradient and ω = √

2 (2 − q) �0 is the
epicyclic frequency. For a Keplerian disk q = 3/2, ω = �0

and for a constant angular momentum disk q = 2, ω = 0.

Otherwise, the rotation and shear rates can be independent as
for geophysical flows.

As noticed by Goodman [8], the shearing sheet approxima-
tion contains most of the physics that is relevant to phenomena
occurring on scales of order the disk thickness, H, or smaller.
The essence of this approximation is local in approach, that is,
the equations are valid in a small region (a Cartesian box) about
a typical point in the disk. In the shearing sheet approximation,
a steady flow consisting of a linear shear velocity profile in

a frame rotating about the vertical axis solves the equations
and one can consider it as a basic flow and perturb around
it [9].

We consider that the Cartesian coordinates system (x,y,z) is
centered at a reference point P0 = (r0,φ0,0) in the midplane of
the disk, rotating with the disk at angular velocity �0 = �(r0)
such that x ≡ (r − r0) is in the radial direction, y ≡ r0(φ −
φ0) is in the azimuthal direction, and z ≡ z is in the axial
direction. Thermally induced convection is included using the
Boussinesq approximation (see, e.g., Refs. [9–11]). In this
context, the equations for the perturbations around the base
flow (1) are referred to as the shearing sheet approximation
equations that can be written as follows in the inviscid limit
(e.g., see Ref. [10]),

(∂t − �x∂y)u + u·∇u = −∇p − 2�0ez × u + �uey + bez,

(∂t − �x∂y)b + u·∇b = −N2w, (2)

with the incompressibility constraint, ∇·u = 0, where u =
uex + vey + wez is the velocity perturbation, b is the buoy-
ancy scalar perturbation, and p denotes the pressure pertur-
bation divided by the reference density �0. The third term
(�uey) in the right-hand side of the first equation in system (2)
characterizes the interaction between the perturbation velocity
and the background shear. It generates the energy production
term, [�〈uv〉], in the equation for the kinetic energy Ec =
(1/2)〈u2 + v2 + w2〉, where 〈·〉 denotes an average over space.
As for the term (−N2w) in the right-hand side of the second
equation in system (2), it characterizes the interaction between
the perturbation velocity and the background buoyancy scalar.
It generates the vertical buoyancy flux [−〈wb〉] in the equation
for the potential energy Ep = (1/2)N−2〈b2〉. Because the
equation for Ec involves the term [〈wb〉], the buoyancy flux
does not contribute to net energetics, but it is responsible for
energy exchange between the kinetic and the potential forms
(e.g., see Ref. [3]).

Linear stability analysis of system (2) under plane-wave
disturbances with time-dependent wave vector k(t) = (k10 +
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k2�t,k2,k3), where k0 = (k10,k2,k3) is the initial wave vector
(at t = 0), has been addressed in several works (e.g., see
Ref. [12]). These advected plane-wave disturbances (e.g., see
Ref. [13]) are often called spatial Fourier harmonics (SFH)
[14] and sometimes Kelvin modes (e.g., from Ref. [15]). When
2�0 (2�0 − �) > 0 and N2 > 0, the solution is bounded
as Nt → ∞. In fact, under axisymmetric disturbances (i.e.,
k2 = 0, so k is time independent) the solution exhibits an
oscillatory behavior with frequency ωp such that [see also the
first equation in system (35)]

ω2
p = k2

3

k2
10 + k2

3

ω2 + k2
10

k2
10 + k2

3

N2. (3)

On other words, there are rotating-sheared-gravity waves prop-
agating in the (x1,x3) plane with frequency ωp. Under nonsym-
metric perturbations (i.e., k2 
= 0, so k is time-dependent) the
solutions of system (2) are asymptotically bounded converging
toward an oscillating wave state at frequency N (see Salhi
et al. [12]). In counterpart, the time evolution of total energy
(kinetic+potential) can exhibit important transient growth (see
Sec. IVC). This is a consequence of the non-normality of
the linear operators governing perturbation in these linear
shear flows (see, e.g., Ref. [16]). Energy transition growth
in linear shear flows has been proposed as a mechanism
that generates turbulence to support accretion process in
cold accretion disks (see, e.g., Refs. [12,17–19]). Note that
Mukhopadhyay [20] showed that three-dimensional secondary
perturbation to the primary perturbed (nonstratified) disk,
consisting of elliptical vortices, gives significantly large
hydrodynamic growth and then possible nonlinear feedback
and turbulence in accretion flows. Recently, Marcus et al.
[1], who studied the dynamics and formation of vortices in
flow (1), found that the vortices self-similarity (i.e., zombie
vortices) replicate to create lattices of turbulent vortices, which
suggests that they may have an important role in star and
planet formation. For geophysical flows, Bakas and Farrell
[3], who investigated the interaction of internal gravity waves
with (nonrotating) unbounded horizontal shear flow, found that
the two mechanisms that are, respectively, due to advection of
zonal velocity and to downgradient Reynolds stresses produce
large and robust amplification of zonal velocity and/or density
and vertical velocity, potentially leading to shear or convective
instability.

In the present paper, we show that, under axisymmetric
secondary disturbances, a parametric instability can occur in
flow (1). For instance, in the case of a stratified Keplerian
disk the parametric instability can occurs only for Ri =
N2/(q2�2

0) > 16/9. When Ri < 16/9, we briefly examine
the behavior of the spectral density of energy considering
asymmetric disturbances (k2 
= 0) in order to see whether
the primary perturbation enhances the transient growth.
The paper is organized as follows. Section II deals with the
mathematical formulation. For axisymmetric disturbances, the
stability problem, which is governed by a Floquet system,
is presented in Sec. III. Computations and some analytical
results are presented in Sec. IV. Transient growth of energy
for asymmetric disturbances is briefly addressed in Sec. IV.
Our concluding remarks are presented in Sec. V.

II. PRIMARY AND SECONDARY PERTURBATIONS

A. Primary perturbation

We consider a primary perturbation that depends only on
the radial coordinate and on the time,

u = w(x,t)ez, b = b(x,t), p = p(x,t). (4)

Substituting the above form into Eq. (2), which is reported
here for the sake of clarity,

(∂t − �x∂y)u + u·∇u = −∂xp + 2�0v,

(∂t − �x∂y)v + u·∇v = −∂yp − 2�0u + �u,

(∂t − �x∂y)w + u·∇w = −∂zp + b,

(∂t − �x∂y)b + u·∇b = −N2w,

(5)

we obtain
∂tw = b, ∂tb = −N2w,

(6)
∇p = 0, ∂2

t tw(x,t) + N2w(x,t) = 0.

An exact solution of the latter differential equations is of the
form

w(x,t) = h(x) sin(Nt), b = Nh(x) cos(Nt), p = 0,

where h(x) represents any function of the radial coordinate.
In a similar manner to the background velocity which varies
linearly with the radial coordinate, we consider a primary
perturbation for which h(x) varies linearly with the radial
coordinate:

up = w(x,t)ez = εNx sin(Nt)ez,

bp = b(w,x) = εN2x cos(Nt),
(7)

with pb = 0, where ε is a small parameter since

‖up‖
‖U‖ = Nε| sin(Nt)|

�
� Nε

�
� 1,

|bp|
|b| = N2ε| cos(Nt)|

N2
� ε � 1.

(8)

Also, the following form for which h(x) exhibits an oscillatory
behavior is an exact solution of Eq. (5)

up = w0 sin

(
εN

w0
x

)
sin(Nt)ez,

bp = w0N sin

(
εN

w0
x

)
cos(Nt),

(9)

with pb = 0, where w0 is a positive constant. The solution
(9) characterizes a standing wave that results from the
superposition of the two plane waves propagating along the
opposite (radial) directions ±ex. When

ε � w0

xN
� 1,

the solution (7) well approximates the solution (9). On other
words, the solution (7) can be seen as a local approximation
of a standing wave with frequency N and amplitude

w0 sin

(
εNx

w0

)
= w0

∞∑
n=0

(−1)n
(εNx/w0)(2n+1)

(2n + 1)!

= εNx + . . . .
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Recall that both the forms (7) and (9) are exact solutions of
the system in Eq. (6) [or Eq. (5)].

B. Secondary perturbation

In addition to the primary perturbation we consider further
perturbation (secondary one) (u′,p′,b′) such as

u = u′ + xNε sin τ ez,

p = p′,

b = b′ + xN2ε cos τ,

(10)

where τ = Nt is a dimensionless time in which N has an
arbitrary positive value. Substituting the form (10) into system
(5) and using the following developments:

(u·∇)u = (u′·∇)u′ + (xNε sin τ )∂zu′ + (Nε sin τ )u′ez,

(u·∇)b = (u′·∇)b′ + (xNε sin τ )∂zb
′ + (N2ε cos τ )u′,

(11)

we obtain

Du′

Dt
+ u′·∇u′ = −∂xp

′ + 2�0v
′,

Dv′

Dt
+ u′·∇v′ = −∂yp

′ − 2�0u
′ + �u′,

Dw′

Dt
+ u′·∇w′ = −∂zp

′ − (Nε sin τ ) u′ + b′,

Db′

Dt
+ u′·∇b′ = − (

N2ε cos τ
)
u′ − N2w′,

(12)

with the incompressibility constraint ∇·u′ = 0. Here

D

Dt
(u′,b′) = [∂t − �x∂y + (Nεx sin τ )∂z](u′,b′).

As stressed in the Introduction, the main purpose of the present
study is to perform a linear stability analysis for the base flow
(1) under primary and secondary perturbations. Therefore,
we begin by linearizing the system (12), i.e., we neglect
the nonlinear terms (u′·∇)u′ and (u′·∇)b′. Accordingly, the
resulting linearized system reads

Du′

Dt
= −∂xp

′ + 2�0v
′,

Dv′

Dt
= −∂yp

′ − 2�0u
′ + �u′,

Dw′

Dt
= −∂zp

′ − (Nε sin τ )u′ + b′,

Db′

Dt
= −(N2ε cos τ )u′ − N2w′

(13)

with the incompressibility constraint ∇·u′ = 0. The system
(13) can be seen as the linearized system for a perturbation
superimposed to the basic flow (U + up) = A·x, where

Aij = −�δi2δj1 + (Nε sin τ )δi3δj1, (14)

and (b + bp) = N2(z + xε cos τ ). Note that the case where
there is no horizontal shear (i.e., � = 0) has been addressed
by Ref. [21].

As will be shown later, the potential vorticity (PV)

� = [∇ × (U + up + u′) + 2�0]·[∇(b + bp + b′)],

which is a Lagrangian invariant for an inviscid and nondiffu-
sive fluid, is relevant for a stability analysis of system (13).
Therefore, we report here its linear part,

� ′ = (2�0 − �)∂zb
′ − Nε sin τ∂yb

′ + N2(∂xv
′ − ∂yu

′)

+N2ε cos τ (∂yw
′ − ∂zv

′). (15)

The background PV, � = N2�0(2 − q), is positive for 0 �
q < 2 and vanishes for a constant angular momentum disk,
q = 2.

C. Plane-wave disturbances

It is known that, an unbounded, uniformly rotating flow
supports a spectrum of inertial oscillations consisting of
traveling waves whose wave vectors rotate with the flow.
Viewed from the inertial frame, these modes may be written
as

(u′,N−1p′,N−1b′) = (û,p̂,b̂) exp[ik(t) · x]. (16)

a form of sufficient generality to describe oscillations upon any
flow with spatially uniform strain rates (e.g., see Refs. [13,22–
26]). These advected plane-wave disturbances (e.g., see
Ref. [13]) are often called spatial Fourier harmonics (SFH)
[14], as indicated in the Introduction. Substituting the form
(16) into (13), we have

˙̂u + i[(k̇ + N−1AT ·k)·x]û = −ip̂k − 2�∗
0ez × û + b̂ez

+(q�∗
0ey − ε sin τ ez)û

˙̂b + i[(k̇ + N−1AT ·k)·x]b̂ = −(ε cos τ )û − ŵ, (17)

where u̇ = du/dτ is the derivative with respect to the
dimensionless time τ = Nt, the exponent T denotes the
transpose, and �∗

0 = �0/N. The term proportional to x must
vanish since the above equations must be valid for any ‖x‖.
This is ensured when (see, e.g., Ref. [13])

k̇ = −N−1AT ·k. (18)

Using the form of Aij given by Eq. (14), we obtain

k1(τ ) = k10 + q�∗
0k2τ − εk3(1 − cos τ ),

k2 = k2,

k3 = k3,

(19)

where k0 = (k10,k2,k3) is the initial wave vector (at t =
0). Only the radial component of the wave vector is time
dependent, while the vertical and azimuthal components, k2

and k3, remain unaffected by shear. Hereafter, we denote by
k⊥ =

√
k2

2 + k2
3 , which is time independent, and by k = ‖k‖

the modulus of the wave vector k where

k̇ = k−1k1k̇1 = q�∗
0k

−1k1k2 − εk−1k1k3 sin τ. (20)

By using both the incompressibility constraint, k·û = 0, and
Eq. (18), we derive from the first equation in system (17) the
expression of the pressure mode p̂,

−ik2p̂ = [2(1 − q)�∗
0k2 + 2(ε sin τ )k3]û − 2�∗

0k1v̂ − k3b̂.

(21)
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Substituting the latter relation into system (17), we obtain

˙̂u =
[

2 (1 − q) �∗
0
k1k2

k2
+ (2ε sin τ )

k1k3

k2

]
û

+2�∗
0

(
1 − k2

1

k2

)
v̂ − k1k3

k2
b̂,

˙̂v =
{
�∗

0

[
(q − 2) + 2 (1 − q)

k2
2

k2

]
+ (2ε sin τ )

k2k3

k2

}
û

−2�∗
0
k1k2

k2
v̂ − k2k3

k2
b̂,

˙̂w =
[

(2 − q) �∗
0
k2k3

k2
+ (ε sin τ )

(
2
k2

3

k2
− 1

)]
û

−2�∗
0
k1k3

k2
v̂ +

(
1 − k2

3

k2

)
b̂

˙̂b = − (ε cos τ ) û − ŵ, (22)

while the spectral counterpart of the linear part of PV given by
Eq. (15) takes the form

π̂ = −i�̂/N2 = [�∗
0(2 − q)k3 − k2ε sin τ ]b̂ − k2û

+ (k10 − εk3 + q�∗
0k2τ )v̂ + (k2ε cos τ )ŵ. (23)

Recall that PV is a Lagrangian invariant for an inviscid and
nondiffusive fluid, i.e., π̂ = const.

III. FLOQUET SYSTEM FOR AXISYMMETRIC
DISTURBANCES

In this section, we consider axisymmetric disturbances,
i.e., those corresponding to a zero value for the azimuthal
wave number. In that case, the system (22) reduces to a
Floquet system. We will show that the stability of that Floquet
system is governed by the behavior of the trace of the Floquet
fundamental matrix solution g.

For axisymmetric disturbances (i.e., k2 = 0), the wave
vector becomes time periodic,

k1(τ ) = k10 − εk3 (1 − cos τ ) , k2 = 0, k3 = k3,

with period 2π. In the following, we consider that k3 
= 0 since,
at k2 = k3 = 0, the system (17) yields

û = 0, v̂ = v̂0, ˙̂w = b̂, ¨̂b + b̂ = 0,

indicating stability (i.e., the solution is bounded as τ → ∞).
Therefore, at k2 = 0 and k3 
= 0, the system (17) reduces to

˙̂u = 2 (ε sin τ )
k1k3

k2
û + 2�∗

0
k2

3

k2
v̂ − k1k3

k2
b̂,

˙̂v = (q − 2) �∗
0û,

˙̂b = (k10 − εk3)

k3
û,

(24)

with ŵ = −(k1/k3)û. Moreover, because the potential vortic-
ity counterpart π̂ is time independent, it is more convenient
for the stability analysis to consider the differential system for

the following three variables:

ĉ1 = 1

k0
π̂ = (2 − q) �∗

0
k3

k0
b̂ + (k10 − εk3)

k0
v̂,

ĉ2 = k2

k2
0

(k10 − εk3)

k0
û, ĉ3 = b̂,

(25)

instead of the differential system for (û,v̂,b̂), where k0 =√
k2

10 + k2
3 . Therefore, the Floquet system for ĉ = (ĉ1,ĉ2,ĉ3)

is equivalent to the following vector equation:

˙̂c = D·ĉ, (26)

where the nonzero elements of the matrix D are

D21 = 2�∗
0
k2

3

k2
0

,

D23 = −ω∗2 k3
3

k3
0

− (k10 − εk3) k1k3

k3
0

,

D32 = k3
0

k3k2
,

(27)

in which ω∗ = ω/N. Though not always analytically solvable,
the temporal behavior of ĉ may be characterized by using the
standard Floquet theory since the matrix D(τ ) is time periodic
with period 2π. The general solution is a linear combination of
three modes exp(σiτ )fi(τ ) (i = 1,2,3), where fi(τ ) is periodic
with period 2π (see, e.g., Refs. [22,27]). The Floquet exponent
σi is determined by the requirement that exp(2πσi) is an
eigenvalue (or the Floquet multiplier) of the Floquet matrix
g(2π ), where g(τ ) is the fundamental matrix solution of system
(26), i.e.,

ġ = D·g (28)

with gij (0) = δij . Its eigenvalues, say, λ1, λ2, and λ3, are the
roots of the algebraic equation

−λ3 + (tr g) λ2 − IIgλ + (det g) = 0, (29)

where the invariants (tr g) = gjj and (det g) are, respectively,
the trace and the determinant of the matrix g, and

IIg = g11g22 + g11g33 + g22g33 − g12g21 − g13g31 − g23g32.

Because (tr D) = 0, the determinant of g is unity, (det g) = 1.

This property provides a ready check on the accuracy of the
numerical procedure used to calculate g (see Sec. IIIB). In
addition, the fact that the potential vorticity counterpart is a
constant, i.e., ˙̂c1 = 0, implies that

g11 = 1, g12 = g13 = 0,

and, hence,

det g = g22g33 − g23g32 = 1,

IIg = (1 + g22 + g33) + (g22g33 − g23g32 − 1) = tr g.

(30)

Accordingly, one easily deduces from (29) that one eigenvalue
is unity, say, λ1 = 1, and

λ2 = 1

2
[(tr g − 1) +

√
(tr g − 1)2 − 4], λ3 = 1

λ2
. (31)
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There is instability whenever

Reσi > 0, σi = 1

2π
log λi

with i = 2 or i = 3.

In the light of the latter analysis, we may conclude that one
can only consider the reduced Floquet system for the elements
g22, g23, g32, and g33, i.e.,

ġ2i = D23g3i , ġ3i = D32g2i (32)

(i = 2,3), for which there is instability whenever |g22 + g33| >

2. Moreover, an alternative formulation of system (32) as a
single second-order equation yields

d

dτ

(
D−1

32

dg3i

dτ

)
= D23g3i ,

or, equivalently,

d2

dτ 2

(
k

k0
g3i

)
+

[
ω2

N2

k2
3

k2
+ k2

1

k2
− ε2 k4

3

k4
sin2 τ

] (
k

k0
g3i

)
= 0.

(33)
Since the coefficients are periodic in τ, this has the form of
a Hill’s equation (see Ref. [28]). As will be shown in the
next section, at sufficiently small ε, some analytical results
can be found by applying perturbation techniques to the Hill’s
equation (33).

IV. RESULTS AND DISCUSSION

Computations were used to determine the time evolution
of (tr g) at τ = 2π. A fourth-order Runge-Kutta scheme with
time step δτ = 10−4π has been used to perform the numerical
integration of the system (32) for q = �/�0 = 2 (a constant
angular-momentum disk) and q = 3/2 (a Keplerian disk) and
several values of the Richardson number, Ri = N2/(q2�2

0).
Because, at sufficiently small ε, there is an expected agreement
between the numerical results and analytical results obtained
by applying perturbation techniques (see [29]) to the Hill’s
equation (33), we first present these analytical results.

A. Some analytical results

1. The resonant points of the ε = 0 axis

We seek an expansion for the solution �(τ ) = (k/k0)g3i of
(33) and also for the coefficients that depend on ε in power
series of ε in the form

k2
1(τ ) = k2

0

[
k2

10

k2
0

− 2ε
k10k3

k2
0

(1 − cos τ ) + . . .

]
,

k−2(τ ) = k−2
0

[
1 + 2ε

k10k3

k2
0

(1 − cos τ ) + . . .

]
,

�(τ ) = k(τ )

k0
g3i(τ ) = �0(τ ) + ε�1(τ ) + . . . .

(34)

In the following, we limit ourselves to O(ε). Accordingly,
substituting (34) into (33) and equating coefficients of equal

powers of ε, we have
d2�0

dτ ∗2
+ 4ω∗2

p �0 = 0,

d2�1

dτ ∗2
+ 4ω∗2

p �1 = −2β0(cos(2τ ∗) − 1)�0,

(35)

where τ ∗ = τ/2,

β0 = 4
k10k

3
3

k4
0

(1 − ω∗2), (36)

ω∗
p = ωp/N and ω∗ = ω/N. Recall that ω2

p = (ω2k2
3 +

N2k2
10)/k2

0 is the frequency of the rotating-sheared-gravity
waves propagating in the (x1,x3) plane (see Sec. I), and ω

is the epicyclic frequency. The solution of the first equation
in (35) is of the form �0(τ ∗) = a0 cos(2ω∗

pτ ∗ + φ0), where a0

and φ0 are constants. Disregarding the homogeneous solution
of the second equation in (35), the solution �1(τ ∗) is found as

�1 = a0β0

4

cos[2(ω∗
p + 1)τ ∗ + φ0]

(1 + 2ω∗
p)

+a0β0

4

cos[2(ω∗
p − 1)τ ∗ + φ0]

(1 − 2ω∗
p)

. (37)

Due to the presence of small divisor terms, the above expansion
breaks down when

ω∗
p |ε=0

=
[
ω∗2 k2

3

k2
0

+ k2
10

k2
0

] 1
2

= ±1

2
, (38)

and, hence,

μ|ε=0 = cos α = k10

k0
= ±1

2

[
q2Ri + 8q − 16

q2Ri + 2q − 4

] 1
2

, (39)

where 0 � α � π since Eq. (33) is invariant under the
interchange α → α + π. In the (ε,α = cos−1 μ) plane, the
points of the ε = 0 axis from which emanate the unstable
regions, if reachable, are characterized by Eq. (39).

2. The curves separating the stable and unstable regions

To characterize the transition curves between stable and
unstable regions we expand 4ω∗2

p around unity in powers of
ε (called the method of strained parameters, see Eq. [29]) in
addition to the expansions given by Eq. (34),

4ω∗2
p = 1 + εδ1 + . . . . (40)

Substituting Eqs. (34) and (40) into the Eq. (33) gives

d2�0

dτ ∗2
+ �0 = 0,

d2�1

dτ ∗2
+ �1 = −δ1�0 − 2β0[cos(2τ ∗) − 1]�0. (41)

The general solution of the first equation in (41) is

�0 = a1 cos τ ∗ + a2 sin τ ∗, (42)

where a1 and a2 are constants. Substituting the latter solution
into the second equation in (41), we obtain

d2�1

dτ ∗2
+ �1 = a1 (β0 − δ1) cos τ ∗ + a2 (3β0 − δ1) sin τ ∗

−β0[a1 cos(3τ ∗) + a2 sin(3τ ∗)]. (43)
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Eliminating the terms that produce secular terms in �1

demands that δ1 = β0 and a2 = 0 or δ1 = 3β0 and a1 = 0. It
follows that the equations characterizing the transition curves
are of the form

4ω∗2
p = 1 + εβ0 or 4ω∗2

p = 1 + 3εβ0. (44)

Therefore, in the (ε,α = cos−1 μ) plane, the transition curves
atO(ε) are characterized by the following algebraic equations:

4μ2 − 4εμ(1 − μ2)
3
2 −

[
q2Ri + 8q − 16

q2Ri + 2q − 4

]
= 0,

4μ2 − 12εμ(1 − μ2)
3
2 −

[
q2Ri + 8q − 16

q2Ri + 2q − 4

]
= 0,

(45)

for sufficiently small ε. For a given value of the triplet (q,Ri,ε)
we resolve the algebraic equation (45) by using the Newton’s
method and determine the μ value.

3. The maximal growth rate of the instability

To determine the maximal growth rate of the instabilities
we use the normal or Floquet forms of the solutions (i.e., the
Whittaker’s method, see Ref. [29]), and put

�(τ ∗) = exp(γ τ ∗)f (τ ∗), (46)

where f (τ ∗ + π ) = f (τ ∗) according to Floquet theory, as
indicated at the beginning of Sec. IIIA. Recall that τ ∗ = τ/2.

Near the transition curves the exponent γ is small, and, hence,
we seek an expansion in the form

f (τ ∗,ε) = f0(τ ∗) + εf1(τ ∗) + . . .

4ω∗2
p = 1 + εδ1 + . . .

γ = εγ1 + . . . ,

(47)

in addition to the two first expansions in Eq. (34). Substituting
the form (47) and the two first equations in (34) into the Hill’s
equation (33), we obtain

d2f0

dτ ∗2
+ f0 = 0,

d2f1

dτ ∗2
+ f1 = −2γ1

df0

dτ ∗ − δ1f0 − 2β0(cos(2τ ∗) − 1)f0.

(48)

Substituting the solution f0 = a1 cos τ ∗ + a2 sin τ ∗ into the
second equation in (48) gives

d2f1

dτ ∗2
+ f1 = [2γ1a1 + (3β0 − δ1) a2] sin τ ∗

+ [(β0 − δ1) a1 − 2γ1a2] cos τ ∗

−β0[a1 cos(3τ ∗) + a2 sin(3τ ∗)]. (49)

Eliminating the terms that produce secular terms in f1, we
have

2γ1a1 + (3β0 − δ1) a2 = 0

(β0 − δ1) a1 − 2γ1a2 = 0.
(50)

A nontrivial solution of (50) requires that

4γ 2
1 − (3β0 − δ1) (δ1 − β0) = 0. (51)

From the latter relation, it is clear that γ1 vanishes when δ1 =
β0 or δ1 = 3β0. Moreover, by setting δ1 = aβ0, one easily
verifies that γ1(a) is maximal at a = 2, so δ1 = 2β0, and,
hence, γm ≡ εγ1|a=2

= εβ0/2, or, equivalently, in the original
variable (τ = 2τ ∗),

σm = 1

2
γm = 3

√
3

16

[
1 − 8(2−q)

q2Ri

] 1
2

[
1 − 2(2−q)

q2Ri

] ε (52)

for sufficiently small ε. It should be noted that Whitaker’s
method, which yields a uniform approximation in the solutions
of Eq. (33) on and near the transition curves, is valid only
for linear problems as the one addressed here. For nonlinear
problems, this method does not apply and the method of
multiple scales can rather be used to treat such problems (e.g.,
see Refs. [27,29]).

B. Comparison with numerical results

Numerical results for a constant angular momentum disk,
q = 2, are shown in Figs. 1(a)–1(d) obtained at Ri = 0.5. In
Figs. 1(a) and 1(b) the horizontal axis is ε and the vertical
one is α/π such that 0 � α � π since Eq. (33) is invariant
under the interchange α → α + π, as indicated previously.
The plotted curves show two regions of instability that emanate
from the points (ε = 0,α = π/3) and (ε = 0,α = 2π/3),
respectively, in agreement with Eq. (39), which yields, at
q = 2,α = cos−1 (±0.5) , independently of the Ri value. The
width of these two unstable regions is not the same: The width
of the second region of instability (for which k10k3 < 0 or
π/2 < α < π ) is larger than the one of the first region of
instability (for which k1k3 > 0 or 0 < α < π/2). Also, the
results yielded by Eq. (45) show that the width of the unstable
region for which π/2 < α < π is larger than the width of
the unstable region for which 0 < α < π/2, as illustrated in
Fig. 1(d). As can be expected from Fig. 1(b), when ε < 0.2, the
agreement is good between the numerical results and Eq. (45)
that characterizes the (neutral) curves separating the stable and
unstable regions, but this deteriorates as ε(� 0.2) increases.

Figure 1(c) describes how the maximum growth rate varies
with ε within the tongue. As can be seen, both the two regions
of instability have the same maximum growth rate. The limit
ε → 0, corresponds to the scaled growth rate σm/ε ≈ 0.3247.

The latter numerical results is in agreement with the analytical
one given by Eq. (52), [σm/ε]q=2 = 3

√
3/16 ≈ 0.3247. Note

that, in Fig. 1(a), the dashed lines indicate the inclination a of
largest growth rate at a given ε.

Accordingly, we may conclude that for both the constant
angular momentum accretion flow (i.e., q = 2) the primary
perturbation generates a parametric instability for which the
maximal growth rate does not depend on Ri.

Similar results were found for 0 < q < 2 except the fact
that instability is not attainable for any positive value of the
Richardson number. In fact, according to both computations
and the analytical results [see Eq. (39)], there is no instability
emanating from the ε = 0 axis when Ri � 8(2 − q)/q2. For a
Keplerian disk, q = 1.5, the parametric instability emanating
from the ε = 0 axis is then attainable only when Ri > 16/9 ≈
1.778. Figures 2(a) and 2(b) show the parametric tongues
of instability emerging from the axis ε = 0 for (q = 1.5,

043006-6



INSTABILITY IN STRATIFIED ACCRETION FLOWS . . . PHYSICAL REVIEW E 91, 043006 (2015)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4

α/
π

ε

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4

α/
π

ε

 0.318

 0.320

 0.322

 0.324

 0.326

 0  0.1  0.2  0.3  0.4

σ m
/ ε

ε

 0

 0.04

 0.08

 0.12

 0.16

 0  0.05  0.1  0.15  0.2  0.25  0.3

w
id

th

ε

I.T.E. from (ε=0, α=π/3)
I.T.E. from (ε=0, α=2π/3)

FIG. 1. (Color online) A stratified constant angular momentum disk, q = 2, under primary and secondary axisymmetric perturbations. Top
left panel: The Floquet tongues of instability as a function of the parameter ε (numerical results). Within the subharmonic tongue emanating
from α = cos−1(±0.5), the dashed lines indicate the inclination a of largest growth rate (plotted in the bottom left panel) at a given ε. Top right
panel: Comparison between computations and analytical results [see Eqs. (39) and (45)]. Bottom left panel: A plot of the maximum scaled
growth rate against the parameter ε (numerical results). The intercept is 3

√
3/16, in agreement with the analytical result [see Eq. (52)]. Bottom

right panel: Width of the instability tongues emanating (I.T.E.) from α = cos−1(±0.5) as a function of the parameter ε [analytical results from
Eq. (45)].

Ri = 2.0) and (q = 1.5,Ri = 3.0), respectively. The agree-
ment between the analytical results given by Eq. (45) and the
numerical ones is good for ε < 0.2, but this deteriorates as
ε(� 0.2) [see Fig. 2(d)]. At (q = 1.5,Ri = 2.0), the unstable
regions emanate from α = cos−1[±1/(2

√
7)] ≈ 0.43948 or

0.5605, while at (q = 1.5,Ri = 3.0), they emanate from
α = cos−1[±√

11/(2
√

23)] ≈ 0.3876 or 0.6124, in agreement
with the analytical results yielded by Eq. (39). The variation of
the maximum growth rate σm/ε against ε for q = 1.5 and Ri =
2.5, 3.0, 10.0 is shown in Fig. 2(c). At ε = 0, the values of
σm/ε yielded by computations corresponding to Ri = 2.5, 3.0,
and 10.0, are 3

√
1755/592 ≈ 0.2122,3

√
891/368 ≈ 0.2433,

and 9
√

555/688 ≈ 0.3081, respectively, in agreement with
Eq. (52).

C. Transient growth of energy for asymmetric disturbances

For asymmetric disturbances, i.e., k2 
= 0, the wave vector
is not periodic and the stability problem requires us to
determine the behavior of the solution of system (22) as
τ → ∞. This will be treated in a subsequent paper. In this
section, we simply determine numerically the spectral density
of energy in the case of a Keplerian disk and we analyze its
behavior for particular orientations of the initial wave vector
and 0 < Ri < 16/9, in connection to the results found in the
case where ε = 0 addressed in the study by Ref. [12].

For the determination of the spectral density of energy, it is
more convenient to consider the following modes:

u(1) = k3

k⊥
v̂ − k2

k⊥
ŵ, u(2) = − k

k⊥
û, u(3) = b̂, (53)

since the spectral density of kinetic energy Ec can simply
expressed as

Ec = 1
2 (〈|u(1)|2〉 + 〈|u(2)|2〉), Ep = 1

2 〈|u(3)|2〉,
while Ep represents the spectral density of potential energy.
Therefore, the differential system for these modes, which is
equivalent to system (22), takes the form (see the appendix),

d

dτ
u(1) =

[
�∗

0 (2 − q)
k3

k
− (ε sin τ )

k2

k

]
u(2) − k2

k⊥
u(3)

d

dτ
(ku(2)) = −2�∗

0k3u
(1) + k1k3k

−1
⊥ u(3)

d

dτ
u(3) = k2

k⊥
u(1) −

(
k1k3

k⊥k
− k⊥

k
ε cos τ

)
u(2). (54)

Let G be the fundamental matrix solution of system
(54), i.e., u(i)(τ ) = Giju

(j )(0) (i,j = 1,2,3). It is governed
by the same equation as (u(1),u(2),u(3)) is but with universal
initial condition Gij (0) = δij (i,j = 1,2,3). The fourth-order
Runge-Kutta method with the step size δτ = 10−4 were used
to integrate that system to determine the time evolution of Gij
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FIG. 2. (Color online) A stratified Keplerian disk, q = 1.5, under primary and secondary axisymmetric perturbations. Top panels: The
Floquet tongues of instability as a function of the parameter ε (numerical results) for Ri = 2.0 (left panel) and Ri = 3.0 (right panel). Within
the subharmonic tongue emanating from α = cos−1[±0.5

√
(9Ri − 16)/(9Ri − 4)], the dashed lines indicate the inclination a of largest growth

rate (plotted in the bottom left panel) at a given ε. Bottom left panel: A plot of the maximum scaled growth rate against the parameter ε

(numerical results) for Ri = 2.5, 3.0, 10.0. The intercept is (3
√

3/16)
√

1 − 16/(9Ri)/ [(1 − 4/(9Ri)] , in agreement with the analytical result
[see Eq. (52)]. Bottom right panel: Comparison between computations and analytical results for Ri = 3.0 [see Eqs. (39) and (45)].

for given ε, q, Ri, and k(0)/k(0). Accuracy was easily assessed
by evaluating the determinant of G, det G = k(0)/k(τ ).

Computations indicate that the elements Gij exhibit an os-
cillatory behavior with period that is insensitive to the variation
of ε, whereas the amplitude can be affected by the primary
perturbation (ε 
= 0). This is illustrated by Fig. 1(a), which
displays the time history of the element G11 for q = 1.5, Ri =
0.5, k10/k2 = 100, k3/k10 = 0.5, and ε = 0.0, 0.1, 0.2. For
the given ε and after the initial phase characterized by 0 � τ <

τ0 such that k1(τ0) = 0, the amplitude of oscillations becomes
more important. During the initial phase, the variation of ε

does not induce appreciable variations of the amplitude and
the period of the oscillations, whereas after the initial phase,
only the amplitude increases with an increasing of ε.

As indicated in Sec. I, although the base flow (1) is
stable (i.e., there are no exponentially growing solutions, see
Ref. [12]), it can exhibit significant transient growth in energy
because of the nonnormality of perturbation dynamics due to
shear. In the bypass transition to turbulence, which has been de-
veloped by the hydrodynamic community for spectrally stable
shear flows, perturbations undergo a transient growth. If they
have an initially finite amplitude, they may reach an amplitude
that is sufficiently large to allow positive feedback through
nonlinear interactions that repopulate the growing disturbances
(e.g., see Ref. [16]. This mechanism could plausibly sustain
turbulence for large-enough Reynolds numbers. This concept

was adopted for unmagnetized stratified accretion disks, since
there is irrefutable observational evidence that Keplerian disks
have to be turbulent (e.g., see Ref. [19]).

For initial isotropic conditions with vanishing initial poten-
tial energy,

Ec(0) = 〈∣∣u(1)
0

∣∣2〉 = 〈∣∣u(2)
0

∣∣2〉
,

(55)
Ep(0) = 1

2

〈∣∣u(3)
0

∣∣2〉 = 0,

we have computed the time evolution of the spectral density
of total energy, E = Ec + Ep, normalized by its initial value,

γE = E(τ )

E(0)
=

3∑
i=1

2∑
j=1

|Gij |2. (56)

Under the same conditions as in Fig. 1(a), Fig. 1(b) shows
the time history γE. As can be expected, there is an important
increase of γE during the initial phase. This phase can be
called the transient growth phase. The physical mechanism of
this growth is rather due to the background shear (e.g., see
Ref. [30]). After this initial phase, γE approaches its long-time
limit, which corresponds to an important level of energy. The
primary perturbation acts to increase the level of energy as
shown by Fig. 1(b) since, after the transient growth phase, γE

increases as ε increases.
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FIG. 3. (Color online) A stratified Keplerian disk, q = 1.5, under primary and secondary asymmetric perturbations, k10/k2 = 100,k3/k2 =
0.5. Left panel: Time evolution of the element G11 of the fundamental matrix solution of system (54) for Ri = 0.5 and ε = 0.0, 0.1, 0.2. Right
panel: Time evolution of the spectral density of total (kinetic+potential) energy normalized by its initial value under initial isotropic conditions
with vanishing initial potential energy for Ri = 0.5 and ε = 0.0, 0.1, 0.2.

A detailed analysis of the transient amplification of non-
symmetric perturbations for Ri > 16/9 will be examined
further in a subsequent paper to characterize the dynamic
of the wave-vortex mode coupling and to see whether the
transient growth rate of energy prevails over twice the maximal
growth rate of the parametric instability (if attainable). In
fact, for baroclinic sheared flows, it is found that asymmet-
ric perturbations undergo substantial transient amplification
much larger than the growth of symmetric instability (see
Refs. [31,32]).

V. CONCLUDING REMARKS

In the present study, we have performed a linear stability
analysis of horizontal linear shear under vertical uniform
rotation and vertical stratification with a constant strength
N2 in unbounded domain [see Eq. (1)]. The dynamic of a
perturbation around this basic state is governed by Eq. (2).
That equation is the same as the one derived in the background
of the shearing sheet approximation characterizing locally the
flow dynamic in astrophysical accretion disks. Recall that
the essence of this approximation is local in approach, that is,
the equations are valid in a small region (a Cartesian box) about
a typical point in the disk [9]. Both primary and secondary
perturbations to the base flow described by Eq. (1) were
considered. A primary perturbation consisting of a standing
wave, with amplitude w0 sin(εNx/w0), that results from a
superposition of plane waves with frequency N propagating
in the opposite radial directions, is an exact solution of Eq. (2).
In accordance with the shearing sheet approximation, locally,
the amplitude can be approximated by a linear variation with
respect to the radial coordinate provided ε � w0/(xN ) � 1.

This leads to the form (7), which is also an exact solution
of equation of system (2). In the present study, the form (7)
has been considered as a primary perturbation. A plane wave
with an advected wave vector is considered for the secondary
perturbation.

With the help of the potential vorticity, which is a constant
of motion for an inviscid and nondiffusive fluid, it has
been shown that the stability problem for the axisymmetric
secondary disturbances reduces to a two-dimensional Floquet

system [see Eq. (32)] or, equivalently, to a Hill’s equation
[see Eq. (33)]. For sufficiently small ε, we have applied
a perturbation technique to the Hill’s equation and derived
some analytical results: The points lying on the ε = 0 axis
from which emanate the instability regions [see Eq. (39)],
the equations characterizing the curves separating stable and
unstable regions [see Eq. (45)], and the maximal growth rate
of the instability in the limit ε → 0 [see Eq. (52)]. For two
accretion flows, a constant angular momentum disk, q = 2,

and a Keplerian disk, q = 1.5, the analytical results have
been compared to computations. At ε < 0.2, the analytical
results are in good agreement with the numerical ones but this
deteriorates when ε � 0.2. It is found that the apparition of the
parametric instability in a Keplerian disk requires a nonweak
stratification [Ri = N2/(q2�2

0) > 16/9], such that the disk
may not support it. In the case of a constant angular-momentum
disk, the parametric instability occurs even for very weak
stratification.

In the case of asymmetric disturbances (k2 
= 0), we have
determined numerically the time evolution of the spectral
density of energy, normalized by its initial value, for some
particular values of the initial wave vector. With respect to the
case where ε = 0, which is linearly stable (i.e., the solution
is bounded as τ → ∞) as proved in the study by Ref. [12],
it is found that, during the initial phase 0 � τ < τ0 such that
k1(τ0) = 0, the primary perturbation has no appreciable effect
on the transient growth. After this initial period during which
there is a gain of energy induced by the interaction between the
perturbed field and the background shear, the important level of
energy maintained beyond this phase for large times becomes
more important in the presence of the primary perturbation [see
Fig. 3(b)]. The stability of the base flow (1) under primary and
asymmetric secondary perturbations, as well as the dynamic
of the wave-vortex mode coupling in that flow, will be treated
in detail in a subsequent paper.

ACKNOWLEDGMENTS

A. Salhi acknowledges the hospitality at the Laboratory
PIIM, UMR 7345 CNRS (Aix-Marseille University) and at
the Loboratory LUTH, UMR 8102 CNRS (Observatoire Paris-
Meudon).

043006-9



S. NASRAOUI, A. SALHI, AND T. LEHNER PHYSICAL REVIEW E 91, 043006 (2015)

APPENDIX

Derivation of the differential system for the modes (u(1),u(2),u(3))

Due to Eq. (18), the system (17) reduces to

˙̂u = −ik1p̂ + 2�∗
0v̂,

˙̂v = −ik2p̂ − �∗
0(2 − q)û,

˙̂w = −ik3p̂ − (ε sin τ ) û + b̂,

˙̂b = − (ε cos τ ) û − ŵ,

(A1)

with the incompressibility constraint k·û = 0. We multiply
the second equation with k3 and the third equation with (−k2).
Then we add the resulting equations to obtain

k3v̂ − k2ŵ = −[�∗
0(2 − q)k3 − (ε sin τ )k2]û − k2b̂. (A2)

On the other hand, we multiply the second equation in system
(A1) by k2 and the third equation by k3. Then we add the
resulting equations and obtain

− ik2
⊥p̂ = − d

dτ
(k1û) + [(2 − q) �∗

0k2 + (ε sin τ ) k3]û − k3b̂

= −k1 ˙̂u − 2(k̇1 − �∗
0k2)û − k3b̂. (A3)

Recall that kk̇ = k1k̇1, where k̇1 = q�∗
0k2 − (ε sin τ )k3, and

k⊥ =
√

k2
2 + k2

3 , which is time independent.
Substituting Eq. (A3) into the first equation in system (A1),

we obtain

d

dτ
(k2û) = 2�∗

0k1k2û + 2�∗
0k

2
⊥v̂ − k1k3b̂. (A4)

By introducing the three modes (u(1),u(2),u(3)) such that

u(1) = k3

k⊥
v̂ − k2

k⊥
ŵ, u(2) = − k

k⊥
û (A5)

and u(3) = b̂ or, equivalently,

v̂ = k3

k⊥
u(1) + k1k2

k⊥k
u(2), ŵ = − k2

k⊥
u(1) + k1k3

k⊥k
u(2) (A6)

with û = (−k⊥/k)u(2) and b̂ = u(3), we transform Eqs. (A2)
and (A4) and the fourth equation in system (A1) in terms of
the three modes (u(1),u(2),u(3)), and, hence, we recover system
(54).
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