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Algebraic instability in shallow water flows with horizontally nonuniform density
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The regimes and mechanisms of the Rayleigh-Taylor instability have been studied in the scope of
the nonhydrostatic shallow water model with horizontally nonuniform density. As analysis shows, the
nonhydrostaticity has a crucial influence on the instability. It is for this reason that at the final stage a collapse
tendency predicted on the base of the hydrostatic scenario slows down and turns into the regime of algebraic
instability. The numerical testing has shown that in spite of its simplicity, the model is quite able to describe
realistically a number of effects. For example, the model captures the shallowing effect, which manifests itself
as profile concavities on either side of the jet coming out of the boundary layer.
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I. INTRODUCTION

The main aim of this work is to discard the hydrostatic
approximation in the shallow water (SW) model with horizon-
tally nonuniform density and to revise scenarios describing the
final stage of the Rayleigh-Taylor instability in this model.

The classic Rayleigh-Taylor instability occurs when a fluid
with lower density accelerates a fluid of higher density, or
when a higher density fluid is positioned above a fluid with
lower density in a gravitational field or in an accelerating frame
of reference. It is a dynamic process where the two fluids
seek to reduce their combined potential energy. An initial
perturbation (of small magnitude) of the interface between
fluids starts in the exponential regime (described by linear
differential equations for interface deformation), proceeds to
the nonlinear regime, and finally enters a turbulent regime
where multiple space scales emerge. Understanding of the
dynamics of this process is crucial to the understanding of
many phenomena of combustion processes in astrophysical
and geophysical environments, the inertial (laser) fusion,
accelerating medium of variable density, two-phase flows, and
many other phenomena.

Extensive literature on the Rayleigh-Taylor instability ex-
ists (see for example Refs. [1–7] and references therein). In the
main, it consists of numerous numerical investigations. In this
context, the important question appears about a classification
of parameters for possible regimes of evolution, which is not
taken into consideration in some works.

One should distinguish between two limit cases based on
the ratio of thickness h of the active fluid layer (significantly
smaller than vertical size of the container) and the characteris-
tic space scale of initial horizontal deformation of the interface
k−1 (of order the horizontal size of the container): deep kh � 1
and shallow kh � 1 fluids.

In the case of kh � 1, a small initial single-mode (sinu-
soidal) deformation of deep fluid interface δh(x,0) ∼ sin kx

with kh(x,0) � 1 initially grows as δh(x,t) � δh(x,0) exp �t

with the growth rate (for a single-mode k) � = √
Agk (when

one neglects surface tension). Here, g is the gravity or
inertial acceleration directed from the h fluid to l fluid,
dimensionless parameter A = (ρh − ρl)/(ρh + ρl) > 0 is the
Atwood number, ρh and ρl are densities of heavier and lighter
fluids, respectively, and δh(x,0) is the initial magnitude of

single-mode perturbation. When the initial deformation of the
interface is not single mode, in the regime with exponential
growth each perturbation mode develops independently and is
described by linear instability theory [8]. As the deformation of
the interface becomes large, kδh(x,t) � 1, the fluid interface is
transformed prior to transitioning to the turbulent regime of the
interface motion into spikes (where the heavier fluid penetrates
the lighter fluid) and bubbles (where the lighter fluid rises into
the heavier fluid).

In this work we focus attention on the other limit case, the
so-called shallow-water-like approximation (SWL) with kh �
1. The SWL approximation arises in many physical situations
when the characteristic horizontal scale perpendicular to the
imposed external (for example, gravity) acceleration g is
much larger than the vertical dimension of the flow, or when
the collinear to g component of fluid velocity is strongly
suppressed for some reason. In this case, the fluid dynamic
description can be drastically simplified, permitting the use of
simplified models.

In theoretical investigations, the simplest, so-called hydro-
static, approximation is frequently used when the vertical
component of velocity in active layer is suppressed or is
neglected, w = 0, and the horizontal one is independent on
vertical coordinate z.

According to recent studies [9–11], the Rayleigh-Taylor
instability in the hydrostatic approximation has a blow-up
behavior, which leads to the formation of singularities during
a finite time, or, in other words, to the collapse. The situation
becomes more complicated when the hydrostatic balance is
violated to the point that proper corrections must be made
to take into account nonlinear dispersion whose mechanism
begins to come into play.

In SW models with free boundaries, this problem is
solved by using the so-called Green-Naghdi correction [12–
16]. In the case of potential flows, the same task can be
solved in the framework of the Hamiltonian approach, for
which the nonlinear dispersion, following from the effect of
nonhydrostaticity, can be obtained in any order of perturbation
theory [17–22].

As far as we know, for the SW models with large-scale
horizontally nonuniform density, similar studies have not been
conducted. Although quite apparently the flow behavior in
final stages of the instability is a highly topical problem. Its
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study provides a way for an understanding of the different
important processes, for example, the vertical mixing in many
physical applications, including nuclear physics, astrophysics,
atmospheric and ocean sciences.

To understand some features of the Rayleigh-Taylor in-
stability, we consider the simplest statement—unbounded
incompressible fluid with a density jump, characterized by
the Atwood’s number A. Suppose that the main dimensional
parameters of the problem are: gravity acceleration g; the
magnitude (peak) of interface deformation h; its initial value
h0; the current time t ; and the characteristic interval of possible
singularity formation t0 (see below, in the main text). Thus,
h = h(t,g,t0,h0,A).

On the dimensional analysis grounds, only the three-
argument functional dependence h = h0F (gt2/h0,t0/t,A) is
admitted. At large time t � t0, the second argument tends
to zero. In this case, the system must forget its initial state
and dependence on h0 must disappear. This is possible only
if the function F is linear in the first argument. Thus, these
qualitative arguments lead us to the relation h ∼ gt2f (A).
Such instability in physics is called algebraic [23] unlike
collapse, which develops within a finite time t0 according to
the law h ∼ (t0 − t)α , α < 0.

However, the scale invariance does not explain everything.
For example, from this point of view one cannot account
for why bubbles forming between jets move with constant
velocity. The number of open questions becomes considerably
larger if we consider more general models [24], which use
other boundary and initial conditions and take into account
effects of viscosity, diffusion, thermal and electric conduction.
All these reasons lead to the violation of the scale invariance
L ∼ gT 2 for typical scales of length L and time T and hence
to the occurrence of new typical scales of motion.

The existence of unstable regimes and lack of their
preliminary classification in the parameter space frequently
leads to situations when the numerical simulation for such
models is faced with large difficulties. Considerable efforts
and time are required to distinguish effects of real (physical)
instability from numerical ones and to separate them. In this
respect, analytical methods have substantial advantages.

The study of blow-up instability (collapse) [25] shows
that even in the absence of exact solutions, using only the
integral criteria, analytical methods are able to provide a deep
qualitative understanding of behavior of unstable nonlinear
systems. It is evident, however, that these goals cannot be
attained without the development of adequate models.

In this paper, we by no means intend to develop one
more large-scale version of the model. Our aim is to find
a parametrization that works effectively at large and small
scales in the context of the Rayleigh-Taylor instability. The
importance of the issue becomes clear in the following
historical episode.

The well-known Manhattan Project required implementa-
tion of a simultaneous and uniform explosive compression of
a spherical target of density ρh by a spherical layer of less
dense ρl for which the Atwood number was small, notably
A � 0.01. This is how the implosion was created.

Physically, the behavior of the matter near the ρh/ρl

interface, which during compression moves locally with
acceleration, is equivalent to the behavior of a fluid (subject

to the homogeneous gravity of Earth) in a drinking glass
quickly turned upside down. In such a situation, the initial
interface is obviously unstable with respect to spontaneous
small perturbation of the jump density interface (Rayleigh-
Taylor instability) and quickly deforms producing spikes and
fingers (mutual interpenetration of the heavy/light fluid into
the light/heavy fluid).

Such a problem is ill posed in the sense of rigorous
mathematics working usually with stable solutions. However,
for the success of the entire Project it was critically important to
determine the conditions under which these fingers and spikes
develop slower than the rapidity of the implosion. Otherwise,
instead of a powerful explosion one would get a trivial whiff.

Fermi and von Neumann were instrumental in analyzing
this problem. Their goal was attained by using a beautifully
simple and elegant model based on the Lagrangian approach.
In particular, as one of the most important results for the Project
realization, they found the growth rate for the magnitude of
the surface deformation in the nonlinear regime of evolution. It
turned out that the time dependence of the instability evolution
growth is proportional to the square of time (not exponential
or blow-up). In the end, as we all know, this result was
successfully implemented in the Project [26,27].

The field theory abounds with examples when motion
equations are unsolvable or even absent. In this case, the
key role belongs to symmetry principles. Therefore, one of
the important problems is to reveal these symmetries. But the
inverse problem of constructing models with given symmetries
is not less important. In this case, the symmetry principles
act as selection rules, which extract from a set of admissible
models only those that possess the required properties.

If there are physical reasons to assume that only some sym-
metries and corresponding constraints are the most important
and it is they that are responsible for the key features of the
behavior of the system, then there is a ready-made recipe for the
construction of a minimal (simplified) model. In practice, this
is being reached by means of the Hamiltonian or Lagrangian
approach [28] and due to symmetry reduction, as a rule, leads
to simpler equations. The works of Fermi-Neumann [26,27]
are an impressive example in this regard.

As a constraint, just like these authors, we use the
incompressibility condition. The main difference is that for
eliminating this constraint we employ the parametrization of
the velocity field while Fermi and von Neumann use for this
the parametrization of the interface. Another distinction is
purely technical and consists in that in order to derive the
equations of motion, we apply the Hamiltonian approach based
on hydrodynamic Poisson brackets. This tool was not yet
known in Fermi-Neumann’s times.

Minimal models are a formalization of the Occam’s razor
principle, which says that “entities are not to be multiplied be-
yond necessity” [29]. Scale invariance for minimal models is a
rather typical property that implies the existence of self-similar
solutions. Being intermediate asymptotics of nondegenerate
problems [30], these solutions are very useful in studying the
final stages of strongly nonlinear processes, when the system
forgets about details related to the initial data and its behavior
fully depends on the motion integrals. For unstable strongly
nonlinear systems, the existence of self-similar solutions is
also the important fact since they play a role of structural
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elements of which the asymptotics of the Cauchy problem at
t → ∞ can be made. It is worth noting that such solutions are
in some sense like solitons.

Usually, the minimal models are arranged so that they could
describe the large-scale processes at a good level. So if in an
initial state along with large scales there also exist small ones,
the small-scale turbulence will develop increasingly with the
lapse of time, masking the large-scale structures. This means,
to ensure the efficiency of these models for unstable regimes,
their initial states should not be excessively detailed.

Besides studying of blow-up instability [25], self-similar
solutions are also useful for researching of a strong large-
scale turbulence, sometimes called structural. In particular, the
self-similar solutions found for the model in the hydrostatic
approximation were used for explaining a scaling in turbulent
spectra of Sun’s supergranulation [31].

This paper is organized as follows. In Sec. II we discuss the
model setup and formulate the governing equations in nonhy-
drostatic SW approximation with horizontal density gradients.
In Sec. III we analyze self-similar solutions and consider
possible scenarios of their behavior. Sec. IV is devoted to the
paradox of superacceleration. This paradox owes its origin to
Fermi, in whose opinion the spikes (penetration of the heavy
fluid into the light fluid) cannot be moving with acceleration
greater than the Archimedes acceleration. Numerical testing
of the model is performed in Sec. V. One of our aims in this
section is to demonstrate the shallowing effect in the course
of the development of the Rayleigh-Taylor instability in the
planar horizontally nonuniform boundary layer. In Sec. VI we
summarize our results. Appendix A gives detailed motivation
of the used model and lists additional relevant data that we
hope are useful for the most inquisitive readers.

II. FORMULATION OF MODEL

We consider a two-dimensional field model whose evolu-
tion is governed by the equations

∂tu + (u · ∇) u = − 1

2h
∇(h2τ ) − 1

3h
∇

(
h2 d2h

dt2

)
, (1)

∂th + ∇· (hu) = 0, ∂t τ + u · ∇τ = 0. (2)

These equations describe the depth-averaged flow in the
active (lower) layer in nonhydrostatic SW approximation and
can be formulated within the framework of the two-layer model
that is shown in Fig. 1. This model (see the Appendix for more
details) supposes that two incompressible fluids with densities
�0 = const and �0 + 	�(x,t) are separated by the interface
z = h(x,t) and contained between two rigid parallel planes
z = 0 and z = l under action of gravity g. The other notations
are as follows: x are the Cartesian horizontal coordinates; ∇ is
the horizontal gradient operator; ∂t and d/dt are the partial and
total time derivatives; u(x,t) is the depth-averaged horizontal
velocity in the active layer, τ (x,t) = g	�/�0 is the relative
buoyancy, which, unlike h, may take any sign.

In the simplest case τ = g = const, Eqs. (1)–(2) are
reduced to the well-known Green-Naghdi equations, which
describe gravity waves on the surface of shallow water in the
nonhydrostaticity approximation [12–16]. If the hydrostatic
balance is broken sufficiently weakly, there is every reason

FIG. 1. The model of the active (lower) layer with horizontally
nonuniform density.

to ignore the Green-Naghdi correction—the last term in
Eq. (1). It is in this approximation that Eqs. (1)–(2) were used
to study the development of the Rayleigh-Taylor instability in
large-scale flows with horizontally nonuniform density [9–11].
Nevertheless, the model (1)–(2) is not a generalization of
Ripa-type models [32] in the strong sense of this word. Rather,
it is a parametrization composed of terms, which dominate at
the initial and final stage of the Rayleigh-Taylor instability.

Equations (1)–(2) can be derived from first principles and
follow from the Hamiltonian formulation [28,33–35] of the
two-dimensional motion of a nonbarotropic gas with the
Hamiltonian

H = 1

2

∫ (
hu2 + 1

3
h3(∇ · u)2 + h2τ

)
dx. (3)

See the Appendix for more details about their derivation.
Besides the Hamiltonian H , Eqs. (1)–(2) conserve integrals

P =
∫

hudx, M =
∫

h (x × u) dx, (4)

C =
∫

h(F1(τ ) + qF2(τ ))dx. (5)

The physical significance of P and M are respectively the total
linear and angular momentum. The last integral C is nothing
else than an annihilator (Casimir) for the Poisson brackets
[32], F1 and F2 are arbitrary functions of the buoyancy τ . The
quantity q is the generalized vorticity defined as [36,37]

q = 1

h
∇×

(
m
h

)
m = δH

δu
= hu − 1

3
∇(h3∇ · u),

where m is the momentum density. Note that q obeys the
equation

∂tq + u · ∇q = 1

2h
(∇h×∇τ ) ,

and hence is an advected quantity only if τ = const.
Putting F1 = {1,τ } and F2 = 0, in what follows, we will

use in addition to M two more integrals

Q =
∫

hdx, N =
∫

hτdx,

which have meaning of the total volume and the total buoyancy,
respectively.
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III. SELF-SIMILAR SOLUTIONS

In the radial symmetric case, Eqs. (1)–(2) look as follows:

∂tu + u∂ru − 1

r
v2 = − 1

h
∂r

(
1

2
h2τ + ε

3
h2 d2h

dt2

)
, (6)

∂tv + u∂rv + 1

r
uv = 0, (7)

∂th + 1

r
∂r (rhu) = 0, ∂t τ + u∂rτ = 0, (8)

where u and v are the radial and azimuthal components of
velocity, respectively, and ε = (1,0) is the on/off parameter of
nonhydrostaticity.

Just like in the hydrostatic model [11], Eqs. (6)–(8) possess
exact self-similar solutions

h = h0

β2

(
1 − r2

β2

)1/2

, τ = τ0

(
1 − r2

β2

)1/2

(9)

u = α

β
r, v = c

β2
r. (10)

Here α(t), β(t) are time-dependent functions which must be
found, and constants h0, τ0, c are fixed by the integrals of
motion

h0 = 3Q

2π
, τ0 = 4N

3Q
, c = 5M

2Q
.

Substituting of (9), (10) into (6)–(8), after nondimension-
alization with the characteristic length, L, and time, T , such
that

L = 2−1/6

(
3Q

π

)1/3

, T =
√

πL2√∣∣12N + 25πM2/Q2
∣∣ ,

we get

dα

dt
= 3εα2 + σ

4 β4

β(ε + β6)
,

dβ

dt
= α. (11)

Here σ is the sign function defined as

σ =
⎧⎨
⎩

1 for κ > 0
0 for κ = 0

−1 for κ < 0
, κ = 12N + 25π

M2

Q2
.

Equations (11) conserve the integral of energy

E = α2(ε + β6)

2β6
+ σ

8β2
, (12)

and can be rewritten in the form

dα

dt
= − β6

ε + β6

∂E

∂β
,

dβ

dt
= β6

ε + β6

∂E

∂α
. (13)

Depending on the sign of κ , the system (11) has two
dynamic regimes. The instability is possible only if κ � 0
and hence N � − 25

12π (M/Q)2. Phase trajectories for this
case are presented in Fig. 2. The dashed line corresponds to
E = 0 and separates closed phase trajectories with E < 0 from
unclosed ones with E > 0. Note that, irrespective of the sign
of the energy E, all trajectories approach the critical point

FIG. 2. Phase portrait of the nonhydrostatic model in the regime
of instability κ < 0.

(α = 0,β = 0) in the vicinity of which the system behaves
unstably.

The hydrostaticity regime is possible in an initial stage of
instability as long as the inequality β(0) � β � 1 holds true.
In this case, assuming ε = 0, from Eqs. (11) one can find the
collapsing solution (see Refs. [9,10])

β = (t0 − t)1/2 , (14)

where t0 is a collapse time.
As shown in Fig. 3, this solution remains valid also for ε = 1

until β approaches 1. After the variable β becomes so small
that β � 1 there comes the final stage when the instability can
be approximated reasonably closely by the equation

d2β

dt2
= 3

β

(
dβ

dt

)2

− 1

4
β3. (15)

This equation has the solution

β = 2t−1, (16)

from which in the special case M = 0, returning to dimen-
sional quantities, we obtain

hmax = h0β
−2 ≈ 3

4τ0t
2. (17)

Because, in the approximation 	�/�0 � 1, the Atwood
parameter A and the buoyancy τ are linearly locally connected
as

τ ≈ 2Ag, (18)

the relation (17) can be rewritten in the form

hmax = h0β
−2 ≈ 3

2A0gt2, (19)

where A0 = τ0/(2g) is the peak value of the Atwood
parameter.
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FIG. 3. The solid curve (c) describes the transition from the
collapsing regime to the regime of algebraic instability. The initial
asymptotics (a) corresponds to the collapsing solution (14) while the
solution (16) gives the final asymptotics (b).

The power-law growth with time says that in the final stage
the regime of blow-up instability predicted for hydrostatic
models [9–11] slows down and turns into the regime of
algebraic instability (secular behavior). In particular Eq. (17)
means that the jet formed of a light fluid moves upward with
the constant acceleration 3gA0. By comparison, Fermi’s model
[27] gives the similar result but with the coefficient 16

7 in front
of the gravity acceleration g.

Note that if κ < 0 and E < 0 the limiting regime (16) is
the only possible for all initial data. But if E > 0, one more
limiting regime

β ≈
√

2Et, α ≈
√

2E, (20)

is also possible as t → ∞. It is not difficult to surmise that if
the law (16) is treated as the formation of an infinitely narrow
jet, then the law (20) describes an inverse process of how the
jet spreads out over a plane boundary.

In the stable regime, when κ > 0, the motion can occur only
if E > 0. Moving along open trajectories as shown in Fig. 4,
the system (11) has the same trivial asymptotes as (20).

IV. SUPERACCELERATION EFFECT

The superacceleration is understood as an effect when the
vertical acceleration of a fluid parcel exceeds the gravitational
acceleration. Fermi [26] was the first who paid attention to this
phenomenon in the context of the Rayleigh-Taylor instability
at the interface. Considering jointly with von Neumann [27] the
planar model and schematizing the surface shape as indicated
in Fig. 5, they introduced parameters x(t), y(t), z(t) which,
due to incompressibility, are related with each other by the
relation y(1 − z) = xz. The equations of motion were derived

FIG. 4. Phase portrait of the nonhydrostatic model in the regime
of stability κ > 0.

with the use of the Lagrangian approach and resulted in the
following asymptotic expression

x ≈ 8

7

A

1 + A
gt2,

where A = (� − σ )/(� + σ ) is the Atwood number, �, σ are
different constant densities, and � > σ , so 0 � A � 1. Thus,

FIG. 5. Profiles of the interface over the period λ in the model
[27]. The real profile is shown by solid curve, the polygonal dashed
line corresponds to the schematic profile while the central dashed line
is the unperturbed interface location.
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the tip of the downward jet falls in vacuum (A = 1) with
acceleration equal to 8

7g.
Fermi explained the effect of superacceleration ( 8

7 > 1) by
the crudeness of the model. However, in our opinion this effect
is physically quite possible and should not cause a big concern.
Indeed, in all points of the flow except the center of masses
(or centroid), the pressure gradient along with external forces
(in our case it is Archimedes force) give a contribution to
the acceleration. The single point, where this contribution
vanishes, is the centroid. Therefore, here there can be no
superacceleration.

As is known, the Archimedes force acts upon the displaced
fluid volume and is applied to its centroid. In our model, the
centroid height z0(t) can be found from the definition∫

(z − z0) 	�dzdx = 0,

where 	�(x,t) is the difference between densities of the jet
and surrounding fluid.

Using the substitution 	� = �0τ/g, after integrating we
find

z0 =
1
2

∫
τh2dx∫
τhdx

. (21)

Note that the numerator of this expression coincides with the
potential energy in the Hamiltonian (3), while the denominator
is the total buoyancy N . Thus, the centroid height depends not
only on the shape h of the jet but also on its buoyancy τ .

Now let us check the lack of the superacceleration in our
model. After substitution (9) into (21), and integrating over x,
we obtain

z0 = 2

5

h0

β2
. (22)

Thus, using (19), from (22) it is easy to find that

z0 = 3
5A0gt2. (23)

The inequality 3
5 < 1 clearly demonstrates the lack of super-

acceleration for the centroid of the jet.

V. PLANE MODEL TESTING

For the numerical and analytical testing, it is more con-
venient to consider the one-dimensional (planar) version of
the nonhydrostatic model, as the most simple, and to use
Eqs. (1)–(2) in the Lagrangian representation.

The direct way to do this is to consider the parametrization
x = x̂(s,t), where s is a new coordinate such that

x̂t = u|x=x̂ , ĥ = h|x=x̂ , τ̂ = τ |x=x̂ .

Here and in the sequel the subscripts t and s will denote partial
derivatives ft = ∂tf , fs = ∂sf .

In these notations, the planar version of Eqs. (1)–(2)
rearranges to give

ĥx̂tt x̂s + ∂s

(
1
2 ĥ2τ̂ + 1

3 ĥ2ĥtt

) = 0, (24)

∂t (ĥx̂s) = 0, τ̂t = 0. (25)

FIG. 6. Layer’s surface elevation h as function of x at time t = 25.

Similar to the radial symmetric model, the planar one has
also self-similar solutions

ĥ = a

β

√
1 − s2, τ̂ = 2

3
ba

√
1 − s2, x̂ = aβs, (26)

where a > 0 and b are some constants, −1 � s � 1, and the
time-dependent variable β obeys the equation

βtt = 2β2
t + bβ3

β(1 + β4)
. (27)

In the case b < 0 (as t → ∞), Eq. (27) has the slower
power-law asymptote

β ≈ 2

|b|t2
(28)

compared with the radial symmetric model. Notwithstanding,
on the base of the relationships

ĥmax = a

β
, τ0 = 2

3
ba = 2A0g,

which follows from (26) and (18), one can verify that the power
law (28) leads to exactly the same result as (19).

In the general case when the problem (24), (25) is solved
under arbitrary initial conditions

ĥ(s,0) = h0(s), x̂(s,0) = s, τ̂ (s,0) = τ0(s), (29)

the best way of solving is to use numerical methods.
For this, it is convenient to integrate Eqs. (25) and to

introduce the displacement

ξ (s,t) = x̂(s,t) − s, (30)

as a new variable in terms of which we get the boundary-value
problem

h0ξtt + ∂s

(
1

2
ĥ2τ0 + 1

3
ĥ2ĥtt

)
= 0, ĥ = h0

1 + ξs

. (31)

043004-6



ALGEBRAIC INSTABILITY IN SHALLOW WATER FLOWS . . . PHYSICAL REVIEW E 91, 043004 (2015)

FIG. 7. Dependence of hmax on time. The dashed line corresponds
to asymptotics (17), the solid line is calculated numerically.

In order to test the model’s forecasting ability, we consider
the problem (31), assuming the following initial conditions

h0(s) = 0.5L,
	�

�0
= 0.01 − 0.02

cosh2(s/L)
, ξt (s,0) = 0,

where L and T are length and time scales linked as follows
L = gT 2.

Thus, in the initial time t = 0, we have a layer with an
alternating-sign relative buoyancy. Since a negative buoyancy
is localized near x = 0, the central part of the layer must rise
up, forming an upward jet as shown in Fig. 6.

According to Fig. 7, this process develops sufficiently
quickly, and asymptotically (as t/T > 20) reaches the regime
(17). It is interesting to note that the generation of the jet is
accompanied by the shallowing effect, which manifests itself
as profile concavities on either side of the jet. The dependence
of hmin/L on time presented in Fig. 8 shows that the depth of
cavities initially grows and then, after reaching the minimal
value 0.2, slowly decreases.

FIG. 8. Dependence of the shallowing level hmin on time.

VI. CONCLUSIONS

We now summarize the main results of the work. The
main goal of this paper was to study the influence of
nonhydrostaticity on the final stage of the Rayleigh-Taylor
instability in the model of the active layer with horizontally
nonuniform density.

As shown in this paper, the collapsing regime exists for
both hydrostatic and nonhydrostatic models. However, in the
latter models under the action of nonhydrostaticity the collapse
slows down and at the final stage turns into the regime of
algebraic instability. Actually, at this stage, the front of a
narrow jet with negative relative buoyancy moves with uniform
acceleration 3gA0, where A0 is the peak value of the Atwood
parameter. The superacceleration paradox is absent, because
the centroid of the jet moves 2.5 times slower than its tip.

It is obvious that the model discussed above is an ideal-
ization. In particular, this model ignores such mechanisms as
the Kelvin-Helmholtz instability or viscosity. Special attention
should be given to these effects at the interface near the jet tip
when its velocity becomes rather large. But the main limitation
is the fact that evidently the model is applicable only to flows
at which the horizontal density nonuniformity scale exceeds
considerably the vertical one.

The used model is in need of additional testing because
it presents a parametrization composed of terms dominant at
the initial and final stage of the Rayleigh-Taylor instability.
Nevertheless, the predictive power of the model is quite
sufficient to describe some subtle phenomena. In particular,
the nonhydrostatic model describes realistically enough the
shallowing effect. This phenomenon manifests itself as profile
concavities on either side of the jet coming out of the boundary
layer due to the action of buoyancy force.
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APPENDIX: SUBSTANTIATION OF MODEL

The governing equations for SW models in nonhydrostatic
approximation can be derived directly from the complete fluid
dynamics equations by traditional methods using the averaging
procedure. However, for similar types of models, there exists a
more simple and, most importantly, general method to obtain
such equations from first principles (conservation laws).

This method is based on the Hamiltonian approach. In
practice, in order to apply it to hydrodynamic models, which,
just as (1), (2), evolve in the phase space of dynamic variables
u, h, τ the following steps must be taken in advance [28,34,35].

(i) Construct the energy functional H [u,h,τ ] playing the
role of the Hamiltonian.

(ii) Introduce the hydrodynamic momentum density m,
which obeys the variational relations

m = δH

δu
, u = δH

δm
.

043004-7



V. P. GONCHAROV AND V. I. PAVLOV PHYSICAL REVIEW E 91, 043004 (2015)

(iii) Specify the Poisson brackets, which in this case read
as

{mi,m
′
k} = ∂ ′

i (m
′
kδ) − ∂k(miδ),

{h,m′
k} = −∂k(hδ), {τ,m′

k} = −δ∂kτ.

Here and in what follows, primed field variables mean the
dependence on the primed spatial coordinates, δ = δ(x − x′)
is the Dirac δ function, and all the trivial Poisson brackets are
omitted for the sake of space.

If the Hamiltonian H [u,h,τ ] is given in explicit form, the
corresponding equations of motion can be derived with the use
of Poisson brackets and are written as

∂tmi ={mi,H }=−mk∂iuk − ∂k(miuk)−h∂i

δH

δh
+ δH

δτ
∂iτ,

(A1)

∂th = {h,H } = −∂i (hui) , (A2)

∂tτ = {τ,H } = −ui∂iτ. (A3)

The most creative step of the Poisson brackets method
is the finding of the proper Hamiltonians. For some exact
models, they are already known. Knowing them along with
using approximation methods opens the way to deriving the
Hamiltonians for new models.

As a basic model, we consider a two-layer ideal incom-
pressible fluid, which moves under the action of gravity g

between two rigid parallel planes z = 0 and z = l as shown
in Fig. 1. Suppose the layers are separated by the interface
z = h(x,t) and have different densities. The upper layer
has constant density �0, while the lower layer has density
� = �0 + 	�(x,t), where the density deviation 	�, like h, is
a time-dependent two-dimensional variable.

For simplicity, we assume also that the motion of a
fluid in the upper layer is potential. Then by using the
incompressibility condition and the continuity of the normal
velocity component at the interface, as well as due to the rigid
bottom condition, we obtain for the potential ϕ the following
boundary-value problem:(

	 + ∂2
z

)
ϕ = 0, (A4)

∂zϕ|z=l = 0, (A5)

(u − ∇ϕ)z=h ∇h = (w − ∂zϕ)z=h , (A6)

where 	 and ∇ are two-dimensional Laplacian and gradient
operators, respectively, and u and w are horizontal and vertical
velocity components in the lower layer.

Since the energy is an additive quantity, the total energy
integral for this three-dimensional model consists of two
summands:

H = H1 + H2, (A7)

H1 = 1

2

∫ l

h

�0[(∇ϕ)2 + (∂zϕ)2 + 2gz]dzdx, (A8)

H2 = 1

2

∫ h

0
�(u2 + w2 + 2gz)dzdx, (A9)

Here H1 and H2 are the total energies for the upper layer and
the lower layer, respectively.

The simplest SW model can be derived under the hypothesis
of hydrostatic equilibrium. This condition allows us to neglect
the vertical velocity w in comparison with the horizontal one
u, assuming that u is dependent only on x and t . It is such
minimal model that was studied in Refs. [9–11].

Let now the hydrostaticity condition be not fulfilled so that
w �= 0, and let u be nearly independent of z as before. Then
from the divergence-free condition

∂zw + ∇ · u ≈ 0, (A10)

and the edge condition w|z=0 = 0, we have

w ≈ −z∇ · u. (A11)

This relation must be treated as one of the possible
parametrizations. In particular, it would be possible to consider
the other parametrization

u = z

h
v, w = −z2

2
∇·

(
v
h

)
,

where v(x,t) is treated as horizontal velocity at the boundary
surface, i.e., v = u|z=h.

On the one hand, such parametrization implies a linear z

dependence of the vertical profile of the horizontal velocity
u, but, on the other hand, it will lead to a more intricate
model. Thus, the choice of parametrization depends on the
physical and model assumptions. We restrict ourselves to
the parametrization (A11), which corresponds to a minimum
model and is suitable for researching the influence of nonhy-
drostaticity at a qualitative level.

One can suggest a way to the construction of more general
parametrizations. Let the horizontal velocity u be dependent
on z as

u = F

(
z

h

)
v,

where F (z) is a function of z. Then from the incompressibility
condition (A10) it follows that

w = z

h
F

(
z

h

)
(v · ∇)h − Q

(
z

h

)
∇

(
hv

)
,

where Q(z) is the function defined as dF/dz = Q.
Using the approximation (A11) and putting without loss

of generality �0 = 1, after integration over z, we obtain from
(A7)–(A9) to the main order in 	�/�0 � 1

H = 1

2

∫ (
hu2 + h2τ + 1

3
h3(∇ · u)2 + ϕ|z=h∇·(hu)

)
dx,

(A12)

where the relative buoyancy τ = g	�/�0, in contrast to h, is
a sign-alternating quantity.

Eliminating from (A12) all terms except for the two first
ones gives the Hamiltonian corresponding to the so-called
minimal model [9–11]. The third term is the Green-Naghdi
correction responsible for the effect of nonhydrostaticity. The
last correction is nothing other than a result of the reaction to
the potential flow in the upper layer. Thus in the context of the
two-layer model the use of the truncated Hamiltonian without
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the last correction term is justified if only the dynamical
influence of the upper layer can be ignored. To provide the
motivation for such truncation procedure, we estimate the
contribution of the last term for two various flow regimes. One
of them is long-wave motions while the other is a self-similar
collapse.

To do this we recast the boundary-value problem (A4)–(A6)
in the form (

	 + ∂2
z

)
ϕ = 0, (A13)

∂zϕ|z=l = 0, (A14)

[(∇ϕ)∇h − ∂zϕ]z=h = ∇·(hu) = −∂th. (A15)

Above all, we consider the long-wave regime. Let L be
the horizontal length scale and U be the scale of the velocity.
Depending on whether the scale L is much greater or much
less than l, the boundary-value problem (A13)–(A15) leads to
two approximations

ϕ|z=h∇·(hu) ≈
⎧⎨
⎩

1

l

(
Ĝ∂th

)2
, if L � l � h,

(∂th) (Ĝ∂th), if l � L > h,

(A16)

where Ĝ is the integral operator

Ĝf =
∫

f (x′)
|x − x′|dx′.

Since hu2 is of the order hU 2, it is this term that gives
the main contribution in the long-wave approximation in
comparison with terms (A16), which have the order h2U 2/l

and h2U 2/L, respectively.
In order to make estimations for the collapsing regime, it

is handier to consider the approximation l → ∞. In this case,
the potential ϕ can be expressible as

ϕ = −∂z

∫
�(x′,t)dx′√
z2 + (x − x′)2

, (A17)

through the double-layer potential �(x,t) in terms of which
the boundary problem (A13)–(A15) is written as

∇·
∫

h∇′�(x′,t)dx′

[h2(x,t) + (x − x′)2]3/2
= −∇·(hu) = ∂th(x,t).

(A18)

Under the assumption of self-similarity, it is natural to
suggest that each of the variables ϕ|z=h, h, u, � can be
factorized as

ϕ|z=h = μϕ̃, � = κ�̃, h = β−2h̃, u = αũ, (A19)

where μ, κ , β, α are time-dependent factors, and ϕ̃, �̃, h̃,
ũ are functions depending only on the self-similar argument
x/β. Then the direct substitution of (A19) in (A17) and (A18)
gives, in the limit as β → 0, the relations

μ = αβ, κ = αβ−5, α = ∂tβ,

which allow us to obtain asymptotic estimates

ϕ|z=h∇·(hu) ∼ α2β−2,

hu2 ∼ α2β−2, h3(∇ · u)2 ∼ α2β−8.

Thus, the integrand responsible for the influence of the
upper layer does not dominate in any of the regimes. The
variations caused by the third term are compensated by either
the first term or the second one depending on the regime.
This fact provides the motivation for the truncation procedure,
which allows us to drop the last term in (A12) and to obtain
the so-called Hamiltonian of an active layer

H = 1

2

∫ (
hu2 + 1

3
h3(∇ · u)2 + h2τ

)
dx.

The application of the Poisson brackets method to this
Hamiltonian yields Eqs. (1), (2). To be convinced of this, in
a way similar to Refs. [16,37], we need first of all to find the
momentum density

m = δH

δu
= hu − 1

3
∇ (

h3∇ · u
)
, (A20)

from which it is easy to derive that

m · δu = u · δm − (u2 + h2(∇ · u)2)δh + · · · . (A21)

The notation · · · implies that the equality holds up to
divergence terms, which give zero contributions on integration
over space thanks to proper boundary conditions.

Considering (A20) as a constraint, we obtain with use of
(A21) the variational equality

δH = δ

(
1

2

∫
(u · m + h2τ )dx

)

=
∫ (

(hτ − 1

2
u2 − 1

2
h2(∇ · u)2)δh

+ u · δm + 1

2
h2δτ

)
dx, (A22)

whence we have

δH

δτ
= 1

2
h2,

δH

δm
= u, (A23)

δH

δh
= −1

2
u2 − 1

2
h2(∇ · u)2 + hτ. (A24)

Substituting (A20), (A23), and (A24) in Eqs. (A1)–(A3), after
some manipulation, leads to Eqs. (1), (2).
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