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Predicting two-dimensional turbulence

R. T. Cerbus1,2,* and W. I. Goldburg1

1Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, Pennsylvania 15260, USA
2Fluid Mechanics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan

(Received 3 December 2014; revised manuscript received 11 March 2015; published 6 April 2015)

Prediction is a fundamental objective of science. It is more difficult for chaotic and complex systems like
turbulence. Here we use information theory to quantify spatial prediction using experimental data from a
turbulent soap film. At high Reynolds number, Re, where a cascade exists, turbulence becomes easier to predict
as the inertial range broadens. The development of a cascade at low Re is also detected.
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I. INTRODUCTION

According to many textbooks, a hallmark of turbulence is
its unpredictability [1,2]. Here we address this issue using
experimental data from a turbulent soap film. The starting
point is Shannon’s information theory [3–5], where in Neil
Gershenfeld’s words, “...information is what you don’t already
know” [6]. Our experiment conveys information about the
physical state of the system.

The entropy from information theory [4] (and the Lyapunov
exponents from dynamical systems [7]) is a measure of the
limit on our ability to predict. However, the theory does not
tell us how to make a prediction. To fully address the issue of
turbulence’s predictability, we need to make a choice about
how to predict (described below) [8]. We are looking for
the answer to simple questions: how difficult is it to predict
turbulence and how does the difficulty depend on Reynolds
number, Re?

Our main finding is that prediction is sensitive to whether a
turbulent cascade is present or not. Turbulence becomes easier
to predict and more predictable when a cascade develops, and
then more so as Re increases.

The turbulent cascade envisioned by Richardson and
described mathematically by Kolmogorov is the prevalent
picture of turbulence [9]. In this picture, energy (or enstrophy
in two dimensions) is transported across scales from some
injection scale until it reaches a dissipative scale and the
cascade ends. A cascade exists in both three-dimensional
(3D) and two-dimensional (2D) turbulence, which is studied
here. The statistical structure of the cascade has important
consequences for prediction.

The central quantity in information theory is the entropy
density h [4]. It is the information we receive per measurement
(which in this case refers to a single velocity value), after
already having measured an infinite amount of previous data.
A large h implies that one does not know what is coming, i.e.,
the system is unpredictable. The value of h gives the limit on
one’s ability to predict but does not indicate how to make a
prediction.

We could also ask how much we already do know. This is the
excess entropy E, which is the information about correlations
in the system [10,11]. It is the reduction of unpredictability.
Accurate prediction requires an amount of information at least

*rory.cerbus@oist.jp

equal to E [12]. Although E further characterizes our ability
to predict, we still must decide how to do so.

Now we must decide how to make a prediction. Our choice
is to only use the information contained in prior measurements
(data) and make a statistical model. There are no specific
assumptions made about the system. (An interesting example
of where a specific model is used can be found in Ref. [13].)
The model consists of a set of states and the probabilities to
transition between them. Here the states are simply the basis
used to represent the data. The states could be the measured
velocities themselves, i.e., 10 cm/s, −23 cm/s, etc. There is
more than one way to define which states to use and potential
benefits from choosing them cleverly.

Following the work of Crutchfield [8,12,14], we choose
the states such that we maximize our ability to predict (up to
the limit set by h) and at the same time minimize how much
information we need to do so. The amount of information
then needed to make the prediction is called C, the statistical
complexity [8]. That is why C is a measure of the difficulty
in making a prediction. Given the definition of E above, it is
clear that C � E, but the system-specific reasons can vary and
are not always clear [8,12].

More details on h, E, and C can be found in Appendices A–
D. It should be mentioned here, however, that to calculate the
probabilities necessary for estimating h, E, and C, we must
bin the data according to some rule. The main results we show
are for a binary rule where we only distinguish between a
velocity above and below the mean. Other bins were used with
qualitatively the same results.

This study focuses on predicting the spatial variations of
turbulence. A prediction in space means that given the velocity
u at a point x, one anticipates the velocity at some other
point r away. We are making predictions about the velocity
fluctuations in space. Prediction is normally associated with
time [15,16], but there are several reasons for considering the
spatial alternative.

We know that the temporal and spatial features of turbulence
are distinct. The fundamental work of Kolmogorov dealt only
with the spatial structure of turbulence [9,17]. Kraichnan and
others have also shown that many of the essential features
of turbulence are retained if one throws away temporal
correlations but keeps spatial ones [18–20]. Thus, a treatment
of spatial prediction is arguably of more fundamental interest
than temporal prediction, at least for turbulence.

For a specific application, consider airplane flight. The
typical cruise speed of a Boeing 747 is V � 250 m/s [21].
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Contrast this with the rms velocity fluctuations σ of “strong”
atmospheric turbulence σ � 7 m/s [22]. Since σ/V � 0.03
is small, one must use Taylor’s frozen turbulence hypothesis
when discussing the turbulence the airplane encounters [2,23].
In other words, an airplane flies fast enough to sample only
the spatial variations of turbulence. There is not enough time
for the turbulent velocity field to evolve temporally.

While this is a study of 2D turbulence, the analysis is not
specific to this system. Our work serves as an experimental
test bed for these tools, which can be used generally for other
complex systems.

II. EXAMPLE

As a simple illustration of these ideas, consider a coin
flipping experiment where each subsequent flip will be the
same as the previous one with probability P ∈ [0,1] [24]. This
is the statistical model for, e.g., correlated random walks [25].

If P = 0.5 we have the usual fair coin toss experiment,
with h = 1 and C = E = 0, since this system is maximally
uncertain but statistically simple to predict with no information
being shared between the past and future. In this fully random
case (P = 0.5) both 0 and 1 predict the same future, so they
are combined into a single causal state. Of course, with only
one causal state, C = 0 automatically [see Eq. (D1)].

Consider now a slight deviation of P from 0.5. Now C = 1
since we will always need to know 1 bit of information (the
previous flip) to predict the future. We can also calculate h

and E (see Appendices B and C), which are plotted together
with C vs P in Fig. 1. Since P > 0.5 means more predictable,
it is clear that h should decrease with increasing P , while E

should increase.
This example highlights the difference between E and C,

the crypticity χ ≡ C − E [12,26]. Here C = E + h, which is a
unique feature of this system being first-order Markovian [10].
The extra information needed to predict beyond E is due to
the randomness still intrinsic in the causal states themselves.
There are many examples for which C �= E [12,27], but this
is not always so.
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FIG. 1. (Color online) Plot of the fundamental quantities h (©),
E (�), and C (�) for the simple example given here. Although h and
E are continuous functions of P , C is not.

An important lesson we learn from this example is that h, E,
and C were all necessary to understand this system’s behavior.
For P only slightly different from 0.5, h and E will still suggest
a nearly random system, much like a slightly biased coin. The
fact that C is large and not 0 (its random value), shows that
there are important correlations not present in a simple biased
coin system. The system is both unpredictable (large h) and
difficult to predict (large C). A similar result will be found for
the low Reynolds number flow in Sec. IV.

III. EXPERIMENTAL SETUP

Now consider a turbulent soap film, which is a good
approximation to 2D turbulence since the film is only several
micrometers thick [23,28]. The soap solution is a mixture of
Dawn (2%) detergent soap and water with 4 μm particles
added for laser Doppler velocimetry (LDV) measurements.
Figure 2 contains a diagram of the experimental setup as well as
thickness fluctuations visualized through thin film interference
using a monochromatic light source. The thickness fluctuations
act as a surrogate for velocity fluctuations [23,28].

The soap film is suspended between two vertical blades.
Nylon fishing wire connects the blades to the nozzle above and
the weight below. The nozzle is connected by tubes to a valve
and a top reservoir which is constantly replenished by a pump
that brings the spent soap solution back up to the top reservoir.
The flow is gravity driven. Typical centerline speeds u are
several hundred cm/s with rms fluctuations u′ ranging roughly
from 1 to 30 cm/s. The channel width w is usually several
centimeters. The Reynolds number Re = u′w/ν, where ν =
0.01cm2/s is the kinematic viscosity, thus ranges from 10 to
10 000.

Turbulence is generated using several different protocols.
We can (1) insert a row of rods (comb) perpendicular to
the film, (2) replace one or both smooth walls with rough
walls (saw blades) with the comb removed and possibly a rod
inserted near the top [29], or (3) use a comb with smooth walls
as in (1) but now very near the top of the soap film where the
flow is still quite slow. The comb teeth are ∼1 mm in diameter

FIG. 2. Left: Experimental setup showing the reservoirs (T R,
BR), pump (P ), valve (V ), comb (C), blades (LB, RB), LDV, and
weight (W ). Middle: Fluctuations in film thickness from turbulent
velocity fluctuations with smooth walls and a comb. Right: Thickness
fluctuations with smooth and rough walls.
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FIG. 3. (Color online) Representative one-dimensional energy
spectra in a log-log plot of E(k) vs k. The enstrophy cascade (�)
has a slope close to −3 while the energy cascade (�) has a slope
close to −5/3. The flat curve (©) has no cascade.

and several millimeters apart. The saw blade teeth are ∼2 mm
tall and wide.

When protocol (1) is used we almost always observe the
direct enstrophy cascade [23,28]. If procedure (2) is used, we
can observe an inverse energy cascade [23,28,29], although
this depends sensitively on the flux and w. When protocol (3)
is used, we see no cascade at all.

The type of cascade is identified by calculating the one-
dimensional velocity energy spectrum E(k), where 1

2u′2 =∫ ∞
0 E(k)dk. For the enstrophy cascade, E(k) ∝ k−3 and for the

energy cascade E(k) ∝ k−5/3 [23,28]. A number of measure-
ments were taken above the blades where the flow is slower.
For protocol (3), E(k) is flat and so apparently there is no
cascade, although the flow is not laminar (u′ �= 0). See Fig. 3
for some representative spectra. In Fig. 4 the data for Re < 100
have a flat E(k).

In all cases, we measure the longitudinal (streamwise)
velocity component at the horizontal center of the channel.
The data rate is �5000 Hz and the time series typically had
more than 106 data points. For this system the time series is
really a spatial series by virtue of Taylor’s frozen turbulence
hypothesis [2,9,23,28]. This means that the spatial variations
are swept through the LDV’s measuring point by the mean
flow so quickly that it is as if the LDV were scanning a
frozen-in-time velocity field. This distinction between spatial
and temporal is essential, as discussed above and in Ref. [30].

IV. RESULTS

The quantities C, E, and h are plotted vs Re in Fig. 4.
The data are roughly divided in Re into no cascade [flat E(k)
for Re < 100] and cascade [power law E(k) for Re > 100]
regimes. Although C and E intersect at finite Re � 7000 in
Fig. 4, this meeting point depends on the analysis. In order
to calculate probabilities from continuous data, one must bin
the measurements. For different binning protocols we find a
different meeting point. However, the Re-dependent behavior
of h, E, and C discussed below is the same. See Appendices A
and D for more details on the treatment of the data.
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FIG. 4. (Color online) The statistical complexity C (�), excess
entropy E (©), and entropy density h (�) as functions of Re for
binarized (A = 2) data (see Appendix A for details on binning). We
plot h on a different scale for better visibility. The maximum value of h

here is log2 2 = 1, which the no-cascade data for Re < 100 approach
very closely. Here L = 10 and we used our MATLAB program with
the χ 2 test to calculate C (see Appendix D for details). The lines are
not fits to the data but are meant to suggest the behavior of C and E

as functions of Re. For the cascade region, C and h are decreasing
functions of Re while E increases. The vertical line separates the data
according to whether there is a cascade or not.

A. Cascade turbulence

Now consider the behavior of h, E, and C in the “cascade
regime” of Fig. 4, Re > 100. At these values of Re, E(k)
shows power law scaling as in Fig. 3. Both energy and
enstrophy cascade data are present. We see from Fig. 4 that the
unpredictability (h) is decreasing, the amount of information
needed to predict (C) is also decreasing, while information
about correlations (E) is increasing (all logarithmically). The
opposite trend in Re for E and C is noteworthy. It is surprising
that the behavior of h, E, and C for Re > 100 does not depend
on which cascade is present, only on whether or not there is a
cascade at all.

The increase of E with Re can be understood from the
traditional view that as Re increases, the “inertial range” of
correlated scales broadens [9]. The increase in correlations
across spatial scales is reflected by an increase in E. We can go
further to suggest a connection between E and the broadness
of the inertial range. Dimensional arguments suggest that the
turbulent degrees of freedom go as N ∝ Re for the enstrophy
cascade and N ∝ Re3/2 for the inverse energy cascade. In
the 3D energy cascade, N ∝ Re9/4 [31]. Thus the behavior
E ∝ log2 Re in Fig. 4 indicates that E is a logarithmic measure
of the extent of the inertial range.

An interpretation of the behavior of C is also suggested
by the traditional picture of 2D turbulence [23,28]. As Re
grows, the inertial range broadens, and more of the velocity
fluctuations come under the governance of the cascade. Thus,
the randomness h will decrease, and because the cascade’s
structure is dominating, our prediction cost C decreases. This
is the result of the general principle that patterns help us to
predict [14]. Here the pattern is the cascade’s structure.
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Turbulence has traditionally been thought of as unpre-
dictable [1,2], an idea we have tested here with h, E, and
C. We see that the spatial predictability of (2D) turbulence
is a function of Re. As Re increases we can predict further
and more easily. This is in stark contrast to turbulence’s
increasing temporal unpredictability with Re, at least as
evidenced by numerical work [15,16]. This reiterates the
important difference between time and space in turbulence,
which is of fundamental interest and practical importance
(recall the airplane).

B. Transition to cascade turbulence

Next consider the region of Fig. 4 labeled “no cascade.”
The absence of a cascade is evidenced by a lack of power
law scaling in E(k) as in Fig. 3. Here h, E, and C are
relatively constant with respect to Re. It is notable that h is very
near to the random (white noise) value of log2 2 = 1, which
is nothing like laminar flow where h = 0. When a cascade
emerges at Re � 100, all three quantities begin to change
noticeably. This change in behavior is decidedly different from
the laminar to turbulent transition which only involves the
onset of fluctuations [1,31].

Simulations of 3D turbulence have shown that statistics
of the velocity derivatives are Gaussian (or sub-Gaussian) up
until a small value of the Reynolds number [32,33]. Below
this value of Reynolds number, there is a “regime which
is a complex time-dependent flow rather than a turbulent
one.” They observe a transition similar to the one described
here, evidenced primarily by non-Gaussian velocity derivative
statistics. (Recall that non-Gaussian statistics are a general
feature of fully developed turbulence [34].)

We can also use a more traditional tool from turbulence,
the correlation function c(r) ≡ 〈u(x)u(x + r)〉x/u′2 plotted
in Fig. 5 [9]. c(r) has typically been thought of as a tool
for determining the range of length scales over which u is
correlated. c(r) is telling us that for small Re � 100, the range
of scales over which u is correlated is very small.

Figures 3 and 5 both indicate that for Re � 100 the
data is like white noise. The values of h � 1 and E � 0 in
Fig. 4 reinforce this interpretation. On the other hand, if the
fluctuations were truly like white noise, then C should also be
zero in this regime, which it is not. Recall that in the simple
example from Sec. II, C is large when h and E are close to
their random values. The data are nearly random but have an
explicit albeit short dependence on the past which drives C

from zero to its maximum value. If we were to only look at
h (or E), we would miss that there is nontrivial (nonrandom)
behavior for low Re.

We have yet to understand why self-similar turbulence
emerges from this “complex, time-dependent flow” [32].
One sees from another nonlinear system, Rayleigh-Benard
convection, that there is a lot to be learned even at modest
levels of excitation [35].

The traditional approaches to the laminar-turbulent transi-
tion deal with instabilities of the laminar flow [1,36]. Whether
it is the quasiperiodicity of Landau [31] or the nonperiodicity
of Ruelle and Takens [37], none of these approaches deal with
the development of a Richardson or Kolmogorov cascade [38].
And yet a cascade is always present in “fully developed
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FIG. 5. (Color online) The velocity autocorrelation function c(r)
plotted vs r for several values of Re. For small Re, c(r) quickly decays
to zero, indicating little correlation in the velocity u. For larger Re,
where Fig. 3 indicates spatial structure, there is a wider range of
correlated scales. The Re = 300 curve has a longer correlation length
L than the higher Re = 6000 curve presumably because this lower Re
curve corresponds to an inverse energy cascade. The inverse energy
cascade is supposed to involve larger length scales than the enstrophy
cascade [23,28]. Here L is defined as the distance at which c(r) decays
to 1/e.

turbulence” [9,17]. How does this cascade emerge? New
approaches and models are necessary to understand how
cascade behavior develops out of a “complex, time-dependent
flow” [32]. Since this development is clearly visible in Fig. 4,
an information theory approach seems promising.

We further suggest an information-theoretic indicator of
a cascade. Based on the above arguments, large E and 1/C

should both indicate a well-developed cascade. With that in
mind, we can also consider the “predictive efficiency” E/C

[39], which is an increasing function of Re, as shown in Fig 6
for two different binning protocols. The ratio E/C tells us the
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FIG. 6. (Color online) The predictive efficiency E/C plotted vs
Re using the same data as in Fig. 4 as well as a quaternary partition
A = 4 with partition walls placed symmetrically with respect to the
mean (see Appendix A for details on binning). We used L = 10 for
both partitions (see Appendix D). Here we find that E/C is increasing
only after a cascade develops.
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fraction of the information needed to predict C that is due to
correlations E. It is nearly zero when no cascade is present and
grows smoothly after one has emerged. This shows that E/C

is a nice tool for studying the transition to cascade turbulence.
Besides this cascade transition, the laminar to fluctuation

transition is also of interest. Unfortunately, we are not able
to access a truly laminar regime with our apparatus. For
laminar flow and this geometry, h = E = C = 0 [8]. Looking
at Fig. 4, and with the reasonable assumption that h and C

are continuous functions of Re, one expects a local maximum
in C and h at some low value of Re. This maximum would
correspond to a special transition in the evolution of the flow
between laminar and turbulent behavior. The observation of
this maximum requires a different experimental setup.

V. CONCLUSION

The approach here is not limited to incompressible Navier-
Stokes turbulence. In fact it is useful for any nonlinear system,
even those for which one does not know the equations of
motion. When we think of turbulence in terms of information
and prediction, we can make new distinctions and draw new
insights. We have been able to highlight a cascade transition
and have seen that spatially, turbulence is becoming easier
to predict statistically as Re increases. As for our airplane,
Figs. 4 and 6 bring bittersweet news. Although its passengers
will certainly experience a rougher flight as Re increases, at
least they will not be as surprised.
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APPENDIX A: DATA

The approach used here is data driven. We are given a data
stream and use it to say something about the system that made
it. The main assumption is that the system is stationary [4,8].
We do not appeal to the Navier-Stokes equation or any of
Kolmogorov’s universality assumptions [9,17]. This method
is generally applicable to many types of systems.

The formalism is now introduced. In the discussion that
follows an uppercase U denotes the data (the random variable,
the message) with possible velocity valuesU and the lowercase
u denotes a particular member of that set. We can also
consider groups of length L denoted by the set UL and its
particular members uL. We are interested in treating a group
because of the correlations that may exist between its members.
Overarrows indicate a direction in the 1D data set relative to
an arbitrary reference point x. For example,

−→
UL refers to any

block of data of size L taken to the right of x. For example, if

L = 3, then a particular block
−→
u3 is as below,

. . . ux−�x,ux,
−−−−−−−−−−−−−−→
ux+�x,ux+2�x,ux+3�x,ux+4�x, . . . ,

where �x is the spatial resolution. If no L is mentioned, the
block is (semi-)infinite.

Let U be a velocity component in the soap film, which
is characterized by the experimental probability distribution
P (U ). The focus is on the information shared between different
directions

←−
U and

−→
U relative to the arbitrary point x [8,40].

If we had data with explicit time dependence, we would talk
about the past, future, and present [8].

In order to use this formalism with turbulence, the contin-
uous experimental data must be converted to symbols [41].
A partition is defined which assigns data values in specific
ranges to unique symbols [11,41]. This is usually referred to as
binning the data. All experiments of continuous systems do this
because of limited resolution ε. There are numerous previous
studies where even binarizing a turbulent velocity signal has
given more insight than traditional techniques [30,41–43].

In this work we primarily use a binary partition (alphabet
size A = 2) with the single partition wall located at the mean
velocity. This smaller alphabet allows us to use a larger L with
confidence and so cover a wider range of length scales in our
analysis. Just as with h in Ref. [30], we have found that the
general behavior of C and E with respect to Re is independent
of the partition size; partitions of sizes A = 4 and 8 gave
similar results. Here the choice was made to use the same
alphabet size A for all Re. This was done so that all data, if
random, would have the same maximum value of h = log2 A.
Thus, all data are treated at the same level of description. Of
course, there are alternative choices for setting the partition
size.

APPENDIX B: ENTROPY DENSITY h

We have already spoken of the entropy density h as a
measure of unpredictability. The definition of entropy we are
most familiar with is [3,4]

H (U ) =−
∑

u∈U

p(u) log2 p(u), (B1)

with units of “bits.” This is the unpredictability of single
data points given no immediate knowledge of any previous
data points. An example of this would be estimating the
unpredictability of letters in the English language based solely
on the frequency of the letters and not on words.

Consider two examples. First look at a random string
of 1’s and 0’ where p(0) = p(1) = 0.5. Here H = 1 is the
maximum possible value. Next consider a periodic string such
as “...0101... .” Here again p(0) = p(1) = 0.5, and so here also
H = 1. However, something is wrong since a periodic string
should be perfectly predictable.

Since this definition of unpredictability misses any structure
or correlations extending across scales, it is generalized to the
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block entropies [10,11]

HL = H (UL) = −
∑

uL∈UL

p(uL) log2 p(uL). (B2)

This is the unpredictability of blocks of data. Of course, if we
want to go back to looking at the unpredictability of a single
data point, we can manipulate the HL. The unpredictability
of a single data point knowing L immediately previous data
points is

hL = HL+1 − HL. (B3)

The L dependence is inconvenient, but if we make L

large enough hL will become L independent (for most
systems) [10,11]. We are now ready to introduce the entropy
density

h = lim
L→∞

hL = H (
−→
U 1|←−U ) (B4)

with an equivalent definition in terms of the conditional
entropy [4]. This says explicitly how unpredictable a single
data point is given all previous ones.

To further develop intuition for how h is associated with
unpredictability, recall the Lyapunov exponents [7]. If a system
is chaotic, its largest Lyapunov exponent λ is greater than 0 [7].
If our measurement has a resolution of ε and we enforce a
tolerance of �, then our system is typically predictable up to a
distance of log2(�/ε)

λ
. Consider an information approach to the

same problem. We choose to (or are forced to) have a particular
partition size ε. This will correspond to A = max(U )−min(U )

ε
. Our

maximum possible uncertainty in bits is log2 A. It will take
n = log2 A

h
steps into the future to add up to this uncertainty

and beyond this our data stream is unpredictable.
We estimate h using the limit of hL from Eq. (B3) in

Eq. (B4), as discussed in Ref. [30] and elsewhere [10,11].
The undersampling bias in the H (UL) is corrected using
Grassberger’s method [11], although this did not affect the
value of h very much. The hL typically reached h at L � 10.

APPENDIX C: EXCESS ENTROPY E

While h tells us about the unpredictability of
−→
U 1 given

←−
U ,

we may also want to know how much we actually learned about−→
U from

←−
U . This is the excess entropy E. It is in some sense

the opposite of unpredictability. E does not ask how much
information we get from

−→
U upon measuring, but how much we

do not get. We already know it. Stated mathematically [10,11]:

E = H (
−→
U ) − H (

−→
U |←−U ) ≡ I (

−→
U ;

←−
U ), (C1)

where I (
−→
U ;

←−
U ) is the mutual information shared between

−→
U

and
←−
U [4].

This E is the information we got from
←−
U that reduces

unpredictability. However, just like h, this is a statistical
statement that does not tell us how to use that information.
E does provide us with a lower bound on the amount of
information needed to make predictions, since we need to
account for all correlations. No matter how it is done, E bits
will be necessary [10], otherwise we ignore some structure in
the system.

An alternative expression is used to estimate E [10]:

E =
∞∑

L=1

(hL − h). (C2)

This calculation uses essentially the same quantities involved
in estimating h. It turns out that for many chaotic systems,
hL − h ∝ 2−γL (γ is some constant independent of L) [10].
This empirical relationship has been shown to improve the
estimation of E [10]. This expression will be used when
possible.

APPENDIX D: CRUTCHFIELD COMPLEXITY C

We now come to prediction using a statistical model. We
must determine a set of special states called causal states S [8].
These will make up a minimal representation of our system
for predictive purposes. In other words, we are trying to build
the simplest possible statistical model of our data. For more
details, see Ref. [14]. There Shalizi et al. show that within the
information theory framework, the approach described below
is maximally predictive with a minimal amount of information
needed.

A statistical model consists of a set of states and the
transition probabilities between them. To determine S consider
all unique blocks of data UL. One would like to make L large to
capture as many correlations as possible, but the finite amount
of data means only finite L can be statistically reliable. For
our data, L � 10 is a good compromise. This L is also chosen
because it is the value of L at which hL typically reached h.

We now calculate the conditional probability p(
−→
U L|←−u L)

that any particular block ←−
u L will give rise to any other

block of the same length. If the conditional probability
distributions conditioned on two blocks are the same, they
are indistinguishable from a statistically predictive point of
view. Thus block 1 and block 2 are equivalent, uL

1 ∼ uL
2 , if

p(
−→
U L|←−u L

1 ) = p(
−→
U L|←−u L

2 ). This process incorporates pattern
recognition by construction, which is why C was originally
introduced as a complexity quantifier [8,44].

All equivalent blocks are then combined and organized into
a set of predictive causal states S. For example, suppose there
are only three states u1, u2, and u3 (forget about L here).
If p(

−→
U |←−u 1) = p(

−→
U |←−u 2) �= p(

−→
U |←−u 3), then u1 ∼ u2 � u3

and we have two causal states s1 = (u1,u2) and s2 = (u3).
Refer back to the example in Sec. II. It is apparent that if
P = 0.5 (or 1) there is only one causal state, but if P �= 0.5
(or 1), there are two causal states.

The Shannon information (entropy) contained in S is the
statistical complexity [8,45]

C = H [S] =−
∑

s

p(s) log2 p(s). (D1)

This is the total amount of information needed to statistically
reproduce the data, as we shall soon see.

Here is how this prediction work in practice: we find the
causal states S as just described and so we also have the
transition probabilities between the states S. Start out in some
state u belonging to a particular s. Determine the next s ′
statistically using the known transition probabilities p(s ′|s)
(the ′ means the next step). Then determine a particular u′
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belonging to this s ′ according to p(u′|s ′). This is symbolically
represented by

u
u∈s−−→ s

p(s ′ |s)−−−→ s ′ p(u′|s ′)−−−→ u′.

Then repeat. In this way the data is reproduced in a statistical
sense. In summary, we can write down the probability of any
u starting from any other u. This is statistical prediction.

We needed to know an amount of information C = H [S]
to carry out the above prediction program. That is, we need
to ask (on average) C “yes” or “no” questions in order to find
the current state of the system, and then predict from there.
By design, this connects with the system’s predictability, since
organizing the message’s parts into causal states will affect the
value of C.

We can appreciate the distinction between C and h by
considering an unbiased coin flip. The system is maximally
unpredictable with h = 1, since one has no clue as to what
will come next. In contrast, C = 0 since no information is
needed for statistical prediction. There is only one causal
state. This may strike the readers as strange, since random
data is supposedly impossible to predict. This is only true if
we insist on a prediction that has absolute certainty. Here we
are predicting statistically.

When actually handling real data to identify S, one must
deal with imperfections. These may be due to external noise
or the finiteness of the amount of data. Regardless of the
origin, one must set some sensible threshold to determine if
two conditional probability distributions are the same, since
they will never be identical. An example of some conditional
probability distributions is shown in Fig. 7. Two of the
distributions are similar, indicating that the two states belong
to the same causal state. The third distribution is entirely
different. The task is to choose a sensible metric to make
this distinction objectively.

We wrote a MATLAB program that uses a χ2 test to compare
conditional probability distributions [46]. We use a 0.95
confidence level, but the results are not sensitive to this choice.
Results from our method are in good agreement with another
frequently used algorithm [47,48]. In the end, of course, the
choice has an element of subjectivity to it.

Note that alternative expressions for h and E are [8,27]

h = H [
−→
U 1|←−S ] (D2)

and

E = I [
−→
S ;

←−
S ] = H [

−→
S ] − H [

−→
S ;

←−
S ] = C − H [

−→
S ;

←−
S ].

(D3)
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FIG. 7. (Color online) An example of three conditional probabil-
ity distribution functions used to determine the causal states. The
data used here is binarized turbulence data with L = 5 (giving a
total of 32 possible states) and Re = 3300 (© = 00001, +=00011,
� = 00010). The horizontal axis features all the possible future states
while the vertical axis is the conditional probability that given a
certain past state, any of those possible future states will occur. Here
the distribution for states © and � appear similar while that for state
� is quite different.

Equations (D2) and (D3) say that the causal states serve as a
sufficient representation. Equation (D2) also serves as a check
on our determination of S by comparing h calculated with
Eq. (D2) with our previous method from Eqs. (B3) and (B4).
From Eq. (D3) we see that C may be different from E. Actually,
it can be shown that C � E. The difference between these two
has various interpretations.

The interpretation of Crutchfield and co-workers is that a
system may have some “hidden” information, or crypticity
χ = C − E [26,27]. One might think that looking at the
correlations in the infinite

←−
U would be enough to know how

to predict, but we actually need a little more χ for prediction.
This still comes from the data (

←−
U ) but one needed to build

this statistical model to get it out. Wiesner and co-workers
have interpreted χ as the information erased at each step in
the system’s evolution [39]. If we were to simulate this system
on a computer, kBT χ (where kB = Boltzmann’s constant and
T is the computer’s temperature) would be the minimum
thermodynamic cost. This is an extension of Landauer’s work
on computation. He was the first to suggest that the erasure of
information has a thermodynamic cost [49].
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[36] A. Brandstäter, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer,
E. Jen, and J. P. Crutchfield, Low-dimensional chaos in a
hydrodynamic system, Phys. Rev. Lett. 51, 1442 (1983).

[37] D. Ruelle and F. Takens, On the nature of turbulence, Commun.
Math. Phys. 20, 167 (1971).

[38] H. L. Swinney and J. P. Gollub, The transition to turbulence,
Phys. Today 31(8), 41 (1978).

[39] K. Wiesner, M. Gu, E. Rieper, and V. Vedral, Information-
theoretic lower bound on energy cost of stochastic computation,
Proc. R. Soc. London, Ser. A 468, 4058 (2012).

[40] J. P. Crutchfield and D. P. Feldman, Statistical complexity of
simple one-dimensional spin systems, Phys. Rev. E 55, R1239
(1997).

[41] C. S. Daw, C. E. A. Finney, and E. R. Tracy, A review of
symbolic analysis of experimental data, Rev. Sci. Instrum. 74,
915 (2003).

[42] A. J. Palmer, C. W. Fairall, and W. A. Brewer, Complexity in
the atmosphere, IEEE Trans. Geosci. Remote Sens. 38, 2056
(2000).

[43] M. Lehrman and A. B. Rechester, Extracting symbolic cycles
from turbulent fluctuation data, Phys. Rev. Lett. 87, 164501
(2001).

[44] D. P. Feldman and J. P. Crutchfield, Measures of statistical
complexity. Why?, Phys. Lett. A 238, 244 (1998).

[45] J. P. Crutchfield and K. Young, Inferring statistical complexity,
Phys. Rev. Lett. 63, 105 (1989).

[46] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses,
3rd ed. (Springer, New York, 2005).

[47] C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield, An algorithm
for pattern discovery in time series, arXiv:cs/0210025v3.

[48] C. R. Shalizi and K. L. Shalizi, An Algorithm for Build-
ing Markov Models from Time Series, http://vserver1.cscs.
lsa.umich.edu/∼crshalizi/CSSR/, 15 May 2013.

[49] R. Landauer, The physical nature of information, Phys. Lett. A
217, 188 (1996).

043003-8

http://dx.doi.org/10.1038/nphys2190
http://dx.doi.org/10.1038/nphys2190
http://dx.doi.org/10.1038/nphys2190
http://dx.doi.org/10.1038/nphys2190
http://dx.doi.org/10.1063/1.1530990
http://dx.doi.org/10.1063/1.1530990
http://dx.doi.org/10.1063/1.1530990
http://dx.doi.org/10.1063/1.1530990
http://dx.doi.org/10.1063/1.166191
http://dx.doi.org/10.1063/1.166191
http://dx.doi.org/10.1063/1.166191
http://dx.doi.org/10.1063/1.166191
http://dx.doi.org/10.1007/s10955-009-9808-z
http://dx.doi.org/10.1007/s10955-009-9808-z
http://dx.doi.org/10.1007/s10955-009-9808-z
http://dx.doi.org/10.1007/s10955-009-9808-z
http://dx.doi.org/10.1063/1.869227
http://dx.doi.org/10.1063/1.869227
http://dx.doi.org/10.1063/1.869227
http://dx.doi.org/10.1063/1.869227
http://dx.doi.org/10.1023/A:1010388907793
http://dx.doi.org/10.1023/A:1010388907793
http://dx.doi.org/10.1023/A:1010388907793
http://dx.doi.org/10.1023/A:1010388907793
http://dx.doi.org/10.1103/PhysRevE.53.2337
http://dx.doi.org/10.1103/PhysRevE.53.2337
http://dx.doi.org/10.1103/PhysRevE.53.2337
http://dx.doi.org/10.1103/PhysRevE.53.2337
http://dx.doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1103/PhysRevLett.72.1016
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://www.boeing.com/boeing/commercial/......747family/pf/pf_400_prod.page
http://dx.doi.org/10.1088/0034-4885/65/5/204
http://dx.doi.org/10.1088/0034-4885/65/5/204
http://dx.doi.org/10.1088/0034-4885/65/5/204
http://dx.doi.org/10.1088/0034-4885/65/5/204
http://dx.doi.org/10.1140/epjst/e2013-01933-9
http://dx.doi.org/10.1140/epjst/e2013-01933-9
http://dx.doi.org/10.1140/epjst/e2013-01933-9
http://dx.doi.org/10.1140/epjst/e2013-01933-9
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1063/1.3637502
http://dx.doi.org/10.1063/1.3637502
http://dx.doi.org/10.1063/1.3637502
http://dx.doi.org/10.1063/1.3637502
http://dx.doi.org/10.1103/PhysRevLett.103.094101
http://dx.doi.org/10.1103/PhysRevLett.103.094101
http://dx.doi.org/10.1103/PhysRevLett.103.094101
http://dx.doi.org/10.1103/PhysRevLett.103.094101
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1103/PhysRevLett.109.254502
http://dx.doi.org/10.1103/PhysRevLett.109.254502
http://dx.doi.org/10.1103/PhysRevLett.109.254502
http://dx.doi.org/10.1103/PhysRevLett.109.254502
http://dx.doi.org/10.1103/PhysRevE.88.053012
http://dx.doi.org/10.1103/PhysRevE.88.053012
http://dx.doi.org/10.1103/PhysRevE.88.053012
http://dx.doi.org/10.1103/PhysRevE.88.053012
http://dx.doi.org/10.1088/1367-2630/9/4/089
http://dx.doi.org/10.1088/1367-2630/9/4/089
http://dx.doi.org/10.1088/1367-2630/9/4/089
http://dx.doi.org/10.1088/1367-2630/9/4/089
http://dx.doi.org/10.1073/pnas.1410791111
http://dx.doi.org/10.1073/pnas.1410791111
http://dx.doi.org/10.1073/pnas.1410791111
http://dx.doi.org/10.1073/pnas.1410791111
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
http://dx.doi.org/10.1063/1.1404847
http://dx.doi.org/10.1063/1.1404847
http://dx.doi.org/10.1063/1.1404847
http://dx.doi.org/10.1063/1.1404847
http://dx.doi.org/10.1103/PhysRevLett.51.1442
http://dx.doi.org/10.1103/PhysRevLett.51.1442
http://dx.doi.org/10.1103/PhysRevLett.51.1442
http://dx.doi.org/10.1103/PhysRevLett.51.1442
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1007/BF01646553
http://dx.doi.org/10.1063/1.2995142
http://dx.doi.org/10.1063/1.2995142
http://dx.doi.org/10.1063/1.2995142
http://dx.doi.org/10.1063/1.2995142
http://dx.doi.org/10.1098/rspa.2012.0173
http://dx.doi.org/10.1098/rspa.2012.0173
http://dx.doi.org/10.1098/rspa.2012.0173
http://dx.doi.org/10.1098/rspa.2012.0173
http://dx.doi.org/10.1103/PhysRevE.55.R1239
http://dx.doi.org/10.1103/PhysRevE.55.R1239
http://dx.doi.org/10.1103/PhysRevE.55.R1239
http://dx.doi.org/10.1103/PhysRevE.55.R1239
http://dx.doi.org/10.1063/1.1531823
http://dx.doi.org/10.1063/1.1531823
http://dx.doi.org/10.1063/1.1531823
http://dx.doi.org/10.1063/1.1531823
http://dx.doi.org/10.1109/36.851786
http://dx.doi.org/10.1109/36.851786
http://dx.doi.org/10.1109/36.851786
http://dx.doi.org/10.1109/36.851786
http://dx.doi.org/10.1103/PhysRevLett.87.164501
http://dx.doi.org/10.1103/PhysRevLett.87.164501
http://dx.doi.org/10.1103/PhysRevLett.87.164501
http://dx.doi.org/10.1103/PhysRevLett.87.164501
http://dx.doi.org/10.1016/S0375-9601(97)00855-4
http://dx.doi.org/10.1016/S0375-9601(97)00855-4
http://dx.doi.org/10.1016/S0375-9601(97)00855-4
http://dx.doi.org/10.1016/S0375-9601(97)00855-4
http://dx.doi.org/10.1103/PhysRevLett.63.105
http://dx.doi.org/10.1103/PhysRevLett.63.105
http://dx.doi.org/10.1103/PhysRevLett.63.105
http://dx.doi.org/10.1103/PhysRevLett.63.105
http://arxiv.org/abs/arXiv:cs/0210025v3
http://vserver1.cscs.lsa.umich.edu/~crshalizi/CSSR/
http://dx.doi.org/10.1016/0375-9601(96)00453-7
http://dx.doi.org/10.1016/0375-9601(96)00453-7
http://dx.doi.org/10.1016/0375-9601(96)00453-7
http://dx.doi.org/10.1016/0375-9601(96)00453-7



