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Stability of the flow in a soft tube deformed due to an applied pressure gradient
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A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the
discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical
tube and the experiments of Verma and Kumaran [J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube
deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is
incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental
images, where it is found that there is an expansion and then a contraction of the tube in the streamwise
direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined
using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity
profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for
the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is
carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation.
The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube
where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is
stable in the upstream diverging section where the deformation is maximum. The prediction for the transition
Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence
and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition
Reynolds number by an order of magnitude.
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I. INTRODUCTION

Advances in microfabrication have made possible the
miniaturization of complex reaction networks onto “lab-on-
a-chip” devices, in which the reactors and channels have di-
mensions less than 1 mm. Miniaturization has several potential
benefits, such as fast reactions in controlled environments with
small volumes of reagents in devices of small size. However,
reactions take place only when the reactant streams mix at
the molecular level, and it has long been recognized that slow
mixing could be a bottleneck in microreactors [1,2]. At the
small length scales and low velocities used in microfluidics,
flows are laminar and mixing takes place due to molecular
diffusion. The time required for mixing across a length scale A

can be estimated as A2/D, where D is the molecular diffusion
coefficient. The diffusion coefficient for small molecules in
liquids is of the order of 10−9 m2/s, while that for complex and
polymeric molecules could be up to four orders of magnitude
lower. Based on this, the time required for diffusion across
a channel of width 1 mm is in the range 103−107 s. Such
long mixing times adversely affect the feasibility of sample
preparation processes in microfluidic devices.

A promising method for enhancing mixing in microfluidic
devices [3,4] is to make the walls of the microconduit
sufficiently soft, so the laminar flow is disrupted by a flow
instability due to a dynamical coupling between the fluid and
the soft wall. This instability occurs at a Reynolds number (or
flow velocity) much lower than that for the flows in rigid tubes
or channels. Here the Reynolds number Re = ρV A/μ is the
ratio of inertial and viscous stresses, ρ is the fluid density, A is
the characteristic length (tube diameter or channel height), V

is the average velocity, and μ is the fluid viscosity. While the
experimental results for soft-wall instability in a microchannel
are in agreement with theoretical predictions [4], there is still

a difference of a factor of about 10 between the theoretical
predictions and experimental results for the flow in a soft tube
[3]. The resolution of this discrepancy is the subject of the
present analysis.

The understanding developed for stability or laminar-
turbulent transition in rigid-walled channels and tubes cannot
be directly applied to the flow through soft conduits. In rigid
tubes and channels, the transition is not predicted by the a linear
stability analysis of the laminar flow. For a two-dimensional
channel, the transition is observed in experiments at a Reynolds
number of about 1200 [5], while the linear stability studies [6]
predict that the flow becomes unstable at a Reynolds number of
5772. In a rigid pipe, the transition is observed at a Reynolds
number of about 2100, whereas the linear stability analysis
predicts that the flow is stable at all Reynolds numbers. There
is now a consensus that the laminar-turbulent transition in
rigid conduits is due to a highly subcritical bifurcation which
is certainly three dimensional, though the exact nature of the
transition is still not completely understood.

The stability of flow in channels or tubes with flexible walls,
made of viscoelastic solids of finite thickness, qualitatively
differs from those in rigid conduits, due to the dynamical
coupling between the velocity fluctuations in the fluid and
the displacement fluctuations in the wall material. It has
been shown, in previous linear stability studies, that the flow
could become unstable at a transition Reynolds number which
depends on the scaled shear modulus of the wall material.
There is an instability even at zero Reynolds number, when
the dimensionless number V μ/GA increases beyond a critical
value [7,8], where μ is the fluid viscosity, G is the elasticity
modulus of the wall material, and V and A are the characteristic
flow velocity and length. The instability is caused by the
transfer of energy from the mean flow to the fluctuations
due to the shear work done at the interface. The transition
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Reynolds number does depend on the specific type of wall
material [9–13]. Weakly nonlinear studies [14,15] indicate
that the low-Reynolds-number instability is subcritical. There
is experimental confirmation of the zero-Reynolds-number
instability [16,17], and nonlinear oscillatory states have been
sustained even after transition [18]. It has been shown that the
mass transfer rates near the elastic surface are enhanced by up
to 25% due to the elastohydrodynamic instability [19].

Other mechanisms of instability at high Reynolds number
also qualitatively differ from the instability for the flow past
a rigid surface. Viscous effects are negligible in the bulk of
the flow in the high-Reynolds-number “inviscid” instability
[20–22], though they are significant in boundary layers of
thickness Re−1/2 at the walls. The transition Reynolds number
follows the scaling Ret ∝ �1/2, where the dimensionless
number � = ρGA2/μ2 does not depend on the flow velocity
and depends only on the material properties and geometry. The
transition is due to the destabilising effect of inertial stresses
within the bulk of the flow. The destabilizing mechanism in
the “wall-mode” instability [22–24], which is the transfer of
energy from the mean flow to the fluctuations due to the
shear work at the interface, is identical to that for the viscous
instability. The viscous stress perturbations are important
in a wall layer of thickness Re−1/3 at the wall, and the
transition Reynolds number scales as Ret ∝ �3/4. Weakly
nonlinear studies have shown that the wall-mode instability
is supercritical [15], in contrast to the low-Reynolds-number
instability, which is subcritical [10]. The transition Reynolds
number for the inviscid and wall-mode instabilities are
relatively insensitive to the wall constitutive relation, provided
the transition Reynolds number is higher than about 10.

Weakly nonlinear studies of the wall-mode instability
indicate that the primary bifurcation is supercritical, in contrast
to the subcritical bifurcation in the flow through rigid tubes
and channels. In addition to the theoretical indications, in
experiments [3], there is evidence that the transition is
preceded by a linear instability of the base parabolic flow.
In dye-stream experiments where a dye stream is introduced
at the center of the tube of the tube, it is observed that the
perturbations of the dye stream just above the critical Reynolds
number are of well-defined frequency after transition, and
the amplitude of perturbations increases continuously as a
function of the control parameter which is the difference
between the Reynolds number and the transition Reynolds
number. This is in contrast to a discontinuous breakup of the
dye stream that is observed in the transition in a rigid tube. All
of these indicate that the mechanism of transition is a linear
instability and not the nonlinear growth of perturbations in the
vicinity of a highly subcritical transition. Therefore, we restrict
attention to the linear stability analysis in the present study.

In the experimental studies on the flow through a flexible
tube [3], it was found that the transition Reynolds number
is lower, by about an order of magnitude, in comparison to
theoretical predictions. It was speculated that the reason for the
low transition Reynolds number could be the tube deformation
due to the applied pressure difference. The pressure gradient
results in an expansion of the tube near the inlet and then a
decrease in radius as the pressure decreases towards the outlet.
In that case, it was observed that the flow is destabilized not
in the diverging section where the slope of the wall is largest

but in the converging section where the slope of the wall is
relatively smaller. Based on qualitative arguments relating the
slope to the pressure gradient, the relation Ret ∝ �5/8 for the
transition Reynolds number was recovered.

Experiments for transition in a microchannel of rectangular
cross section with height (smallest dimension) 100 μm [4]
indicated that the transition Reynolds number in that case
could be as low as 200. The transition Reynolds number was
found to scale as Ret ∝ �5/8 in that case as well, where Ret

and � are based on the height of the microchannel. The
effect of deformation in the flow through a microchannel
was incorporated in a linear stability analysis [4], and it was
found that there is a modification of the velocity profile and
the pressure gradient due to the channel deformation. In the
converging section of the channel, the transition Reynolds
number was lower, by a factor of about 10, in comparison
to the flow through an channel with flat walls. Here, we carry
out the linear stability analysis for the flow through a tube to
determine whether there is a similar reduction in the transition
Reynolds number.

One of the defining features of the stability of parallel
shear flows is that the characteristics of the flow in channels
and tubes completely differ. In a channel, there is the
Tollmien-Schlichting instability that destabilizes the flow at
a Reynolds number of about 5772 [6]. In contrast, in a tube
flow, the linear stability analysis indicates that the flow is
always stable at all Reynolds numbers. This difference is due
to the difference in the nature of the differential operators
in the Cartesian and cylindrical coordinates when we write
down the Orr-Sommerfeld equations. The instability in the
flow through a microchannel bounded by a soft wall [4] also
cannot be used to draw conclusions for the flow through a soft
tube. In the earlier experiments [4], only one of the walls was
soft, while the other three were rigid. Due to this, symmetry
about the central plane was already broken in the base state,
even when we use a parallel flow approximation. Therefore,
it is not surprising to find an instability. In the present tube
flow, the base configuration is axisymmetric, and so there is
no symmetry breaking about the axis in the base state when
we use the near-parallel approximation. Consequently, it is not
clear whether the same mechanism of instability will apply for
the flow through a soft tube as well.

Here a combination of flow simulations for reconstructing
the laminar flow and stability analysis is used to examine
the physical reason for the destabilization of the laminar
flow. The laminar velocity profiles are reconstructed using
two techniques, the ANSYS-FLUENT 13.0.0 software and the
finite-difference formulation of Sutterby [25] for axisymmetric
flows. The results of the two were found to be in agreement to
within 1%, thus verifying the consistency of the flow profiles
obtained by the two methods. In order to account for the tube
deformation in the theory, the detailed shape of the tube and
the variation in the radius in the streamwise direction are
reconstructed from images recorded during the experiment.
This detailed shape is used in a flow simulation in order to
predict the pressure drop and the velocity profile within the
channel.

In the flow simulation, we consider the flow of an
incompressible Newtonian fluid in a conduit with the deformed
cross section obtained from the experiments, while the wall
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is modeled as an incompressible neo-Hookean solid with
constant shear modulus. Gradients in the shear modulus
created during the curing of the gel have been reported, and
these do have a modest effect on the stability boundaries at low
Reynolds number [26]. These gradients were not measured
directly in the experiments of Verma and Kumaran [3], and
there were no visible variations in the texture in the scanning
electron microscope images of tube cross sections, and so we
do not consider these gradients in the present analysis.

After reconstructing the velocity profile, we conduct a
linear stability analysis to determine whether the velocity
profile is stable or unstable. It is not feasible to use the same
computational procedure for the linear stability analysis as for
the base flow. For flows through a rigid pipe, computational
fluid dynamics simulation packages such as ANSYS-FLUENT

will predict a laminar velocity profile even when the Reynolds
number is higher than the transition Reynolds number, because
the laminar solution is a valid solution of the Navier-Stokes
equations at all Reynolds numbers, and the transition is highly
subcritical. In two-dimensional or axisymmetric computa-
tions, the turbulent profile is obtained only when a turbulence
model is used. In fact, even for three-dimensional direct
numerical simulation computations in a channel or tube, the
flow will be laminar when the Reynolds number exceeds the
transition Reynolds number. It is necessary to impose relatively
large perturbations on the flow profile in order to get to the
turbulent state close to the transition Reynolds number.

In the flow through the deformable tube, the ANSYS-FLUENT

simulations as well as the finite-difference computations
capture only the laminar velocity profiles, since these are
solutions of the Navier-Stokes equations, albeit unstable
solutions. For the unstable modes, experiments indicate that
the frequency is of the order of 102−103 s−1. Even if we
were to impose perturbations on the base laminar flow, it
is infeasible to capture such high-frequency perturbations in
finite-difference schemes that are integrated in time, since they
require unrealistically short time steps. Therefore, we have
evaluated the base state using the ANSYS-FLUENT simulations
and the finite-difference formulation and then carried out the
stability analysis of this base state.

In the linear analysis, we use a local parallel flow approxi-
mation but use the velocity and pressure profiles from the flow
simulations as inputs. The results of the linear stability analysis
are compared with experimental results of Verma and Kumaran
[3]. The analysis is restricted to axisymmetric perturbations
for two reasons. First, the experiments indicate that the wall
deformation and wall motion are axisymmetric. Second, there
is a previous linear stability study [27] which shows that
axisymmetric disturbances are more unstable than nonaxisym-
metric disturbances for the flow in a converging tube.

The analysis is presented as follows.
(1) The flow geometry and its determination from the

experimental results are discussed in Sec. II. Measurements
from the experiments (Fig. 1) are used to reconstruct the
downstream variation of the tube radius (A) as function of
the downstream distance z, as shown in Fig. 2.

(2) The fluid flow solutions in the deformed tube with no-
slip boundary conditions at the wall are determined in Sec. III
A, starting from the Navier-Stokes equations. This was done in
two ways—the first is using the ANSYS-FLUENT software, and

the second is using the numerical method of Sutterby [25];
the results from the two procedures are in agreement. The
inertial terms are included in the flow computation due to the
variation in the wall diameter. Though the slope of the wall α

is numerically small, as shown in Fig. 11, the inertial terms in
the momentum conservation equation scale as Reα, which is
not small in the present system.

(3) Section III B provides the base-state solution for the
displacement field in the wall material. In this, we have
made the locally parallel approximation for the displacement
field and evaluated the displacement field from the fluid
pressure and stress at the fluid-solid interface. Since the solid
is stationary in the base state, there are no inertial terms,
and the momentum conservation equation just reduces to the
solenoidal condition on the stress in the solid. Since the slope
of the wall is numerically small as shown in Fig. 11, the parallel
approximation is used for the displacement field.

(4) The linear stability analysis is formulated in Sec. III
C. Here, the mean velocity profile and pressure gradient in
the fluid, and the mean displacement profile in the solid wall,
are used, together with the parallel flow approximation, to
determine the stability limits. The inertial terms in the fluid mo-
mentum equation and the acceleration in the solid momentum
equation are included in the linear stability analysis. The par-
allel flow approximation is valid only when the length scale for
the flow variation in the streamwise direction, which is com-
parable to the ratio of the tube radius and the slope of the wall,
is much larger than the wavelength of the perturbations. The
wavelengths of the most unstable modes computed in Figs. 8, 9,
and 10 are compared with the ratio of the ratio of the tube radius
and wall slope shown in Fig. 11 to verify that the conditions
required for the parallel flow approximation are satisfied.

(5) The results are discussed in Sec. IV, where the
predictions of the linear stability analysis are compared
with experimental results, and the physical mechanism of
destabilization is examined in greater detail.

II. FLOW GEOMETRY

The experiments of Verma and Kumaran [3] were carried
out in a tubular bore of diameters 0.8 and 1.2 mm within
a polydimethyl siloxane (PDMS) block of square cross
section with height 10 mm, as shown in Fig. 1(a). The
experimental tube consists of a hard “developing” section
of length 10 cm, fabricated using gel with shear modulus
0.5 MPa, which is sufficiently high that there is no reduction in
the transition Reynolds number below the rigid tube value of
2100. The length of the development section is sufficient for the
development of a parabolic profile and for inlet disturbances
to be damped out. The development section is followed by
a “test” section of length 9.5 cm made of soft gel with a
lower catalyst concentration to obtain a sufficiently low shear
modulus that there is a reduction in the transition Reynolds
number below the rigid tube value of 2100. Experiments
were carried out for three different shear moduli in the test
section, 18 kPa, 25 kPa, and 35 kPa. The development and test
sections are seamlessly bonded, and there is a pressure port
just upstream of the entrance to the test section to measure
the pressure drop across the tube. The deformation of the tube
as a function of downstream distance in the test section was
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FIG. 1. (Color online) Undeformed tube of diameter 1200 μm (a), schematic of undeformed tube (b) and deformed tube (c), and close-up
views of deformed tube where the soft section is made of PDMS with shear modulus 18 kPa, at a Reynolds number of 950 (d). The locations
are L1 = 2 mm upstream, and L2 = 1 cm, L3 = 3.5 cm, L4 = 6 cm, and L5 = 9.5 cm downstream of the entrance to the soft section. The
scale bar in the figures is 1 mm in length. Panels (a) and (d) are reproduced from Verma and Kumaran [3].

measured using cameras mounted above and on the side of the
PDMS block. An example of images of a deformed tube used
for measurements is shown in Fig. 1(d), and the reconstruction
of the tube deformation is shown in Fig. 1(c).

Transition was inferred using three different measurement
techniques. The first is the dye-stream measurement, where
dye is injected at the center of the tube, and images are captured
of the progress of the dye stream through the tube, as shown
in Fig. 1(d). The dye stream is straight and undisturbed in a
laminar flow, while there is a spontaneous breakup of the dye
stream in a turbulent flow. The second measure is the friction
factor obtained from the pressure difference across the soft
section. In the flow through soft tubes, breakup of the dye
stream was observed at a Reynolds number as low as 500 for
the softest materials used, which is much smaller than the rigid
tube value of 2100. Motion of the viscoelastic wall was also
inferred by laser scattering from the curved interface between
the solid and the fluid. From a video of the laser scattering
off the wall of the tube, the average and the mean square of
the fluctuations in the gray-scale intensity were calculated. It

was observed that at the Reynolds number where transition is
observed in the dye stream, there is also a sharp increase in the
mean square of the laser intensity fluctuations, signifying the
onset of wall motion.

In the experimental study of Verma and Kumaran [3],
the tube deformation was taken into account in the friction
factor and Reynolds number by defining an “average” diameter
across the tube. Here we determine the variation in the velocity
profiles along the length of the tube, and so there is no
necessity of defining an average diameter. The flow Reynolds
numbers are, in all cases, reported in terms of the average
velocity (Q/πA2

0) and the undeformed tube diameter 2A0,
Re = 2ρQ/πA0μ, where Q is the flow rate. The friction factor
calculated from the pressure drop measurements was found to
depart from the laminar value of 16/Re at the same Reynolds
number where the dye-stream breakup was observed.

The flow geometry is a deformed axisymmetric tube with a
straight axis, in which the radius is a function of position. The
streamwise and radial coordinates are z and r , respectively,
and the configuration and flow are considered axisymmetric
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FIG. 2. (Color online) The side view (a) and the magnified side view at different streamwise locations (b) and the cross-sectional view
(c) at different streamwise locations of the tube reconstructed from the experimental images in Fig. 1 with soft walls made with shear modulus
18 kPa at Reynolds number 950. The locations are L1 = 2 mm upstream and L2 = 1 cm, L3 = 3.5 cm, L4 = 6 cm, and L5 = 9.5 cm downstream
of the entrance to the soft section. The scale bar in the figures is 1 mm.

so there is no variation in the meridional direction. The
pressure gradient along the length of the tube deforms the
tube wall in the soft section, resulting in an axial variation in
the tube radius (the undeformed tube diameter is 1200 μm).
The deformation along the length of the tube was measured
using a camera on the side. The deformed tube geometry is
reconstructed by a cubic spline interpolation of the tube radius
at different locations. Figures 2(a) and 2(b) show the side
view of the reconstructed tube corresponding to the deformed
tube in Fig. 1(d) at different streamwise locations. The cross
section at different locations are shown in Fig. 2(c). This tube
geometry is used to obtain the velocity and pressure drop using
computational fluid dynamics.

The shape of the solid wall, which is a gel block with square
cross section of side 10 mm with a tubular bore of diameter
1.2 mm removed from the axis, is quite complex. In the stability
analysis, the soft wall is approximated as an annulus with inner
radius A and outer radius equal 6 mm, which enables us to carry
out a linear stability analysis using an axisymmetric coordinate
system. This is not a severe approximation, because the outer
radius of the block in the simulation is at least 10 times larger
than the inner radius. Fluctuations in the displacements in the
annular region are significant only over distances comparable
to the inner tube diameter, and they decrease to zero as the outer
edge of the annulus is approached. Due to this, the variation in
the transition Reynolds number predicted here is very small;
there is an increase in the transition Reynolds number of about
2% for the softest gels when the outer diameter is decreased
from 6 to 5 mm and a decrease of about 1% when the outer di-
ameter is increased from 6 to 7 mm. The eigenfunctions for the
solid displacement field in the wall, shown later in Fig. 12, con-

firm that the solid displacement field decreases to zero over a
distance comparable to the radius of the inner bore, and the dis-
placement fluctuations are small at the outer surface of the gel.

III. ANALYSIS

A. Base-state fluid flow

The system consists of a pressure-driven flow of an
incompressible Newtonian fluid of density ρ and viscosity
μ in a tube of radius A with a viscoelastic wall in the region
A � r � HA, as shown in Fig. 3. A cylindrical coordinate

z

r
A

HA

FIG. 3. Schematic diagram, not to scale, showing the coordinate
system, the fluid and gel, local tube diameter A, and the outer diameter
HA for the soft wall. A schematic of the parabolic profile at the
entrance to the test section is shown on the left, and the qualitative
variation in the velocity in the diverging and converging sections,
plotted later in Fig. 4, are also shown.
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system is used, where the flow is in the z direction and the
velocity variation is in the radial r direction, and we consider
the system to be axisymmetric so there is no variation in the θ

direction. The annular wall is modelled as an incompressible
elastic neo-Hookean solid of density ρ and shear modulus
G. The densities of the solid and fluid are considered to be
equal. Solid dissipation is neglected in the present analysis
because previous studies [12] have shown that it does not
have a significant effect on the flow stability at high Reynolds
numbers greater than about 100, though solid dissipation does
significantly affect the flow stability at low Reynolds number.
The lengths are nondimensionalized by A, the velocities by
GA/μ, and the pressure and stresses by G.

The mass and momentum conservation equations for the
fluid are the usual incompressible Navier-Stokes equations,

∇ · v = 0, (1)

Re

�

(
∂v
∂t

+ v · ∇v
)

= −∇p + ∇2v, (2)

where the Reynolds number is Re = ρV A/μ, the parameter
� = V μ/GA, ρ and μ are the fluid density and viscosity, V

is the characteristic velocity, and the factor Re/� appears on
the left side because the pressure and shear stress are scaled
by G, while the velocity is scaled by GA/μ. The boundary
conditions at the wall of the deformed channel are the no-slip
condition, that is, zero tangential and normal velocity, since
the wall is stationary in the base state.

The deformed tube is reconstructed from the measurements
of the variation of diameter with downstream distance [3] as
discussed in Sec. II. Flow simulations are then carried out in
this tube in two ways. The first was by using ANSYS-FLUENT

13.0.0 in order to determine the modification of the flow and
pressure profiles due to tube deformation. The second was
by using the finite-difference formulation of Sutterby [25]
for axisymmetric flows. It was verified that there is good
agreement between the predictions of the two simulations for
the developing flow in a tube starting with a plug flow at the
inlet, and the maximum difference in the velocity is less than
1% for the grid resolutions used here. Consequently, the results
for the mean velocity and profiles reported here are from the
ANSYS-FLUENT simulations.

In the ANSYS-FLUENT simulations, the pressure-velocity
formulation was used for a Newtonian fluid, and no-slip
conditions were used at the walls for the mean flow. The
computational domain consisted of the entire tube of length
19.5 cm, including the hard and soft sections, and the tube
was discretized with a spatial resolution of 1 mm in the axial
direction and 100 μm in the radial direction. For example, the
deformed tube shape shown in Fig. 2 was discretized using
1 827 674 nodes. The conditions at the ends of the tube are
a constant velocity at the inlet and a constant pressure at the
outlet. The flow in the development section does depend on the
specific velocity profile imposed at the inlet, but the velocity
profile and the pressure in the test section were not affected by
the velocity profile at the entrance to the development section.
The simulation was initialized with zero velocity everywhere,
the system was allowed to evolve until steady state is reached,
and the convergence limit was set at 10−4 in the residual

for the continuity equation (the limiting condition in most
simulations) or 10−3 for the velocity equations.

B. Base-state solid displacement

The deformation in the solid is described by the displace-
ment field w, which is the displacement of material points
about their equilibrium positions due to the applied stresses.
A Eulerian description, where the unstressed coordinates are
used as the reference, is used in the present analysis.

w(X,t) = x(X,t), (3)

where X is the unstressed location of a material point at x. The
deformation tensor F is defined as

F = ∇Xw, (4)

The Cauchy stress tensor for an incompressible solid, when
scaled by the shear modulus G, is given by

σ = −psI + F·FT . (5)

For an incompressible solid where the volume is conserved,
the determinant of the deformation tensor is 1,

Det(F) = 1. (6)

The momentum conservation equation states that the rate of
change of momentum in the material is equal to the divergence
of the stress,

Re

�

(
∂2w
∂t2

)
= ∇X · P, (7)

where P is Piola-Kirchoff stress tensor defined in indicial
notation as

PIJ = F−1
IK σ e

KJ , (8)

where σ e
IJ is the Cauchy stress tensor. Inserting the Piola-

Kirchoff stress tensor into the momentum conservation equa-
tion (7), we find

Re

�

∂2wI

∂t2
= ∂

(
pF−1

JI

)
∂XJ

+ ∂FIJ

∂XJ

. (9)

The displacement field in the solid layer is obtained by solving
the governing mass and momentum equations, (6) and (7).
From Eq. (6), we find

w̄R

R

(
∂w̄R

∂R

∂w̄Z

∂Z
− ∂w̄R

∂Z

∂w̄Z

∂R

)
= 1. (10)

The steady-state momentum equation for solid is

∇X·P̄ = 0. (11)

Using Eq. (8) for P̄ and Eq. (5) for σ , the steady-state
momentum equation is

∂

∂XJ

( − p̄s F̄
−1
JI + F̄IJ

) = 0. (12)

The conservation equations are solved subject to the zero
displacement condition, w̄Z = Z and w̄X = X, at the outer
surface r = (H + 1), and the stress balance conditions at the
fluid-solid interface,

σRR = τRR, (13)

σRZ = τRZ, (14)
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where the normal stress τRR at the fluid-solid interface is the
pressure, and the shear stress is the product of the viscosity and
the wall strain rate γ̇w obtained from the fluid velocity profile.

In the base state, the solutions for the displacement and
pressure fields have the form

w̄Z = Z − 1

4

∂p̄

∂z
[(H + 1)2 − R2]

+
(

γ̇w − 1

2

dp̄

dz

)
log

(
R

H + 1

)
, (15)

w̄R = R, (16)

p̄s = p̄ +
(

∂p̄

∂Z

)2
R2 − 1

4
+ ∂p̄

∂Z

(
γ̇w − 1

2

dp̄

dz

)
log (R),

(17)

where γ̇w is the strain rate at the wall and the mean pressure p̄

is only a function of z. The underlined terms in Eqs. (15) and
(17) turn out to be zero for the parabolic flow in a cylindrical
tube with a constant pressure gradient. These terms, along
with those in the linear stability analysis indicated later, result
in the decrease in the transition Reynolds number due to the
modification of the mean velocity profile and the pressure
gradient. The stress balance conditions (14) are satisfied for

p̄ = p̄s − 1. (18)

C. Linear stability analysis

In the linear stability analysis, small perturbations are
imposed on the velocity and wall displacement fields of the
form

vi = v̄i + ṽi(r) exp [ık(z − ct)], (19)

wi = w̄i + w̃i(R) exp [ık(Z − ct)], (20)

where k is the wave number and c is the wave speed. These
are inserted into the conservation equations and linearized in
the perturbations the fluid mass and momentum conservation
equations,

r−1dr (rṽr ) + ıkṽz = 0, (21)

(Re/�)ık(v̄z−c)ṽr = −dr p̃ + (
d2

r + r−1dr−r−2 − k2
)
ṽr ,

(22)

(Re/�)[ık(v̄z−c)ṽz+ṽrdr v̄z] = −ıkp̃ + (
d2

r +r−1dr−k2)ṽz,

(23)

where dr ≡ (d/dr).
The incompressibility condition for the wall material,

Det(F) = 1, reduces to

ıkw̃Z + R−1dR(Rw̃R) − dw̄Z

dR
ıkw̃R = 0. (24)

The momentum conservation equations for the wall material
are

− Re

�
k2c2w̃Z = −ıkp̃s − dp̄

dZ

1

R

d(Rw̃R)

dR
+ ∂p̄s

∂R
ıkw̃R

+ 1

R

d(Rw̃Z)

dR
− k2w̃Z, (25)

− Re

�
k2c2w̃R = −dRp̃s + ıkp̃s

∂w̄Z

∂R
− ∂p̄s

∂R

(
w̃R

R
+ ıkw̃Z

)

+ ∂p̄

∂Z

(
dRw̃Z + w̃R

R

dw̄Z

dR

)

+ d

dR

[
1

R

d(Rw̃R)

dR

]
− k2w̃R. (26)

The boundary conditions at r = 0 are the no normal velocity
condition, ṽr = 0 and the symmetry condition dr ṽz = 0,
while the boundary conditions at R = 1 + H are the zero
displacement conditions, w̃R = w̃Z = 0. At the perturbed
interface R = 1 + w̃R , the continuity of velocity and stress
conditions are used. When the interfacial continuity of velocity
conditions are written in terms of the fields at the unperturbed
interface R = 1 using an expansion in w̃R , we obtain

ṽr = −ıkcw̃R, (27)

ṽz + γ̇ww̃R = −ıkcw̃Z, (28)

where γ̇w is the strain rate at the wall. In the above equation, the
second term on the left accounts for the variation in the mean
velocity in the fluid due to the displacement of the surface.

The normal stress continuity equation is of the form

n·σ ·n = n·τ ·n, (29)

where the unit normal to the surface can be expressed, in the
linear approximation as

n = eR − ∂wR

∂Z
eZ. (30)

Using this, the normal stress balance equation, up to linear
order in the perturbations, becomes

τ̃rr = σ̃RR. (31)

The equality of the mean shear stress at the interface has
been used in simplifying the above condition. Expressed in
terms of the displacement and velocity fields, the normal stress
continuity is

− p̃f + 2dr ṽr = −p̃s + 2dRw̃R. (32)

The tangential stress condition is discussed in some detail,
since this is significantly altered by the modification of the
velocity profile and pressure gradient due to tube deformation.
In the tangential direction, the stress balance condition requires
that

t · τ · n = t · σ · n, (33)

where the unit tangent to the surface, in the linear approxima-
tion, is given by

t = eZ + ∂wR

∂Z
eR. (34)
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Expressed in terms of components, and retaining terms up to
linear order in the perturbations, the tangential stress balance
can be written as

τzr + ∂wR

∂Z
(τrr − τzz) = σZR + ∂wR

∂Z
(σRR − σZZ). (35)

The above condition is applicable at the deformed interface.
When expressed as a Taylor expansion about the undeformed
interface r = 1, and considering terms up to linear order in the
perturbations, we obtain

τ̃zr + w̃R

∂τ̄zr

∂r
+ ıkw̃R(τ̄rr − τ̄zz) + w̃R

dτ̄zr

dr

= σ̃ZR + ıkw̃R(σ̄RR − σ̄ZZ). (36)

Here we have included the variation of the mean shear stress
with displacement in the fluid but have not included it for
the solid, since the boundary conditions are applied at the
unperturbed interface in the Eulerian description. There is no
mean normal stress difference in the fluid, but there is a mean
normal stress difference in the solid, which is given by

σ̄RR − σ̄ZZ = −
[

1

R

(
γ̇w − 1

2

dp̄

dz

)
+ R

2

dp̄

dz

]2

. (37)

This can be inserted into the stress balance equation to obtain

dr ṽz + ıkṽr + w̃R

dτ̄zr

dr
+ dp̄

dz
= dRw̃Z + ıkw̃R

+ dRw̃R

[
1

R

(
γ̇w − 1

2

dp̄

dz

)
+ R

2

dp̄

dz

]

− ıkw̃R

[
1

R

(
γ̇w − 1

2

dp̄

dz

)
+ R

2

dp̄

dz

]2

. (38)

In the above equations, the underlined terms turn out to be
zero for the parabolic flow in a tube with a constant pressure
gradient; the difference in the results of the linear stability
analysis for a cylindrical tube and that for a tube of varying

cross section reported here is primarily due to these terms,
especially the term proportional to the square of the fluid
pressure gradient in Eq. (38).

The spectral collocation technique based on an expansion
in Chebyshev polynomials is used to solve the linear stability
equations [12]. The velocity field in the fluid and the
displacement field in the gel are expanded in a series of
Chebyshev polynomials, typically including 50–60 terms in
the expansion, and the dispersion matrix is constructed from
the values of the velocity and displacement fields and their
derivatives at the nodes which are the zeros of the next-higher
Chebyshev polynomial. Two of the rows of the dispersion
matrix correspond to the boundary conditions at r = 0 for the
velocity and r = 1 + H for the displacement, while there are
four rows for the boundary conditions at the interface r = 1.
These are solved to obtain discrete eigenvalues. The numerical
values of the lowest eigenvalues are insensitive to the number
of basis functions used, provided the number is large (greater
than about 50), though the total number of eigenvalues does
depend on the number of basis functions used. A sufficiently
large number of basis functions is used here, typically 50–60,
so the magnitudes of the lowest eigenvalues do not change
by more than 1% when the number of basis functions is
increased by 10. The results of the numerical calculations have
been validated against the previous linear stability analysis of
Gaurav and Shankar [12] for the parabolic flows in a tube with
a constant pressure gradient.

IV. RESULTS

The mean velocity profiles for a tube, in which the test
section is fabricated using shear modulus 18 kPa, at a Reynolds
number of 1025, are shown in Fig. 4(a). At all sections, we
have verified that the predicted flow rates are invariant with
axial distance; the variation in the flow rate at different axial
locations is less than 0.1%. Figure 4(a) shows that the tube
radius increases from the undeformed value of 600 μm to a

0 0.5 1 1.5 2
vz (m/s)

-1

-0.5

0

0.5

1

r
( m

m
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5
(vz/(Q/π A2))

-1

-0.5

0

0.5

1

(r
/A

)

(b)

FIG. 4. The mean velocity v̄z (m/s) as a function of the radius r (μm) (a) and the scaled mean velocity [v̄z/(πQ/A2)] as a function of
the scaled radius (r/A) (b) for the flow in a tube of undeformed diameter 1200 μm in which the developing section is fabricated with shear
modulus 18 kPa at a Reynolds number (based on mean diameter) of 1025 at distances x = 0 cm (◦), 1 cm (�), 3.5 cm (∇), 6 cm (�), 8.8 cm
(�), and at 9 cm (�) from the joint between the developing and test sections. Here A is the deformed radius at the location z.
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FIG. 5. The pressure as a function of axial distance z for a tube
in which the developing section is made of PDMS gel with shear
modulus 18 kPa for Reynolds numbers 126 (◦), 521 (�), 716 (∇),
888 (�), 1025 (�), and 1240 (�). The joint between the developing
and test sections is at z = 0, and the vertical line shows the location
of the pressure transducer.

maximum of about 854 μm about 1 cm downstream of the
entrance to the test section at the Reynolds number of 1025.
This results in a significant distortion of the mean velocity
profile. The distortion is better visualized in the graph of the
scaled mean velocity [v̄z/(Q/πA2)] as a function of the scaled
radius (r/A) in Fig. 4(b), where A is the radius of the deformed
tube at the axial location z. In the diverging section, the velocity
at the center of the tube is significantly higher than the value
of 2 expected for a parabolic profile, whereas the velocity is
more pluglike in the downstream converging section where the
scaled mean velocity is lower than the value of 2 expected for
a parabolic profile.

The pressure variation along the axial length is shown for
a tube with test section made of polymer gel with shear
modulus 18 kPa at different Reynolds numbers in Fig. 5.
A linear variation of pressure with downstream distance,
expected for the laminar flow through a cylindrical tube, is
observed at low Reynolds number. However, as the Reynolds
number increases, there is a significant variation in the pressure
gradient due to the tube wall deformation. The pressure
decreases linearly with distance in the hard developing section
for z < 0, but there is an increase in the pressure in the
diverging section for z less than about 3 cm in the test section
and a subsequent decrease in pressure in the downstream
converging section.

The pressure difference between the pressure transducer
(vertical line in Fig. 5) and the outlet is compared with
experimental results for tubes in which the test section is
made of gels of different shear moduli in Fig. 6. For a hard
gel in which the test section is made with shear modulus
0.5 MPa, the flow simulations predict a linear increase of
pressure with distance, and these are in agreement with
experiments up to a Reynolds number of about 2000, at which
the rigid tube transition takes place. As the tube walls are made
softer, the experimental pressure difference deviates from the
theoretical value at an increasingly lower Reynolds number,

and the minimum Reynolds number is about 800 for the
softest gel with shear modulus 18 kPa. The Reynolds number
at which there is a difference between the theoretical and
experimental pressure difference also coincides, within about
5%, with that at which transition is observed in experiments. It
should be noted that the flow simulations only predict laminar
velocity profiles, since we have not used any turbulence model
in the simulations, even though the velocity profile differs
substantially from a parabolic velocity profile in some cases
due to tube deformation, as shown in Fig. 4. This suggests
that the cause of the difference in the pressure drop between
experiments and simulations is because the transition in
experiments results in a significantly higher pressure gradient
in comparison to the laminar flow captured by the flow
simulations.

The mean velocity and pressure gradients determined from
the flow simulations are used to determine the wave speed as
a function of wave number in the linear stability analysis. The
results for the imaginary part of the wave speed for the least
stable and most unstable modes are shown in Fig. 7 for three
different Reynolds numbers for a tube in which the wall is made
of soft gel with shear modulus 18 kPa. All of these curves have
a some common features. The value of ci is negative in the low
wave number limit, indicating that perturbations are stable.
As k increases, the magnitude of ci first increases, reaches
an intermediate maximum, and then decreases again. Upon
further increase in k, the magnitude increases from a minimum
and approaches the ci = 0 axis at high wave number. The value
of ci is negative at all locations at a low Reynolds number of
521. As the Reynolds number increases, the value of ci at the
intermediate maximum increases and approaches the ci = 0
axis at the outlet (x = 9.5 cm) at a Reynolds number of 716.
Upon further increase in the Reynolds number to 888, the value
of ci is positive at the intermediate maximum, indicating the
presence of unstable modes. Since this intermediate maximum
has the largest value for unstable modes, the value of this
intermediate maximum and the corresponding wave number
are analyzed further as a function of Reynolds number and
downstream position.

The maximum value of the imaginary part of the wave speed
from the linear stability analysis, calculated using the velocity
profile and pressure gradient at different downstream locations,
is shown as a function of Reynolds number in Figs. 8(a), 9(a),
and 10(a) for tubes made with different wall elasticity moduli.
The imaginary part of the wave speed first becomes positive
at a Reynolds number of 888 for the tube with shear modulus
18 kPa, at a Reynolds number of 1217 for shear modulus 25
kPa, and at Reynolds number of 1439 for shear modulus 35
kPa. In all cases, the maximum ci first becomes positive at the
downstream end of the tube, at a distance between 9 and 9.5
cm from the inlet, and not near the inlet of the soft part of the
tube where the deformation is a maximum. It should also be
noted that the downstream section of the tube is a converging
section, where the flow is accelerating and the flow is more
pluglike in comparison to a parabolic flow, as shown in Fig. 4.
There is a sharp increase in the maximum value of ci in the
upstream diverging section at a Reynolds number of 1139 for
the tube with shear modulus 18 kPa and 1582 for the tube
with shear modulus 25 kPa, but this is at a significantly higher
Reynolds number than that at which the flow is predicted to
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FIG. 6. The pressure difference between the pressure transducer and the tube outlet for tubes in which the developing section is made of
soft gel with shear modulus 18 kPa (a), shear modulus 25 kPa (b), and shear modulus 35 kPa (c), and a hard tube with shear modulus 0.5 MPa
(d). The dashed lines show the experimental results, while the results from flow simulations are shown by the solid lines.

go unstable at the downstream section. This sharp increase in
ci at the upstream location is not observed for a gel with shear
modulus 35 kPa.

The wave number of the most unstable mode is shown as a
function of downstream location in Figs. 8(b), 9(b), and 10(b).
This figure indicates that the wavelength of the most unstable
modes is about 40 times larger than the radius of the tube, and
it does not show a significant variation as the perturbations
become unstable at the downstream end of the tube. However,
for gels with shear modulus 18 kPa and 25 kPa there is a sharp
decrease in the wavelength corresponding to the instability in
the upstream section.

The validity of the parallel flow approximation can now be
examined. The parallel flow approximation is valid when the
wavelength of the most unstable mode is much smaller than
the flow development length, which can be considered as the
ratio of the local tube radius and the wall slope. The wall slope
at different downstream locations, calculated from the tube
cross sections of the type shown in Fig. 1 using a fifth-order

polynomial fit for the wall radius, is shown in Fig. 11. The slope
of the wall has a maximum magnitude of about 4–5% at the
upstream expanding section for Reynolds numbers greater than
1000. However, at the downstream section where the instability
is first observed, the slope of the wall is less than 0.5% at the
transition Reynolds number of about 1025. This indicates that
the flow development length is about 200 times the tube radius
in the downstream section. In comparison, Figs. 8 to 10 show
that the wave number of the most unstable waves is about 0.15,
which implies that the wavelength of the most unstable modes
is only about 40 times the tube radius. Therefore, the parallel
flow approximation is valid in the downstream converging
section where the flow becomes unstable, though it may not
be valid in the upstream diverging section where the flow is
found to be stable.

Insight into the physical mechanism of the instability is
obtained from the eigenfunctions for the fluctuations in the
streamwise velocity ṽz, scaled by its value at the wall r = 1,
are shown as a function of radial position at two different
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FIG. 7. The imaginary part for the wave speed ci for the mode
with the largest ci as a function of the wave number k for the
flow through a tube with wall made of gel with shear modulus 18
kPa at Reynolds numbers 521 (a), 716 (b), and 888 (c) at different
downstream locations x from the inlet of the soft section, x = 0 (◦),
x = 1 cm, (�), x = 3.5 cm (∇), x = 6 cm (�), and x = 8.8 cm (�)
and at the outlet x = 9.5 cm (�).

downstream locations in Fig. 12(a). The eigenfunction for the
velocity is nonzero at the wall. This differs substantially from
a rigid tube, where the eigenfunction has to be zero due to
no-slip condition. This indicates that wall motion is involved in
destabilizing the flow, which differs markedly from transition
in a rigid channel. The velocity fluctuations are confined to
a thin layer near the wall of the tube, confirming that the
instability is due to the wall-mode instability mechanism. The
theoretical analysis of the wall-mode instability mechanism
has been discussed extensively before [22–24], and so we do
not repeat the discussion here but we note that the mechanism
of instability, which is the transport of energy from the mean
flow to the fluctuations due to the shear work done at the
interface, differs markedly from the transition mechanism
in a rigid tube. The salient features of the instability, the
confinement of the velocity fluctuations to a thin region of
thickness Re−1/3 near the wall, and the velocity fluctuations
are maximum at the wall are all observed in Fig. 12. A
definite scaling for the wall layer thickness as a function of the
Reynolds number could not be obtained, but the confinement
of the disturbances to a region near the wall indicates that this
is the wall-mode instability and not the inviscid instability in
which disturbances are confined to an internal critical layer.
The Fig. 12(a) also rules out the near wall turbulent bursting
(responsible for transition in rigid tubes) as the mechanism
here, since that would involve a maximum in the velocity
fluctuations close to, but not at, the wall. The displacement
in the wall is also confined to a region near the fluid-wall
interface, and the displacement decreases to zero within a
distance of about 1.5 times the tube radius. For this reason,
the boundary conditions on the displacement field at the outer
boundary do not significantly affect the eigenfunctions at the
outer boundary.

There are two reasons for the decrease in the transition
Reynolds number predicted by the linear stability analysis. The
first is a modification of the mean velocity profile which results
in a lower velocity gradient at the wall in the diverging section
and a higher velocity gradient at the wall in the converging
section, in comparison to a parabolic profile for the same flow
rate. The change in the slope at the wall can be estimated on the
basis of the scaling analysis [3]. If the Reynolds number is Re
and a slope of the wall is α, the modification of the mean flow
velocity is O(Reα). This could be large even though the slope
of the wall α is small. A simple scaling analysis in the limit of
high Reynolds number indicates that the velocity gradient at
the wall is (Reα)1/2, higher than that for a parabolic flow for
the same flow rate and tube radius. So the slope could be much
higher than that predicted based on a parabolic profile. The
velocity gradient at the wall at different downstream locations
is compared with the velocity gradient for a parabolic flow
with the same flow rate in Fig. 13. It is observed that the
velocity gradient at the downstream section could be larger,
by a factor of 2 in comparison to that for a parabolic flow for the
transition Reynolds number of about 1025. Thus, the increase
in the strain rate is not adequate to explain the decrease of
the transition Reynolds number by a factor of 10. The other
factor in the linear stability analysis which differs from that
for a parabolic flow is the local pressure gradient, shown in
Fig. 5. The local pressure gradient at different downstream
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FIG. 8. The maximum of the imaginary part of the wave speed ci (a) and the scaled wave number of the most unstable mode kmax (b) as a
function of downstream distance x from the entrance to the soft section for gels in which the soft wall is made with shear modulus 18 kPa for
Reynolds numbers 521 (◦), 716 (�), 888 (∇), 1025 (�), and 1139 (�).

sections is compared with the ratio of the pressure difference
and tube length across the soft section in Fig. 14. While the
pressure gradient is approximately a constant negative value
for low Reynolds numbers less than about 200 (not shown
in Fig. 14), at higher Reynolds number, the pressure gradient
first increases in the expanding section and then decreases
in the converging section downstream. As shown in Fig. 14,
the magnitude of the pressure gradient in the downstream
accelerating flow could be larger, by a factor of 4–5, than the
difference in pressure across the ends divided by the length of
the tube. This results in a significant modification in the shear
stress condition at the interface, Eq. (38), since the boundary
condition contains a term that is proportional to the square of
the pressure gradient. Since the mechanism of destabilization

of the wall-mode instability is the transport of energy from the
mean flow to the fluctuations due to the shear work done at the
interface [22,23], this modification of the shear stress condition
significantly reduces the transition Reynolds number. Due to
the quadratic dependence of the boundary condition (38) on
the pressure gradient, a combination of the large increase in the
pressure gradient and the relatively smaller increase in the wall
strain rate tends to destabilize the flow at a Reynolds number
10 times smaller than that predicted for a parabolic flow in a
tube with a constant pressure gradient. We have carried out
calculations using the parallel flow approximation where the
strain rate is determined from the actual velocity profile, and
the pressure gradient is assumed to be the difference in pressure
across the soft section of the tube divided by its length. With
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FIG. 9. The maximum of the imaginary part of the wave speed ci (a) and the scaled wave number of the most unstable mode kmax (b) as a
function of downstream distance x from the entrance to the soft section for gels in which the soft wall is made with shear modulus 25 kPa for
Reynolds numbers 978 (◦), 1077 (�), 1217 (∇), 1414 (�), and 1582 (�).
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FIG. 10. The maximum of the imaginary part of the wave speed ci (a) and the scaled wave number of the most unstable mode kmax (b) as a
function of downstream distance x from the entrance to the soft section for gels in which the soft wall is made with shear modulus 35 kPa for
Reynolds numbers 1182 (◦), 1305 (�), 1439 (∇), 1533 (�), and 1679 (�).

this approximation, the transition Reynolds number decreases
by very little, indicating that the increase in the magnitude of
the pressure gradient in the downstream section is crucial for
destabilizing the flow.

The transition Reynolds number observed by different
methods in the experiments is compared with the theoretical
predictions in Table I. The Reynolds number at which the
maximum ci becomes positive is in good agreement with that
at which there is a divergence between the experimental and
theoretical pressure differences in Fig. 6. Both the location of
the instability (downstream end of the tube) and the Reynolds
number for the instability are in quantitative agreement with
the Reynolds number at which dye-stream breakup and wall
oscillations are observed in the experiment. The Reynolds
number for transition from friction factor measurements is
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FIG. 11. The slope of the wall as a function of downstream
distance z for tubes in which the soft wall is made with shear modulus
35 kPa for an average Reynolds number of 521 (◦), 716 (�), 888 (∇),
1025 (�), and 1139 (�).

in agreement, within about 10%, with that from the other
methods.

In Table I, the results of the present linear stability analysis
(column V) are also compared with the results of a previous
linear stability analysis [12] carried out for a parabolic flow
in a cylindrical tube with the same same flow rate as that
in the experiments and with the same diameter as that at the
downstream location where the instability is observed (column
VI). Here we see that the Reynolds number predicted for a
linear instability is about an order of magnitude higher than
that for the present analysis in a deformed tube and is even
higher than the Reynolds number of 2100 where transition
is observed in experiments in a rigid tube. (Note that linear
stability analysis predicts that a parabolic flow in a rigid
tube is stable at all Reynolds numbers, and there is no linear
instability.)

The present analysis has successfully resolved the discrep-
ancy of about an order of magnitude between experiments and

TABLE I. The transition Reynolds number from the friction factor
measurements (column I), dye-stream measurements (column II),
wall oscillations observed from laser scattering (column III), all from
Verma and Kumaran [3], and the Reynolds number for divergence
between the experimental pressure drop and that from numerical
simulations (IV) and the Reynolds number at which the maximum
value of ci becomes positive at the downstream location (V), and the
theoretical prediction for a parabolic flow with a constant pressure
gradient of equal flow rate in a flexible tube of the same shear modulus
and diameter (VI), as a function of the shear modulus of the soft wall
G and the parameter � = ρGA2/μ2, where A is the undeformed
tube radius and μ is the fluid viscosity.

G (kPa) � I II III IV V VI

18 9.6 × 106 834 930 903 877 888 7840
25 12.7 × 106 1085 1190 1116 1202 1217 11230
35 15.3 × 106 1355 1400 1470 1429 1439 14540
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FIG. 12. The scaled streamwise fluid velocity fluctuations �v =
ṽz/ ṽz|r=A (a) and the scaled streamwise displacement fluctuations
in the solid �u = w̃Z/ w̃Z|r=A (b) as a function of r/A at two
downstream locations 8.8 cm from the entrance of the soft section
(solid line) and 9.5 cm from the entrance of the soft section (dashed
line) for tube with soft section made of gel with shear modulus
18 kPa at Re = 888 (◦), tube with soft section made of gel with shear
modulus 25 kPa and Re = 1217 (�), and for a tube with soft section
made of gel with shear modulus 35 kPa and Re = 1419 (∇).

theory for the transition Reynolds number for the flow through
a flexible tube. The reduction in the transition Reynolds
number due to modification in the pressure gradient and
velocity profile in the converging section seems to be a generic
feature of the flow in flexible conduits, as shown by the present
analysis for the flow in a flexible tube and the previous analysis
[4] for the flow in a flexible channel. To place the present result
in context, it should be noted that the minimum elasticity
modulus of soft polymer gels is of the order of 1–10 kPa, and
it is difficult to make gels with a lower shear modulus since
the cross-link density is not sufficient to hold the material
together. For such materials, linear stability analysis predicts
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FIG. 13. The velocity gradient at the wall from the simulations
for the base flow (solid symbols) and the velocity gradient for a
parabolic flow with the same flow rate (open symbols) as a function
of downstream distance z for tubes in which the soft wall is made
with shear modulus 35 kPa for an average Reynolds number of 521
(◦), 716 (�), 888 (∇), 1025 (�), and 1139 (�). The lines are drawn
to provide visual guidance.

that the transition Reynolds is higher than the Reynolds number
of 2100 where transition is experimentally observed in a
rigid tube. (Note that linear stability studies indicate that the
flow in a rigid tube is stable at all Reynolds numbers, and
there is no linear instability.) In the absence of this reduction
due to tube convergence and flow modification, it would not
have been possible to observe a reduction in the transition
Reynolds number in experiments. This fortuitous reduction
in the transition Reynolds number makes it feasible to use
wall flexibility as a practical means of inducing a transition to
turbulence and thereby significantly enhancing mixing [4].
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FIG. 14. The actual gradient from the simulations for the base
flow (solid lines) and the pressure difference between the entrance
of the soft section (z = 0 cm) and the outlet (z = 14.5 cm) divided
by the tube length (9.5 cm) as a function of downstream distance z

(dashed lines) for tubes in which the soft wall is made with shear
modulus 35 kPa for an average Reynolds number of 521 (◦), 716 (�),
888 (∇), 1025 (�), 1139 (�).
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